CSCI567 Machine Learning (Fall 2018)

Prof. Haipeng Luo

U of Southern California

Aug. 29, 2018

Administration

September 18, 2018 1 / 5

Outline

- Administration
- 2 Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- 5 Overfitting and Preventing Overfitting

Outline

- Administration
- Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- 5 Overfitting and Preventing Overfitting

Administration

September 18, 2018

Administrative stuff

- Please enroll in Piazza (240/295 as of this morning)
- Learning Python (official tutorial, LeetCode, etc)
- Office hours info is on Piazza (12H in total)
- HW1 to be released by end of this week
- Too many emails: think Piazza before writing an email

September 18, 2018 3 / 55 September 18, 2018

Outline

- Administration
- 2 Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- 5 Overfitting and Preventing Overfitting

September 18, 2018 5 /

Review of last lecture

Datasets

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- They are used for learning $f(\cdot)$

Test data

- ullet M samples/instances: $\mathcal{D}^{ ext{TEST}} = \{(m{x}_1, y_1), (m{x}_2, y_2), \cdots, (m{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{ ext{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

These three sets should *not* overlap!

Multi-class classification

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- ullet Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.
- They are used for learning $f: \mathbb{R}^{D} \to [C]$ for future prediction.

Special case: binary classification

- Number of classes: C=2
- Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

K-NNC: predict the majority label within the K-nearest neighbor set

September 18, 2018

6/55

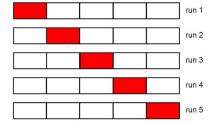
Review of last lecture

S-fold Cross-validation

What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.

 $\mathsf{S}=5$: 5-fold cross validation



Special case: S = N, called leave-one-out.

Expected risk

For a loss function L(y', y),

- e.g. $L(y',y) = \mathbb{I}[y' \neq y]$, called *0-1 loss*.
- many more other losses as we will see.

the expected risk of f is defined as

$$R(f) = \mathbb{E}_{(\boldsymbol{x},y)\sim\mathcal{P}}L(f(\boldsymbol{x}),y)$$

- expectation of test error is the expected risk
- training error can sometimes be a good proxy of expected risk

September 18, 2018

Linear regression

Outline

- Administration
- 3 Linear regression
 - Motivation
 - Setup and Algorithm
 - Discussions
- Linear regression with nonlinear basis
- 5 Overfitting and Preventing Overfitting

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

September 18, 2018

Motivation

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Motivation

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)

September 18, 2018

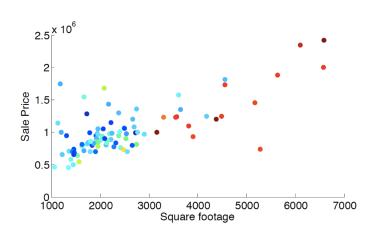
13 / 55

Motivation

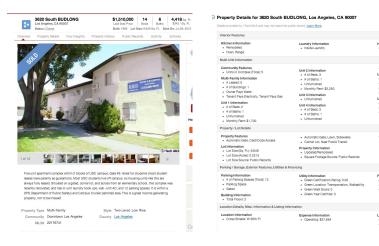
September 18, 2018

Motivation

Correlation between square footage and sale price

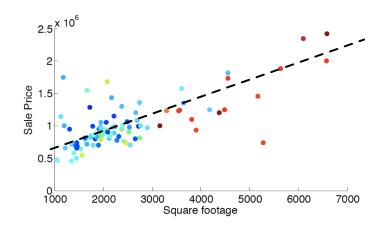


Features used to predict



Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense (slope) (intercept)



September 18, 2018 15 / 55 September 18, 2018

Linear regression N

tivation

Linear regression M

Motivation

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set? (for now)

September 18, 2018 17 /

Linear regression

Setup and Algorithn

Formal setup for linear regression

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $w = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{x} = [1 \ x_1 \ x_2 \ \dots \ x_D]^T$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$, a concise representation of all D+1 parameters
- the model becomes simply $f(x) = \tilde{w}^T \tilde{x}$
- sometimes just use w, x, D for $\tilde{w}, \tilde{x}, D+1!$

Example

Predicted price = $price_per_sqft \times square_footage + fixed_expense$ one model: $price_per_sqft = 0.3K$, $fixed_expense = 210K$

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^2
1100	312	540	228^{2}
5500	2,600	1,860	740^2
	• • •		
Total			$0 + 67^2 + 228^2 + 740^2 + \cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

September 18, 2018

18 / 5

Linear regression

Setup and Algorithm

Goal

Minimize total squared error

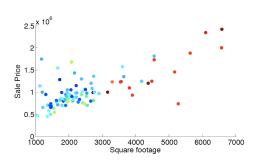
ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- ullet find $ilde{m{w}}^* = rgmin_{ ilde{m{w}} \in \mathbb{R}^{D+1}} \mathrm{RSS}(ilde{m{w}})$, i.e. least (mean) squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a closed-form solution

Warm-up: D = 0

Only one parameter w_0 : constant prediction $f(x) = w_0$



f is a horizontal line, where should it be?

September 18, 2018

Setup and Algorithm

Warm-up: D = 1

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0 \\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)}$$

$$\Rightarrow \left(\begin{array}{cc} N & \sum_{n} x_{n} \\ \sum_{n} x_{n} & \sum_{n} x_{n}^{2} \end{array}\right) \left(\begin{array}{c} w_{0} \\ w_{1} \end{array}\right) = \left(\begin{array}{c} \sum_{n} y_{n} \\ \sum_{n} x_{n} y_{n} \end{array}\right)$$

Warm-up: D = 0

Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Exercise: what if we use absolute error instead of squared error?

September 18, 2018

Setup and Algorithm

Least square solution for D = 1

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- yes for convex objectives (RSS is convex in \tilde{w})
- not true in general

General least square solution

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} = \boldsymbol{0}$$

where

$$oldsymbol{ ilde{X}} = \left(egin{array}{c} ilde{oldsymbol{x}}_1^{
m T} \ ilde{oldsymbol{x}}_2^{
m T} \ dots \ ilde{oldsymbol{x}}_N^{
m N} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes(D+1)}, \quad oldsymbol{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_N \end{array}
ight) \in \mathbb{R}^{{\sf N}}$$

September 18, 2018 25 /

Linear regression

Setup and Algorithm

Another approach

RSS is a quadratic:

$$\begin{split} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \mathrm{cnt.} \end{split}$$

Note: $\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$ and is 0 if $\boldsymbol{u} = 0$. So $\tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$ is the minimizer.

General least square solution

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity \tilde{w}^* is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when D = 0: $(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1} = \frac{1}{N}$, $\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \sum_{n} y_{n}$

September 18, 2018

26 /

Linear regression

Discussions

Computational complexity

Bottleneck of computing

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{\mathrm{T}}oldsymbol{y}$$

is to invert the matrix $\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

- ullet naively need $O({\rm D}^3)$ time
- there are many faster approaches (such as conjugate gradient)

September 18, 2018 27 / 55

September 18, 2018

What if $\tilde{X}^{\mathrm{T}}\tilde{X}$ is not invertible

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft	sale price
1000	500K

Any line passing this single point is a minimizer of RSS.

Linear regression

Discussions

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ do?

eigendecomposition:
$$\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} = m{U}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} \end{bmatrix} m{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are **eigenvalues**.

i.e. just inverse the eigenvalues

How about the following?

$$D = 1, N = 2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

Discussions

Again infinitely many minimizers.

September 18, 2018

Linear regression

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$ilde{m{X}}^{\mathrm{T}} ilde{m{X}} + \lambda m{I} = m{U}^{\mathrm{T}} egin{bmatrix} \lambda_1 + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_2 + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} m{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1} + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2} + \lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}} + \lambda} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1} + \lambda} \end{bmatrix} \boldsymbol{U}$$

Fix the problem

The solution becomes

$$\tilde{m{w}}^* = \left(\tilde{m{X}}^{\mathrm{T}} \tilde{m{X}} + \lambda m{I} \right)^{-1} \tilde{m{X}}^{\mathrm{T}} m{y}$$

not a minimizer of the original RSS

 λ is a *hyper-parameter*, can be tuned by cross-validation.

Linear regression with nonlinear basis

September 18, 2018

Outline

- Administration
- Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- **6** Overfitting and Preventing Overfitting

Comparison to NNC

Parametric versus non-parametric

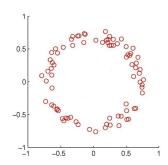
- Parametric methods: the size of the model does not grow with the size of the training set N.
 - \bullet e.g. linear regression, D + 1 parameters, independent of N.
- Non-parametric methods: the size of the model grows with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

September 18, 2018

Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data



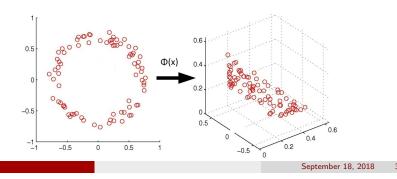
Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).



Linear regression with nonlinear basis

Example

Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \quad \Rightarrow \quad f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space

= learning an M-degree polynomial model in the original space

Regression with nonlinear basis

Model: $f(x) = w^{\mathrm{T}} \phi(x)$ where $w \in \mathbb{R}^M$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Similar least square solution:

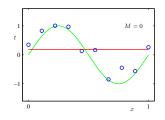
$$m{w}^* = \left(m{\Phi}^{ ext{T}}m{\Phi}
ight)^{-1}m{\Phi}^{ ext{T}}m{y} \quad ext{where} \quad m{\Phi} = \left(egin{array}{c} m{\phi}(m{x}_1)^{ ext{T}} \ m{\phi}(m{x}_2)^{ ext{T}} \ dots \ m{\phi}(m{x}_N)^{ ext{T}} \end{array}
ight) \in \mathbb{R}^{N imes M}$$

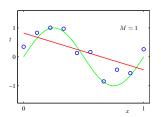
September 18, 2018

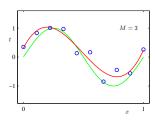
Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):







Outline

Administration

Review of last lecture

Why nonlinear?

Can I use a fancy linear feature map?

$$m{\phi}(m{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = m{A}m{x} \quad ext{ for some } m{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w}'^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

We will see more nonlinear mappings soon.

September 18, 2018

Overfitting and Preventing Overfitting

Linear regression with nonlinear basis

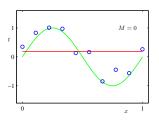
6 Overfitting and Preventing Overfitting

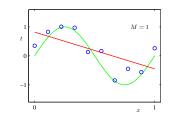
Underfitting and Overfitting

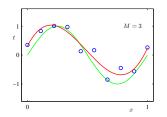
Ex: fitting a noisy sine function with a polynomial:

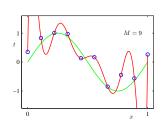
Should we use a very complicated mapping?

Overfitting and Preventing Overfitting







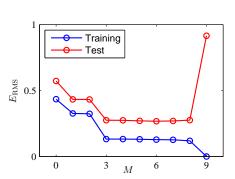


 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is overfitting the data

- small training error
- large test error



September 18, 2018

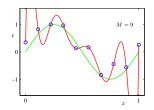
More complicated models ⇒ larger gap between training and test error

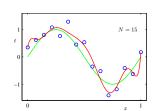
How to prevent overfitting?

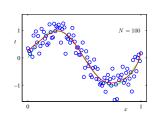
Method 1: use more training data

Method 2: control the model complexity

The more, the merrier







More data ⇒ smaller gap between training and test error

For polynomial basis, the **degree** M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Overfitting and Preventing Overfitting

Magnitude of weights

Least square solution for the polynomial example:

	M=0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Intuitively, large weights ⇒ more complex model

Overfitting and Preventing Overfitting

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the regularizer
 - ullet measure how complex the model w is
 - common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.
- $\lambda > 0$ is the *regularization coefficient*
 - $\lambda = 0$, no regularization
 - $\lambda \to +\infty$, $\boldsymbol{w} \to \operatorname{argmin}_{\boldsymbol{w}} R(\boldsymbol{w})$
 - i.e. control trade-off between training error and complexity

September 18, 2018

The effect of λ

when we increase regularization coefficient λ

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0}$	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01
	'		

September 18, 2018 49 / 9

Overfitting and Preventing Overfitting

How to solve the new objective?

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

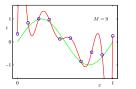
$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

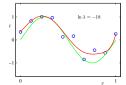
Note the same form as in the fix when X^TX is not invertible!

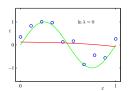
For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.

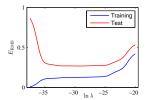
The trade-off

when we increase regularization coefficient $\boldsymbol{\lambda}$









September 18, 2018

8 50 / 5

Overfitting and Preventing Overfitting

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

Summary

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

September 18, 2018 53 / 5

Overfitting and Preventing Overfitting

General idea to derive ML algorithms

- 1. Pick a set of models \mathcal{F}
 - \bullet e.g. $\mathcal{F} = \{ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization

Overfitting and Preventing Overfitting

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

September 18, 2018

54 / 5