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Outline Administrative stuff

© Administration o . ,
@ Please enroll in Piazza (240/295 as of this morning)

Learning Python (official tutorial, LeetCode, etc)

Office hours info is on Piazza (12H in total)

HW1 to be released by end of this week

Too many emails: think Piazza before writing an email
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© Review of last lecture
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Datasets

Training data

o N samples/instances: D™ = {(x1,y1), (x2,92), -, (TN, YN) }
@ They are used for learning f(-)

Test data
e M samples/instances: D™ = {(x1,y1), (2,92), - , (XM, yMm)}

@ They are used for assessing how well f(-) will do.

Development/Validation data

oL samples/instances: DPEY = {(.’Bl,yl), (5132,312), e 7(wLayL)}

@ They are used to optimize hyper-parameter(s).

These three sets should not overlap!
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Multi-class classification

Training data (set)
e N samples/instances: D™ = {(x1,y1), (®2,92), -, (ZN,YN) }
e Each x,, € RP is called a feature vector.
e Each y, € [C] ={1,2,---,C} is called a label/class/category.
@ They are used for learning f : RP — [C] for future prediction.

Special case: binary classification
@ Number of classes: C =2
e Conventional labels: {0,1} or {—1,+1}

K-NNC: predict the majority label within the K-nearest neighbor set
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S-fold Cross-validation

What if we do not have a development set?

@ Split the training data into S
equal parts.

S = 5: b-fold cross validation

@ Use each part in turn as a
development dataset and use
the others as a training dataset.

@ Choose the hyper-parameter
leading to best average
performance.

|
|
|
|

Special case: S = N, called leave-one-out.
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Expected risk High level picture

H /
For a loss function L(y/, y), Typical steps of developing a machine learning system:

e eg L(y,y) =1y #y], called 0-1 loss. o o
o Collect data, split into training, development, and test sets.
@ many more other losses as we will see.

@ Train a model with a machine learning algorithm. Most often we
the expected risk of f is defined as apply cross-validation to tune hyper-parameters.

R(f) = E(w’y)NpL(f(a:),y) @ Evaluate using the test data and report performance.

o expectation of test error is the expected risk @ Use the model to predict future/make decisions.

@ training error can sometimes be a good proxy of expected risk How to do the red part exactly?
| September 18, 2018 9/55 | September 18, 2018 10/55

Outline Regression

Predicting a continuous outcome variable using past observations
@ Predicting future temperature (last lecture)
Predicting the amount of rainfall

Predicting the demand of a product

© Linear regression
@ Motivation

@ Setup and Algorithm . e o
o Discussions Key difference from classification

o
°
@ Predicting the sale price of a house
°

@ continuous vs discrete
@ measure prediction errors differently.

@ lead to quite different learning algorithms.

Linear Regression: regression with linear models



Linear regression Motivation

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Motivation

Linear regression

Correlation between square footage and sale price
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Linear regression Motivation

Features used to predict
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Linear regression

Possibly linear relationship
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Motivation

Sale price ~ price_per_sqft x square_footage + fixed_expense

Sale Price

3000 4000 5000

Square footage

0 1
1000 2000

7000
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Linear regression Motivation

How to learn the unknown parameters?

How to measure error for one prediction?

@ The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.

@ We can look at
e absolute error: | prediction - sale price |

o or squared error: (prediction - sale price)®>  (most common)

Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set?

o test set, ideal but we cannot use test set while training

@ training set? (for now)
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Formal setup for linear regression

Input: = € RP (features, covariates, context, predictors, etc)
Output: y € R (responses, targets, outcomes, etc)

Training data: D = {(x,,yn),n =1,2,...,N}

Linear model: f:RP — R, with f(x) = wg + ZdD:1 WaTg= wo + wre
(superscript T stands for transpose), i.e. a hyper-plane parametrized by
o w=[wy wy --- wp]T (weights, weight vector, parameter vector, etc)

@ bias wy

NOTE: for notation convenience, very often we
@ append 1 to each x as the first feature: & = [1 21 x5 ... zp|T
o let w = [wy wy wo --- wp]T, a concise representation of all D + 1
parameters
o the model becomes simply f(x) = w'x

@ sometimes just use w,x, D for w,x,D + 1!
September 18, 2018 19/55

e
Example

Predicted price = price_per_sqft x square_footage + fixed_expense

one model: price_per_sqft = 0.3K, fixed_expense = 210K

sqft | sale price (K) | prediction (K) | squared error

2000 | 810 810 0

2100 | 907 840 677

1100 | 312 540 2282

5500 | 2,600 1,860 740°

Total 0+ 67% + 228% + 740% + - -

Adjust price_per_sqft and fixed_expense such that the total squared error is
minimized.
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Setup and Algorithm
Goal

Minimize total squared error

e Residual Sum of Squares (RSS), a function of w

RSS(’II)) = Z (f(a:n) - yn)2 = Z(QNZ‘E’JJ - yn)2

n n

o find w* = argmin RSS(w), i.e. least (mean) squares solution
weRP+H!
(more generally called empirical risk minimizer)

@ reduce machine learning to optimization

@ in principle can apply any optimization algorithm, but linear
regression admits a closed-form solution
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Warm-up: D =0 Warm-up: D =0

L Optimization objective becomes
Only one parameter wy: constant prediction f(x) = wy

RSS(wp) = Z(wo — n)? (it's a quadratic aw? + bwg + c)

5% 10° . -

2 .
815 Co. = Nwj =2 (> yn | wo+cnt.
o ° ) ® n
§ 1} o o.:. 2e. o : 1 9

’,:'; LN .
05 $ =N wO—Nzn:yn + cnt.

0 . . . . )
1000 2000 3000 4000 5000 6000 7000
Square footage

It is clear that w; = % > n Yn, i.e. the average

f is a horizontal line, where should it be?
Exercise: what if we use absolute error instead of squared error?
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Warm-up: D =1 Least square solution for D =1

Optimization objective becomes

RSS(w) = Y (wo + wiz, — yn)? . _
) ()N ) ()

General approach: find stationary points, i.e., points with zero gradient
(assuming the matrix is invertible)

ORSS(w
BRS%)% ; . Zofto i =) =0
ow; =0 2n(Wo + Wi — Yn)n 0 Are stationary points minimizers?
N = . @ yes for convex objectives (RSS is convex in w
W0+ W1 Dy T 9 2in Yn (a linear system) ( )
W D T WL D Ty =D Yn @ not true in general

- (<, ZZ%)(Z?):(%’?ZZ”)
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General least square solution

Objective
RSS(w) = > (Z,® — yn)”

n

Again, find stationary points (multivariate calculus)

VRSS(w) =2 &, (&) (Z:cn:c ) =) Enyn

= (XTX)yw - XTy=0

where 7
‘131T Y1
X _ w_2 e RNX(DHD) o = y_2 c RN
& YN
I September 18,2018 25/55
Another approach
RSS is a quadratic:
RSS(w) = Y (w0 &y — ya)® = | X® - y|3
n
- T -
= (X®-y) (X -y)
="' X" Xw—y"Xw—w" X Ty + cnt.
e e NT o - o~ -
= (@ - (XTX)'XTy) (XTX) (& - (XTX)1XTy) +ont
o - \T - -
Note: u” (XTX> = (Xu) Xu=|Xul3>0andis0if u=0.
So w* = (XTX)"' X Ty is the minimizer.
I September 18,2018 27/55

General least square solution

(X"X)w-X"y=0 = o'=X"X)"'X"y
assuming X T X (covariance matrix) is invertible for now.

Again by convexity w* is the minimizer of RSS.

Verify the solution when D = 1:

1 T
xl x2 EEEEY :EN RS . Zn xn Zn xn
1 zn
when D=0: (XTX)' =L XTy =3 v,

September 18, 2018

Linear regression Discussions

Computational complexity

Bottleneck of computing

@ = (XTX)  XTy

is to invert the matrix XTX € R(P+1x(D+1)

e naively need O(D?) time

@ there are many faster approaches (such as conjugate gradient)

September 18, 2018
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Linear regression Discussions

What if XTX is not invertible

Why would that happen?

One situation: N < D+ 1, i.e. not enough data to estimate all parameters.

Example: D=N=1

sqft

sale price

1000

500K

Any line passing this single point is a minimizer of RSS.

Linear regression

How to resolve this issue?

Intuition: what does inverting XTX do?

eigendecomposition:

XTx =u”T

Discussions

where A1 > A\a > --- Apy1 > 0 are eigenvalues.

inverse:

i.e. just inverse the eigenvalues
|

(XTX) ' =y?

1
A1
0

O e

0
1

A2
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o -.-- 0 ]
)\2 N 0
AD 0
0 Aps1
0
0
: U
1
A
0
Ap1 |
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Linear regression Discussions

How about the following?

D=1,N=2
sqft | sale price
1000 500K
1000 600K

Any line passing the average is a minimizer of RSS.

D=2,N=37
sqft | #bedroom | sale price
1000 2 500K
1500 3 700K
2000 4 800K

Again infinitely many minimizers.

Linear regression

Discussions

How to solve this problem?

Non-invertible = some eigenvalues are 0.

One natural fix: add something positive

September 18, 2018

[ A+ 0 0 i
0 Ao+ A 0
0 AD + A 0
i 0 0 AD+1 + A i
where A > 0 and I is the identity matrix. Now it is invertible:
- -
A1+A ? 0
0 %= 0
(XTX + A1)t =U" : : : ; U
1
0 SR (1)
i 0 e 0 yrorendl

September 18, 2018
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Oansse
Fix the problem

The solution becomes

o~ ~1 .
B = (XTX n /\I) XTy
@ not a minimizer of the original RSS

A is a hyper-parameter, can be tuned by cross-validation.
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Linear regression with nonlinear basis
Outline

@ Linear regression with nonlinear basis

September 18, 2018 35/55

Discissions
Comparison to NNC

Parametric versus non-parametric

e Parametric methods: the size of the model does not grow with the
size of the training set N.

o e.g. linear regression, D + 1 parameters, independent of N.
@ Non-parametric methods: the size of the model grows with the size

of the training set.

o e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.
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Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

() o
&0 5 o
05 o © o d%)oo
o)
% &o
i &
of © (é’
9 o
o
sl @ 20°
. fe0 ) o0 ®gp
® Oo@o
4
-1 -0.5 0 05 1
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Solution: nonlinearly transformed features Regression with nonlinear basis

1. Use a nonlinear mapping

o)z eRP - 2z e RM Model: f(x) = wT¢(x) where w € RM

to transform the data to a more complicated feature space Objective:

2
RSS(w) = 3 (w" d(@n) — vn)
2. Then apply linear regression (hope: linear model is a better fit for n
the new feature space).

Similar least square solution:
;

T
8% d)(ml)
05 RO (]5(:13 )T
-1 2
2 w* = (®T®) @y where &= _ € RV*M
0 OOO :
. T
" é(xn)
-0.5 %@m
®
06
-1
-1 -0.5
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Example Example

Fitting a noisy sine function with a polynomial (M = 0,1, or 3):

Polynomial basis functions for D = 1

o) = | | = f@) =+ Y wee” IR

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space
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Why nonlinear? Outline

Can | use a fancy linear feature map?
Iy — X2

3.%’4—333 MxD
é(x) = or1 + T4 + x5 = Az for some A € R™”

No, it basically does nothing since

2
min (wTAzcn — yn)2 = min)CRD Z <w'T:1:n — yn)

weRM w’€lm(AT © Overfitting and Preventing Overfitting
n

We will see more nonlinear mappings soon.
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| |
Should we use a very complicated mapping? Underfitting and Overfitting

Ex: fitting a noisy sine function with a polynomial:

1
M < 2 is underfitting the data © L’:;it“ing
1 fé\\ M =0 @ large training error
t
ol 5 3 ° o large test error Z 05
\\0/0/ R
= M > 9 is overfitting the data
0 ! ° ! @ small training error
0
e large test error 0 S um 8 9

More complicated models = larger gap between training and test error

How to prevent overfitting?

0 x 1
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Overfitting and Preventing Overfitting

Method 1: use more training data

The more, the merrier

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

N =100

@ use cross-validation to pick hyper-parameter M

When M or in general ® is fixed, are there still other ways to control

® complexity?

0

More data = smaller gap between training and test error

Overfitting and Preventing Overfitting

Magnitude of weights

September 18, 2018

Least square solution for the polynomial example:

M=0 M=1 M=3 M=9
wo | 019 082 031 0.35
wy 127 7.99 232.37
ws -25.43 -5321.83
ws 17.37 48568.31
o -231639.30
ws 640042.26
we -1061800.52
wr 1042400.18
ws -557682.99
Wy 125201.43

Intuitively, large weights = more complex model

September 18, 2018

Overfitting and Preventing Overfitting

How to make w small?

Regularized linear regression: new objective
E(w) = RSS(w) + A\R(w)
Goal: find w* = argmin,, £(w)

o R:RP — RY is the regularizer

e measure how complex the model w is

e common choices: ||w||3, [|w]1, etc.

@ )\ > 0 is the regularization coefficient

e A\ =0, no regularization
e A — 400, w — argmin,, R(w)

e i.e. control trade-off between training error and complexity
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The effect of A\ The trade-off

. o . . . when we increase regularization coefficient \
when we increase regularization coefficient A

InA=-00 InA=-18 InA=0 kB I
wo 0.35 035  0.13 |7 o
wy 232.37 4.74 -0.05 } ) N
Wy -5321.83 077  -0.06 : } :
w3 48568.31 -31.97 -0.06
wy | -231639.30 -3.89 -0.03
ws | 640042.26 55.28 -0.02 :
wg | -1061800.52 41.32 -0.01 =5
wy | 1042400.18 -45.95 -0.00
wg | -557682.99 -91.53 0.00
wg | 125201.43 72.68 0.01 )
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How to solve the new objective? Equivalent form

Simple for R(w) = ||w||3:

Regularization is also sometimes formulated as
E(w) = RSS(w) + A|w|3 = [|Pw — yll5 + Allw]3 &

argmin RSS(w subject to R(w) < 3
VE(w) =2(@Tdw — ®Ty) + 2 w =0 w (w) (w)
= (‘I’T‘i’ + M) w = 'y where 3 is some hyper-parameter.
= w' = (8T + A1) @y
Finding the solution becomes a constrained optimization problem.
Note the same form as in the fix when X TX is not invertible!
Choosing either A or 3 can be done by cross-validation.
For other regularizers, as long as it's convex, standard optimization
algorithms can be applied.



Overfitting and Preventing Overfitting Overfitting and Preventing Overfitting

Summary Recall the question

Typical steps of developing a machine learning system:

. o Collect data, split into training, development, and test sets.
w' = (2T +\I) 2Ty
@ Train a model with a machine learning algorithm. Most often we

Important to understand the derivation than remembering the formula o
apply cross-validation to tune hyper-parameters.

Overfitting: small training error but large test error .
g & & @ Evaluate using the test data and report performance.

Preventing Overfitting: more data + regularization _ o
@ Use the model to predict future/make decisions.

How to do the red part exactly?
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Overfitting and Preventing Overfitting

General idea to derive ML algorithms

1. Pick a set of models F
o eg F={f(zx) =wlz | weRP}
°oeg F={f(z)=wT®(x) | weRM}

2. Define error/loss L(y',y)

3. Find empirical risk minimizer (ERM):

or regularized empirical risk minimizer:

N
£ = argmin Y L(f(w,), ya) + AR(f)

fer

n=1

ML becomes optimization
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