Administration

CSCI567 Machine Learning (Fall 2018) o HW 1 has been released.

Complete the GitHub survey ASAP if you haven't.
Prof. Haipeng Luo

Follow Piazza for clarifications/typos of HW 1.

U of Southern California

DO NOT post your programming assignment outputs on Piazza.
Sep 5, 2018

DEN problems should have been resolved.
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© Review of Last Lecture @ Review of Last Lecture
@ Linear Classifier and Surrogate Losses
© Perceptron

@ Logistic regression



Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

o lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(w) = w'x
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Regression with nonlinear basis
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Model: f(x) = w ¢(x) where w € RM
N . -1
Similar least square solution: w* = (<I>T<I>) ®Ty
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Review of Last Lecture

Least square solution

w™ = argmin RSS(w) x]
w a::T
. 2 2
= argmin | Xw — y||5 X = _
w .
= (XTX)_IXTy mrl:\[l‘

Two approaches to find the minimum:
o find stationary points by setting gradient = 0

e “complete the square”

.
Underfitting and Overfitting

Y1

Y2

YN
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M < 2 is underfitting the data ©— Training

—o— Test
@ large training error
@ large test error E 05
M > 9 is overfitting the data
@ small training error .
o large test error 0 3

How to prevent overfitting? more data + regularization

w* = argmin (RSS(’LU) + )\H'wH%) = (‘I)T‘I) + )‘I)_l (I)Ty
w
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General idea to derive ML algorithms Outline

Step 1. Pick a set of models F
o eg F={f(z) =wlz|weRP}
°oeg F={f(z)=wT®(x)|weRM}

Step 2. Define error/loss L(y',y)

Li Classifi dS te L
Step 3. Find empirical risk minimizer (ERM): © Linear Classifier and Surrogate Losses

N
f* = argmin Z L(f(xn),yn)

feF

n=1

or regularized empirical risk minimizer:

N
£ = argmin 3" L(f(2a), yu) + AR(f)

fer 5
ML becomes optimization
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Classification Deriving classification algorithms
Recall the setup: Let's follow the steps:

e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
@ goal: learn a mapping f : RP — [C] Again try linear models, but how to predict a label using w™ z?

Step 1. Pick a set of models F.

This lecture: binary classification Sign of wTz predicts the label:
@ Number of classes: C = 2

. . 1 ifwlz >0
@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...) sign(w'x) = { —_Fl :f ZTz <0

We have discussed nearest neighbor classifier: (Sometimes use sgn for sign t00.)

@ require carrying the training set

@ more like a heuristic



Linear Classifier and Surrogate Losses Linear Classifier and Surrogate Losses

The models The models

The set of (separating) hyperplanes:

_ _ T D
F=1{f(z)=sgn(w z) [ w € R"} Still makes sense for “almost” linearly separable data

Good choice for linearly separable data, i.e., Jw s.t.

sgn(wTa:n) =y, Of yYpw x,>0

for all n € [N].

September 18, 2018 13 /46 September 18, 2018 14 / 46

The models 0-1 Loss

Step 2. Define error/loss L(y/,y).

For clearly not linearly separable data, o
Most natural one for classification: 0-1 loss L(y/,y) = I[y # y]

For classification, more convenient to look at the loss as a function of
. L ywTz. That is, with
osf 2t . el EO-l(Z)ZH[ZSO]
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Again can apply a nonlinear mapping ®: +o

F={f(z)=sgn(w"®(z)) | w e R™}

More discussions in the next two lectures.

the loss for hyperplane w on example (x,y) is £o.1 (yw T x)



Linear Classifier and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.
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Linear Classifier and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N

w* = argmin Z E(yanmn)
w€cRDP

n=1

where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)
@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.
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Linear Classifier and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

L5

. Cperceptron(2) = max{0, —z} (used in Perceptron)
o hinge 1055 lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss fjogistic(2) = log(1 + exp(—z)) (used in logistic regression;
the base of log doesn’t matter)
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Outline

© Perceptron
@ Numerical optimization
e Applying (S)GD to perceptron loss
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The Perceptron Algorithm

In one sentence: Stochastic Gradient Descent applied to perceptron loss

i.e. find the minimizer of

F(w)

N
2 : T
gperceptron (ynw wn)

3
Il
—_

[
NE

max{0, —y,w  x,}

3
I
—_

using SGD
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L
e
Gradient Descent (GD)

Goal: minimize F(w)
Algorithm: move a bit in the negative gradient direction
w) — w® — pVF(w®)

where n > 0 is called step size or learning rate

@ in theory 7 should be set in terms of some parameters of F’

@ in practice we just try several small values
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A detour of numerical optimization methods

We describe two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.
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e oy
An example

Example: F(w) = 0.5(w? — w2)? + 0.5(w; — 1)2. Gradient is

OF _
8w1 a

oF _

2(w% —wo)wy +wy — 1 Dy

—(wi — wy)

GD:
(0) (0)

o Initialize wy ’ and wy ' (to be 0 or randomly), t =0

e do

2
™ ) g 20 — uf)ul? 4 uf? 1
2
af ™ ol = |-l - off)]
t+—t+1

e until F(w®) does not change much

September 18, 2018 24 / 46



Why GD?

Intuition: by first-order Taylor approximation

F(w) = F(w®) + VF(w)T (w — w®)

GD ensures

reasonable 7 decreases function value but large 7 is unstable
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Convergence Guarantees

Many for both GD and SGD on convex objectives.
They tell you at most how many iterations you need to achieve

Fw®) - F(w*) < e

Even for nonconvex objectives, many recent works show effectiveness of

GD/SGD.
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Stochastic Gradient Descent (SGD)

GD: move a bit in the negative gradient direction
SGD: move a bit in a noisy negative gradient direction

wt — w® — pVF(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t

E [@F(w(t))} = VF(w®) (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!

—— Septamber 13, 2015

Applying GD to perceptron loss
Objective

N
F(w) = Z max{0, —y,wl x,}
n=1

Gradient (or really sub-gradient) is

N
VF(w) = Z —I[ypw'x, < 0lya,

n=1
(only misclassified examples contribute to the gradient)

GD update

N
w<—w+n Z I[[yn'wT:cn < Olynxn,,

n=1

Slow: each update makes one pass of the entire training set!

—— Septamber 13, 2015
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A E)D (0 ol
Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —N]I[yanmn < Olynxn,
clearly unbiased.
SGD update (with 7 absorbing the constant N)
w <« w + ly,w'z, < 0y,xn
Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

Exercise: try SGD to minimize RSS for linear regression.
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Why does it make sense?

If the current weight w makes a mistake
yanxn <0
then after the update w’ = w + y,x,, we have

T 2. T T

/T
YpW' Ty = YW Ty + YT, Ty > YW Ty,

Thus it is more likely to get it right after the update.
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A VD (L ol
The Perceptron Algorithm

Perceptron algorithm is SGD with = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(wTm,) # yn
W W+ YnTy
Note:
@ w is always a linear combination of the training examples

@ why 1 =17 Does not really matter in terms of training error
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A B ENED B el
Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data is not linearly separable.
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Outline

e Logistic regression
@ A Probabilistic View
@ Optimization

.
AR
Predicting probability

Instead of predicting a discrete label, can we predict the probability of

each label? i.e. regress the probabilities
One way: sigmoid function + linear model
Ply=+1|z;w) = o(w'x)

where o is the sigmoid function:
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Logistic regression

A simple view

In one sentence: find the minimizer of

N
F(w) = Zglogistic(yn'men)

n=1
N

=3 In(1 + v

n=1

But why logistic loss? and why “regression”?

September 18, 2018

.
Properties
Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability) :

34 /46

0.9
0.8

° a('wT:c) > 0.5 < wrx > 0, consistent o7
with predicting the label with sgn(wTx) >

o larger wlx = larger o(w'x) = higher o

0.2

confidence in label 1 o

@ 0(z)+o(—z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-oc(wx) =o(—wTx)

and thus
1

. — Tr) — I
Ply | @iw) = olyw’e) =

September 18, 2018

36 /46



How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is generated in this way by some w

@ perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,--- ,y, given

r1, -+, Ty, as a function of some w?

N
H yn | T, W

MLE: find w* that maximizes the probability P(w)
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|
CL
Let's apply SGD again

w — w — nVF(w)

=w - nvwelogistic<yn'men> (’n € [N] is drawn u.a.r.)

aElogistic(z)
=w-—-n ( R YnTn

82
=w — XL
" <1 + e % lz= yanmn) Ynin

( Ynw wn)ynxn
(—

Un | Tns w)yny

=w+no
=w+nP

This is a soft version of Perceptron!

P(—yp|@n; w) versus I[y, # sgn(w x,)] 4

4 z 0 B ]
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A Probabilistic View
The MLE solution

w”* = argmax P(w) = argmax H P(yn | @n;w)
w

w

n=1
N N
= argmalenP(yn | Xp;w) = argmlnz —InP(y, | zn;w)
w n=1 n=1
N N
= argmin Z In(1 + eiyanmn) = argmin Z Klogistic(yn'men)
w n=1 w n=1
= argmin F(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!
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Logistic regression Optimization

A second-order method: Newton method

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F('w(t)) + VF('w(t))T('w - w(t))

What if we look at second-order Taylor approximation?

Flw) ~ Fw®) + VFw®) T (w — w?) + %(w )T Hy(w — w®)

where H; = V2F(w®) € RP*D is the Hessian of F at w®, i.e.,

. 0*F(w)
big 311)7,8’11)] w=w?)
(think “second derivative” when D = 1)
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Deriving Newton method
If we minimize the second-order approximation (via “complete the square”)

~ F(w®) + V() (w —w®) + 1 (w — ) Hi(w — w!")
1

for convex F' (so H; is positive semidefinite)
we obtain Newton method:

w) — w® — H'VF(w®)

wht wA{t+1}
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|
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Applying Newton to logistic loss

vwglogistic(:‘/n'walf'n) = _U(_yanxn)ynmn
Jo(z
vi;glogistic(yn'wT"If'n) = < a( ) T )yixnx;l;
z Z=—YnpWw" Tn

e * T

= B
((1+€ 2)2 Z_yanwn> ndn

T T

Exercises:
@ why is the Hessian of logistic loss positive semidefinite?

@ can we apply Newton method to perceptron/hinge loss?
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T
=5 (w —w® + Ht_1VF(w(t))> H; (w —w® + Ht_IVF(w(t))> + cnt.

Oini=iiz:
Comparing GD and Newton

w — w® — pVEF(w®) (GD)

W) w® — BV F(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 1 (so no tuning needed!)
@ converges super fast in terms of #iterations needed

o e.g. how many iterations needed when applied to a quadratic?

@ requires second-order information and is slow each iteration (there
are many ways to improve it though)
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Logistic regression Optimization

Summary

Linear models for classification:
Step 1. Model is the set of separating hyperplanes

F = {f(x) = sen(w"z) | w € R}
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Logistic regression Optimization Logistic regression Optimization

Step 2. Pick the surrogate loss

L5

Step 3. Find empirical risk minimizer (ERM):

N
. w* = argminZE(yanwn)
= — 'LUE]RD n=1
using GD/SGD/Newton.
° Cperceptron(z) = max{0, —z} (used in Perceptron)

o hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss {jogistic(2) = log(1 4 exp(—=z)) (used in logistic regression)
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