CSCI567 Machine Learning (Fall 2018)

Prof. Haipeng Luo

U of Southern California

Sep 12, 2018

September 12, 2018 1 / 4

Outline

- Review of Last Lecture
- Multiclass Classification
- Neural Nets

Administration

GitHub repos are setup (ask TA Chi Zhang for any issues)

HW 1 is due this Sunday (09/16) 11:59PM

You need to submit a form if you use late days (see course website)

Effort-based grade for written assignments:

- see the explanation on Piazza
- key: let us know what you have tried and how you thought
- "I spend an hour and came up with nothing" = empty solution

September 12, 2018

Review of Last Lecture

Outline

- Review of Last Lecture
- 2 Multiclass Classification
- 3 Neural Nets

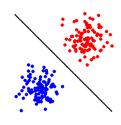
September 12, 2018 3 / 49 September 12, 2018 4

Summary

Linear models for **binary** classification:

Step 1. Model is the set of **separating hyperplanes**

$$\mathcal{F} = \{f(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$



September 12, 2018

Review of Last Lecture

Step 3. Find empirical risk minimizer (ERM):

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} F(oldsymbol{w}) = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathsf{T}} oldsymbol{x}_n)$$

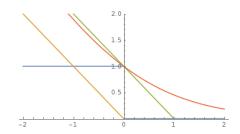
using

• GD: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \nabla F(\boldsymbol{w})$

 $\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w})$ • SGD:

• Newton: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \left(\nabla^2 F(\boldsymbol{w})\right)^{-1} \nabla F(\boldsymbol{w})$

Step 2. Pick the surrogate loss



- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{\text{hinge}}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z))$ (used in logistic regression)

September 12, 2018

Review of Last Lecture

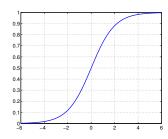
A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^N \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{w})$$

where

$$\mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}$$



Outline

- Review of Last Lecture
- Multiclass Classification
 - Multinomial logistic regression
 - Reduction to binary classification
- Neural Nets

September 12, 2018 9 / 4

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(oldsymbol{x}) = egin{cases} 1 & ext{if } oldsymbol{w}^{ ext{T}} oldsymbol{x} \geq 0 \ 2 & ext{if } oldsymbol{w}^{ ext{T}} oldsymbol{x} < 0 \end{cases}$$

can be written as

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} \\ 2 & \text{if } \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} > \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \end{cases}$$
$$= \operatorname*{argmax}_{k \in \{1,2\}} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$$

for any $\boldsymbol{w}_1, \boldsymbol{w}_2$ s.t. $\boldsymbol{w} = \boldsymbol{w}_1 - \boldsymbol{w}_2$

Think of $\boldsymbol{w}_k^{\mathrm{T}}\boldsymbol{x}$ as a score for class k.

Classification

Recall the setup:

- ullet input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [C] = \{1, 2, \dots, C\}$
- goal: learn a mapping $f: \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

Examples:

- ullet recognizing digits (C = 10) or letters (C = 26 or 52)
- predicting weather: sunny, cloudy, rainy, etc
- predicting image category: ImageNet dataset ($C \approx 20K$)

Nearest Neighbor Classifier naturally works for arbitrary C.

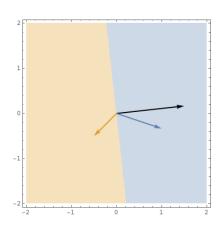
September 12, 2018

10 / 4

Multiclass Classification

Multinomial logistic regression

Linear models: from binary to multiclass



$$egin{aligned} m{w} &= (rac{3}{2},rac{1}{6}) = m{w}_1 - m{w}_2 \ m{w}_1 &= (1,-rac{1}{3}) \ m{w}_2 &= (-rac{1}{2},-rac{1}{2}) \end{aligned}$$

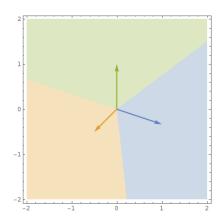
Blue class:

 $\{ \boldsymbol{x} : 1 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$

• Orange class:

 $\{ oldsymbol{x} : \mathbf{\hat{2}} = \operatorname{argmax}_k oldsymbol{w}_k^{\mathrm{T}} oldsymbol{x} \}$

Linear models: from binary to multiclass



$$\mathbf{w}_1 = (1, -\frac{1}{3})$$

 $\mathbf{w}_2 = (-\frac{1}{2}, -\frac{1}{2})$
 $\mathbf{w}_3 = (0, 1)$

Blue class:

 $\{\boldsymbol{x}: 1 = \operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\}$

Orange class:

 $\{\boldsymbol{x}: 2 = \operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}\}$

Green class:

 $\{\boldsymbol{x}: \boldsymbol{3} = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}\}$

13 / 49

September 12, 2018

Multiclass Classification

Multinomial logistic regression

Multiclass Classification

Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w = w_1 - w_2$:

$$\mathbb{P}(y = 1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}$$

Naturally, for multiclass:

$$\mathbb{P}(y = k \mid \boldsymbol{x}; \boldsymbol{W}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k' \in [\mathsf{C}]} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$$

This is called the *softmax function*.

Linear models for multiclass classification

$$egin{aligned} \mathcal{F} &= \left\{ f(oldsymbol{x}) = rgmax_{k \in [\mathsf{C}]} oldsymbol{w}_k^\mathrm{T} oldsymbol{x} \mid oldsymbol{w}_1, \dots, oldsymbol{w}_\mathsf{C} \in \mathbb{R}^\mathsf{D}
ight\} \ &= \left\{ f(oldsymbol{x}) = rgmax_{k \in [\mathsf{C}]} \left(oldsymbol{W} oldsymbol{x}
ight)_k \mid oldsymbol{W} \in \mathbb{R}^\mathsf{C} imes \mathsf{D}
ight\} \end{aligned}$$

How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

Applying MLE again

Maximize probability of see labels y_1, \ldots, y_N given x_1, \ldots, x_N

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}$$

By taking negative log, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{N} \ln \left(\frac{\sum_{k \in [C]} e^{\boldsymbol{w}_k^T \boldsymbol{x}_n}}{e^{\boldsymbol{w}_{y_n}^T \boldsymbol{x}_n}} \right) = \sum_{n=1}^{N} \ln \left(1 + \sum_{k \neq y_n} e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^T \boldsymbol{x}_n} \right)$$

This is the *multiclass logistic loss*, a.k.a *cross-entropy loss*.

When C = 2, this is the same as binary logistic loss.

September 12, 2018

September 12, 2018

Optimization

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_n; \boldsymbol{W}) \boldsymbol{x}_n^{\mathrm{T}}$$

else:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{-\left(\sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = (\mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) - 1) \boldsymbol{x}_n^{\mathrm{T}}$$

Multiclass Classification

Multinomial logistic regression

A note on prediction

Having learned W, we can either

- make a deterministic prediction $\operatorname{argmax}_{k \in [C]} w_k^{\mathrm{T}} x$
- make a randomized prediction according to $\mathbb{P}(k \mid \boldsymbol{x}; \boldsymbol{W}) \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$

In either case, (expected) mistake is bounded by logistic loss

deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log_2 \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

$$\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right] = 1 - \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W}) < -\ln \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W})$$

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

- pick $n \in [N]$ uniformly at random
- update the parameters

$$oldsymbol{W} \leftarrow oldsymbol{W} - \eta \left(egin{array}{ccc} \mathbb{P}(y=1 \mid oldsymbol{x}_n; oldsymbol{W}) & dots \ \mathbb{P}(y=y_n \mid oldsymbol{x}_n; oldsymbol{W}) - 1 \ dots \ \mathbb{P}(y=\mathsf{C} \mid oldsymbol{x}_n; oldsymbol{W}) \end{array}
ight) oldsymbol{x}_n^{\mathrm{T}}$$

Think about why the algorithm makes sense intuitively.

September 12, 2018

September 12, 2018

Multiclass Classification

Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass classification algorithms?

Given a binary classification algorithm (any one, not just linear methods), can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

- one-versus-all (one-versus-rest, one-against-all, etc)
- one-versus-one (all-versus-all, etc)
- Error-Correcting Output Codes (ECOC)
- tree-based reduction

September 12, 2018

Multiclass Classification

Reduction to binary classification

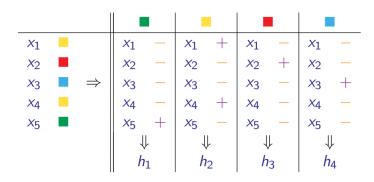
One-versus-all (OvA)

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

Training: for each class $k \in [C]$,

- \bullet relabel examples with class k as +1, and all others as -1
- ullet train a binary classifier h_k using this new dataset



September 12, 2018

Multiclass Classification

Reduction to binary classification

One-versus-one (OvO)

(picture credit: link)

Idea: train $\binom{C}{2}$ binary classifiers to learn "is class k or k'?".

Training: for each pair (k, k'),

- ullet relabel examples with class k as +1 and examples with class k' as -1
- discard all other examples
- ullet train a binary classifier $h_{(k,k')}$ using this new dataset

		■ v	S. <mark> </mark>	■ v	S. =	■ v	S.	■ v	s. <mark> </mark>	■ v	s.	■ v	S.
x_1		<i>x</i> ₁	_					<i>x</i> ₁	_			<i>x</i> ₁	_
x_2				<i>x</i> ₂	_	<i>x</i> ₂	+					<i>x</i> ₂	+
<i>X</i> 3	\Rightarrow					<i>X</i> 3	_	<i>X</i> 3	+	<i>X</i> 3	_		
<i>X</i> ₄		<i>X</i> ₄	_					<i>X</i> ₄	_			<i>X</i> ₄	_
<i>X</i> 5		<i>X</i> 5	+	<i>X</i> 5	+					<i>X</i> 5	+		
		\parallel		₩		↓				↓		1	ļ
		$h_{(i)}$	1,2)	$h_{(1,3)}$		$h_{(3,4)}$		$h_{(4,2)}$		$h_{(1,4)}$		$h_{(3,2)}$	

Reduction to binary classification

One-versus-all (OvA)

Prediction: for a new example x

- ask each h_k : does this belong to class k? (i.e. $h_k(x)$)
- randomly pick among all k's s.t. $h_k(x) = +1$.

Issue: will (probably) make a mistake as long as one of h_k errs.

September 12, 2018

Multiclass Classification

Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x

- ask each classifier $h_{(k,k')}$ to vote for either class k or k'
- predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

September 12, 2018

Error-correcting output codes (ECOC)

(picture credit: link)

Idea: based on a code $M \in \{-1, +1\}^{\mathsf{C} \times \mathsf{L}}$, train L binary classifiers to learn "is bit b on or off".

Training: for each bit $b \in [L]$

- relabel example x_n as $M_{y_n,b}$
- train a binary classifier h_b using this new dataset.

1				
+	_	+	_	+
_	_	+	+	+
+++++++++++++++++++++++++++++++++++++++	+	_	_	_
+	+	+	+	_

		1 1		2		3		4		5	
<i>x</i> ₁		<i>x</i> ₁		<i>x</i> ₁						<i>x</i> ₁	+
<i>x</i> ₂	- 1	<i>x</i> ₂		<i>x</i> ₂	+	<i>x</i> ₂	_	<i>x</i> ₂	_	<i>x</i> ₂	_
<i>X</i> 3	\Rightarrow	<i>X</i> 3	+	<i>X</i> 3	_						
<i>X</i> ₄		<i>X</i> ₄	_	<i>X</i> ₄							+
<i>X</i> 5		<i>X</i> 5				<i>X</i> 5					+
		\		1	ļ	1	ļ	1	ļ	1	ļ
		h	1	h	2	h	3	h	4	h	5

September 12, 2018

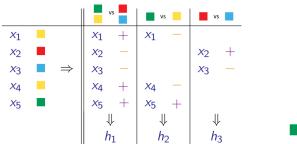
Multiclass Classification

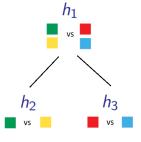
Reduction to binary classification

Tree based method

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures





Prediction is also natural, but is very fast! (think ImageNet where $C \approx 20K$

Error-correcting output codes (ECOC)

Prediction: for a new example x

- compute the **predicted code** $c = (h_1(x), \dots, h_L(x))^T$
- predict the class with the most similar code: $k = \operatorname{argmax}_k(Mc)_k$

How to pick the code M?

- the more dissimilar the codes between different classes are, the better
- random code is a good choice, but might create hard training sets

September 12, 2018

Multiclass Classification

Reduction to binary classification

Comparisons

In big O notation,

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C ²	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$(\log_2C)N$	\log_2C	good for "extreme classification"

September 12, 2018 September 12, 2018

Outline

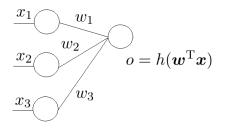
- Multiclass Classification
- Neural Nets
 - Definition
 - Backpropagation
 - Preventing overfitting

September 12, 2018 29 / 49

Neural Nets

Definition

Linear model as a one-layer neural net

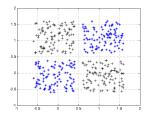


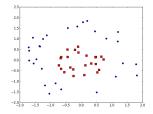
h(a) = a for linear model

To create non-linearity, can use

- Rectified Linear Unit (ReLU): $h(a) = \max\{0, a\}$
- sigmoid function: $h(a) = \frac{1}{1+e^{-a}}$
- TanH: $h(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
- many more

Linear models are not always adequate





We can use a nonlinear mapping as discussed:

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{\mathsf{D}}
ightarrowoldsymbol{z}\in\mathbb{R}^{\mathsf{M}}$$

But what kind of nonlinear mapping ϕ should be used? Can we actually learn this nonlinear mapping?

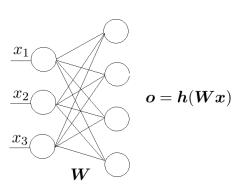
THE most popular nonlinear models nowadays: neural nets

September 12, 2018

Neural Nets

Definition

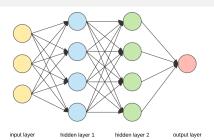
More output nodes



 $W \in \mathbb{R}^{4 \times 3}$, $h : \mathbb{R}^4 \to \mathbb{R}^4$ so $h(a) = (h_1(a_1), h_2(a_2), h_3(a_3), h_4(a_4))$

Can think of this as a nonlinear basis: $\Phi(x) = h(Wx)$

More layers



Becomes a network:

- each node is called a neuron
- h is called the activation function
 - can use h(a) = 1 for one neuron in each layer to *incorporate bias term*
 - output neuron can use h(a) = a
- #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
- deep neural nets can have many layers and *millions* of parameters
- this is a feedforward, fully connected neural net, there are many variants

September 12, 2018 33 / 4

September 12, 2016 53

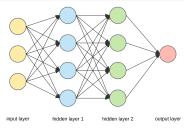
Neural Nets

Definition

Math formulation

An L-layer neural net can be written as

$$oldsymbol{f}(oldsymbol{x}) = oldsymbol{h}_{\mathsf{L}} \left(oldsymbol{W}_L oldsymbol{h}_{\mathsf{L}-1} \left(oldsymbol{W}_{L-1} \cdots oldsymbol{h}_1 \left(oldsymbol{W}_1 oldsymbol{x}
ight)
ight)$$



To ease notation, for a given input x, define recursively

$$oldsymbol{o}_0 = oldsymbol{x}, \qquad oldsymbol{a}_\ell = oldsymbol{W}_\ell oldsymbol{o}_{\ell-1}, \qquad oldsymbol{o}_\ell = oldsymbol{h}_\ell (oldsymbol{a}_\ell) \qquad \qquad (\ell = 1, \dots, \mathsf{L})$$

where

- $oldsymbol{W}_\ell \in \mathbb{R}^{\mathsf{D}_\ell imes \mathsf{D}_{\ell-1}}$ is the weights for layer ℓ
- ullet $D_0 = D, D_1, \dots, D_L$ are numbers of neurons at each layer
- ullet $a_\ell \in \mathbb{R}^{\mathsf{D}_\ell}$ is input to layer ℓ
- $o_\ell \in \mathbb{R}^{\mathsf{D}_\ell}$ is output to layer ℓ
- $m{h}: \mathbb{R}^{\mathsf{D}_\ell} o \mathbb{R}^{\mathsf{D}_\ell}$ is activation functions at layer ℓ

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

• for feedforward network, need to decide number of hidden layers, number of neurons at each layer, activation functions, etc.

September 12, 2018

34 / 4

Neural Nets

Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

$$\mathcal{E}(oldsymbol{W}_1,\ldots,oldsymbol{W}_{\mathsf{L}}) = \sum_{n=1}^{\mathsf{N}} \mathcal{E}_n(oldsymbol{W}_1,\ldots,oldsymbol{W}_{\mathsf{L}})$$

where

$$\mathcal{E}_n(m{W}_1,\dots,m{W}_{\mathsf{L}}) = egin{cases} \|m{f}(m{x}_n) - m{y}_n\|_2^2 & \text{for regression} \ \ln\left(1 + \sum_{k
eq y_n} e^{f(m{x}_n)_k - f(m{x}_n)_{y_n}}
ight) & \text{for classification} \end{cases}$$

How to optimize such a complicated function?

Same thing: apply **SGD**! even if the model is *nonconvex*.

What is the gradient of this complicated function?

Chain rule is the only secret:

ullet for a composite function f(g(w))

$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$$

• for a composite function $f(g_1(w), \ldots, g_d(w))$

$$\frac{\partial f}{\partial w} = \sum_{i=1}^{d} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial w}$$

the simplest example $f(g_1(w), g_2(w)) = g_1(w)g_2(w)$

September 12, 2018 37 / 4

Neural Nets

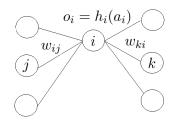
Backpropagation

Computing the derivative

Adding the subscript for layer:

$$\frac{\partial \mathcal{E}_n}{\partial w_{\ell,ij}} = \frac{\partial \mathcal{E}_n}{\partial a_{\ell,i}} o_{\ell-1,j}$$

$$\frac{\partial \mathcal{E}_n}{\partial a_{\ell,i}} = \left(\sum_k \frac{\partial \mathcal{E}_n}{\partial a_{\ell+1,k}} w_{\ell+1,ki}\right) h'_{\ell,i}(a_{\ell,i})$$



For the last layer, for square loss

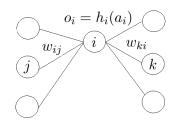
$$\frac{\partial \mathcal{E}_n}{\partial a_{\mathsf{L},i}} = \frac{\partial (h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})^2}{\partial a_{\mathsf{L},i}} = 2(h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})h'_{\mathsf{L},i}(a_{\mathsf{L},i})$$

Exercise: try to do it for logistic loss yourself.

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

Find the derivative of \mathcal{E}_n w.r.t. to w_{ij}



$$\frac{\partial \mathcal{E}_n}{\partial w_{ij}} = \frac{\partial \mathcal{E}_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} = \frac{\partial \mathcal{E}_n}{\partial a_i} \frac{\partial (w_{ij}o_j)}{\partial w_{ij}} = \frac{\partial \mathcal{E}_n}{\partial a_i} o_j$$

$$\frac{\partial \mathcal{E}_n}{\partial a_i} = \frac{\partial \mathcal{E}_n}{\partial o_i} \frac{\partial o_i}{\partial a_i} = \left(\sum_k \frac{\partial \mathcal{E}_n}{\partial a_k} \frac{\partial a_k}{\partial o_i}\right) h_i'(a_i) = \left(\sum_k \frac{\partial \mathcal{E}_n}{\partial a_k} w_{ki}\right) h_i'(a_i)$$

September 12, 2018

Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

Neural Nets

$$\frac{\partial \mathcal{E}_n}{\partial \boldsymbol{W}_{\ell}} = \frac{\partial \mathcal{E}_n}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}}$$

$$rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_\ell} = egin{cases} \left(oldsymbol{W}_{\ell+1}^{
m T} rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_{\ell+1}}
ight) \circ oldsymbol{h}_\ell'(oldsymbol{a}_\ell) & ext{if } \ell < \mathsf{L} \ 2(oldsymbol{h}_\mathsf{L}(oldsymbol{a}_\mathsf{L}) - oldsymbol{y}_n) \circ oldsymbol{h}_\mathsf{L}'(oldsymbol{a}_\mathsf{L}) & ext{else} \end{cases}$$

where $v_1 \circ v_2 = (v_{11}v_{21}, \cdots, v_{1D}v_{2D})$ is the element-wise product (a.k.a. Hadamard product).

Verify yourself!

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W_1, \ldots, W_L (all 0 or randomly). Repeat:

- **1** randomly pick one data point $n \in [N]$
- **2 forward propagation**: for each layer $\ell = 1, ..., L$

ullet compute $oldsymbol{a}_\ell = oldsymbol{W}_\ell oldsymbol{o}_{\ell-1}$ and $oldsymbol{o}_\ell = oldsymbol{h}_\ell (oldsymbol{a}_\ell)$

 $(o_0 = x_n)$

- **3** backward propagation: for each $\ell = L, \ldots, 1$
 - compute

$$rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_\ell} = egin{cases} \left(oldsymbol{W}_{\ell+1}^{
m T} rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_{\ell+1}}
ight) \circ oldsymbol{h}'_\ell(oldsymbol{a}_\ell) & ext{ if } \ell < \mathsf{L} \ 2(oldsymbol{h}_\mathsf{L}(oldsymbol{a}_\mathsf{L}) - oldsymbol{y}_n) \circ oldsymbol{h}'_\mathsf{L}(oldsymbol{a}_\mathsf{L}) & ext{ else} \end{cases}$$

update weights

$$oldsymbol{W}_{\ell} \leftarrow oldsymbol{W}_{\ell} - \eta rac{\partial \mathcal{E}_n}{\partial oldsymbol{W}_{\ell}} = oldsymbol{W}_{\ell} - \eta rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_{\ell}} oldsymbol{o}_{\ell-1}^{ ext{T}}$$

Think about how to do the last two steps properly!

September 12, 2018 41 / 4

Neural Nets

Backpropagation

SGD with momentum

Initialize $oldsymbol{w}_0$ and $oldsymbol{ ext{velocity}}\ oldsymbol{v} = oldsymbol{0}$

For t = 1, 2, ...

- ullet form a stochastic gradient $oldsymbol{g}_t$
- update velocity $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} \eta \boldsymbol{g}_t$ for some discount factor $\alpha \in (0,1)$
- ullet update weight $oldsymbol{w}_t \leftarrow oldsymbol{w}_{t-1} + oldsymbol{v}$

Updates for first few rounds:

- $w_1 = w_0 \eta g_1$
- $\bullet \ \boldsymbol{w}_2 = \boldsymbol{w}_1 \alpha \eta \boldsymbol{g}_1 \eta \boldsymbol{g}_2$
- $\mathbf{w}_3 = \mathbf{w}_2 \alpha^2 \eta \mathbf{g}_1 \alpha \eta \mathbf{g}_2 \eta \mathbf{g}_3$
- **a** ...

More tricks to optimize neural nets

Many variants based on backprop

- SGD with minibatch: randomly sample a batch of examples to form a stochastic gradient
- SGD with momentum
- o · · ·

September 12, 2018

42 / 49

Neural Nets

Preventing overfitting

Overfitting

Overfitting is very likely since the models are too powerful.

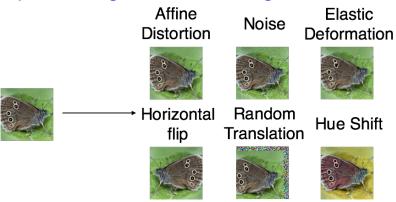
Methods to overcome overfitting:

- data augmentation
- regularization
- dropout
- early stopping
- • •

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data



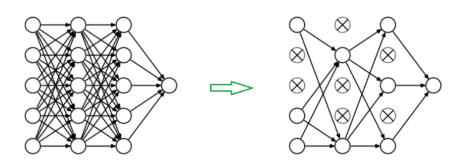
September 12, 2018 45 / 49

Neural Nets

Preventing overfitting

Dropout

Randomly delete neurons during training



Very effective, makes training faster as well

Regularization

L2 regularization: minimize

$$\mathcal{E}'(oldsymbol{W}_1,\ldots,oldsymbol{W}_{\mathsf{L}}) = \mathcal{E}(oldsymbol{W}_1,\ldots,oldsymbol{W}_{\mathsf{L}}) + \lambda \sum_{\ell=1}^{\mathsf{L}} \|oldsymbol{W}_\ell\|_2^2$$

Simple change to the gradient:

$$\frac{\partial \mathcal{E}'}{\partial w_{ij}} = \frac{\partial \mathcal{E}}{\partial w_{ij}} + 2\lambda w_{ij}$$

Introduce weight decaying effect

September 12, 2018

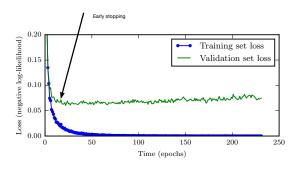
46 / 49

Neural Nets

Preventing overfitting

Early stopping

Stop training when the performance on validation set stops improving



September 12, 2018 47 / 49

Conclusions for neural nets

Deep neural networks

- are hugely popular, achieving best performance on many problems
- do need a lot of data to work well
- take a lot of time to train (need GPUs for massive parallel computing)
- take some work to select architecture and hyperparameters
- are still not well understood in theory

September 12, 2018

3 4