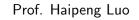
CSCI567 Machine Learning (Fall 2018)



U of Southern California

Oct 24, 2018

Administration

HW 4 is available and is due on 11/04.

Today's plan: first finish clustering, then move on to more unsupervised learning problems

October 23, 2018 1/		October 23, 2018	2 / 29
	Density estimation		
	Outline		
	 Density estimation 		
	 Parametric methods Nonparametric methods 		
	2 Naive Bayes		
	October 23, 2018 1 / 29	Density estimation Density estimation Parametric methods 	Density estimation Density estimation Parametric methods Nonparametric methods

Density estimation

Observe what we have done indirectly for clustering with GMMs is:

Given a training set x_1, \ldots, x_N , estimate a density function p that could have generated this dataset (via $x_n \overset{i.i.d.}{\sim} p$).

This is exactly the problem of *density estimation*, another important unsupervised learning problem.

Useful for many downstream applications

- we have seen clustering already, will see more today
- these applications also provide a way to measure quality of the density estimator

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by θ :

 $p(\boldsymbol{x}) = p(\boldsymbol{x}; \boldsymbol{\theta})$

Examples:

- GMM: $p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ where $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}$
- Multinomial for 1D examples with K possible values

$$p(x=k;\boldsymbol{\theta})=\theta_k$$

where θ is a distribution over K elements.

Size of θ is independent of the training set size, so it's parametric.

October 23, 2018 October 23, 2018 5/29 6/29 Density estimation Parametric methods Density estimation Parametric methods MLE for multinomial

Parametric methods: estimation

Again, we apply **MLE** to learn the parameters θ :

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} = \sum_{n=1}^{N} \ln p(x_n ; \boldsymbol{\theta})$$

For some cases this is intractable and we can use EM to approximately solve MLE (e.g. GMMs).

For some other cases this admits a simple closed-form solution (e.g. multinomial).

 $\operatorname{argmax}_{\boldsymbol{\theta}} = \sum_{n=1}^{N} \ln p(x = x_n; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \theta_{x_n}$ $=\sum_{k=1}^{K}\sum_{n:x_n=k}\ln\theta_k=\sum_{k=1}^{K}z_k\ln\theta_k$

where $z_k = |\{n : x_n = k\}|$ is the number of examples with value k.

The solution is simply

$$\theta_k = \frac{z_k}{N} \propto z_k,$$

i.e. the fraction of examples with value k.

Density estimation Nonparametric methods

Nonparametric methods

Can we estimate without assuming a fixed generative model?

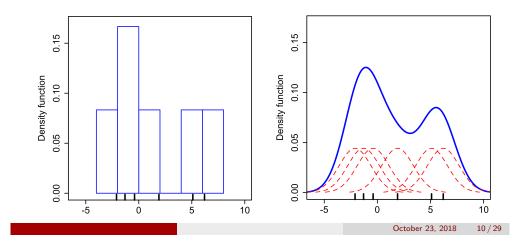
- Yes, kernel density estimation (KDE) is a common approach
 - here "kernel" means something different from what we have seen for "kernel function" (in fact it refers to several different things in ML)
 - the approach is nonparametric: it keeps the entire training set
 - we focus on the 1D (continuous) case

High level idea

picture from Wikipedia

Construct something similar to a **histogram**:

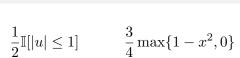
- for each data point, create a "bump" (via a Kernel)
- sum up all the bumps

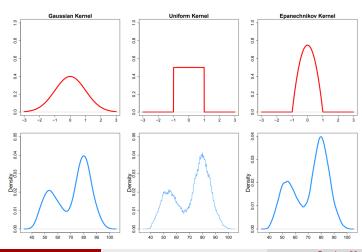


Density estimation Nonparametric methods

 $\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$

K(u)





Density estimation Nonparametric methods

Kernel

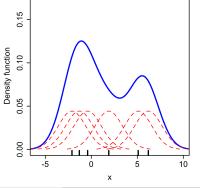
KDE with a kernel $K: \mathbb{R} \to \mathbb{R}$:

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K(x - x_n)$$

e.g. $K(u) = \frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$, the standard Gaussian density

Kernel needs to satisfy:

- symmetry: K(u) = K(-u)
- $\int_{-\infty}^{\infty} K(u) du = 1$, makes sure *p* is a density function.



October 23, 2018

9/29

Density estimation Nonparametric methods

Bandwidth

- If K(u) is a kernel, then for any h > 0
 - $K_h(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)$

(stretching the kernel)

October 23, 2018

13/29

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel ${\cal K}$ and the bandwidth h

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K_h (x - x_n) = \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right)$$

Nonparametric methods

- x_n controls the center of each bump
- *h* controls the width/variance of the bumps

Density estimation

Effect of bandwidth

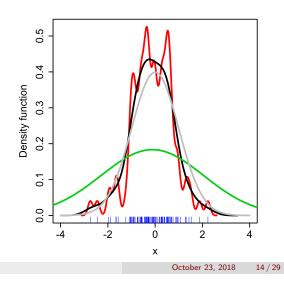
picture from Wikipedia

Larger h means larger variance and also smoother density

Naive Bayes

Gray curve is ground-truth

- Red: h = 0.05
- Black: h = 0.337
- Green: h = 2



Outline

Selecting *h* is a deep topic

Bandwidth selection

- there are theoretically-motivated approaches
- one can also do cross-validation based on downstream applications

Density estimation

- 2 Naive Bayes
 - Setup and assumption
 - Estimation and prediction
 - Connection to logistic regression

Naive Bayes

Naive Bayes

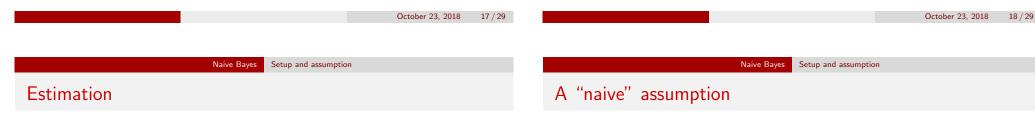
Bayes optimal classifier

Recall: suppose the data (\boldsymbol{x}_n, y_n) is drawn from a joint distribution p, the Bayes optimal classifier is

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} p(c \mid \boldsymbol{x})$$

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is *exactly a density* estimation problem!



How to estimate a joint distribution? Observe we always have

• a simple yet surprisingly powerful classification algorithm

• density estimation is one important part of the algorithm

 $p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$

We know how to estimate p(y) by now.

To estimate $p(x \mid y = c)$ for some $c \in [C]$, we are doing density estimation using data $\{n: y_n = c\}$.

This is *not a 1D problem* in general.

Naive Bayes assumption: conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

- use x = (Height, Vocabulary) to predict y = Age
- Height and Vocabulary are dependent
- but condition on Age, they are independent!

More often this assumption is *unrealistic and "naive"*, but still Naive Bayes can work very well even if the assumption is wrong.

Naive Bayes Estimation and prediction

Example: discrete features

Height: $\leq 3'$, 3'-4', 4'-5', 5'-6', $\geq 6'$ Vocabulary: ≤ 5 K, 5K-10K, 10K-15K, 15K-20K, ≥ 20 K Age: ≤ 5 , 5-10, 10-15, 15-20, 20-25, ≥ 25

MLE estimation: e.g.

 $p(Age = 10-15) = \frac{\#examples \text{ with age } 10-15}{\#examples}$

$$p(\text{Height} = 5'-6' | \text{Age} = 10-15)$$

=
$$\frac{\#\text{examples with height 5'-6' and age 10-15}}{\#\text{examples with age 10-15}}$$

For a label $c \in [C]$,

$$p(y = c) = \frac{|\{n : y_n = c\}|}{N}$$

For each possible value k of a discrete feature d,

$$p(x_d = k \mid y = c) = \frac{|\{n : x_{nd} = k, y_n = c\}|}{|\{n : y_n = c\}|}$$

October 23, 2018
21/29

October 23, 2018
October 24, 2018
October 24,

If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

$$p(x_d = x \mid y = c) = \frac{1}{\sqrt{2\pi\sigma_{cd}}} \exp\left(-\frac{(x - \mu_{cd})^2}{2\sigma_{cd}^2}\right)$$

where μ_{cd} and σ_{cd}^2 are the empirical mean and variance of feature d among all examples with label c (verified in W4).

• or nonparametric estimation, e.g. via a Kernel K and bandwidth h:

$$p(x_d = x \mid y = c) = \frac{1}{|\{n : y_n = c\}|} \sum_{n:y_n = c} K_h(x - x_{nd})$$

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y)$$

the **prediction** for a new example x is

$$\begin{aligned} \operatorname*{argmax}_{c\in[\mathsf{C}]} p(y=c\mid x) &= \operatorname*{argmax}_{c\in[\mathsf{C}]} p(x,y=c) \\ &= \operatorname*{argmax}_{c\in[\mathsf{C}]} \left(p(y=c) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y=c) \right) \\ &= \operatorname*{argmax}_{c\in[\mathsf{C}]} \left(\ln p(y=c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y=c) \right) \end{aligned}$$

Examples

$$\underset{c \in [\mathsf{C}]}{\operatorname{argmax}} p(y = c \mid x)$$

$$= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right)$$

$$= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \frac{|\{n : x_{nd} = x_d, y_n = c\}|}{|\{n : y_n = c\}|} \right)$$

Examples

For continuous features with a Gaussian model,

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & p(y = c \mid x) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \left(\frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x_d - \mu_{cd})^2}{2\sigma_{cd}^2} \right) \right) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln \sigma_{cd} + \frac{(x_d - \mu_{cd})^2}{2\sigma_{cd}^2} \right) \right) \end{aligned}$$

which is *quadratic* in the feature x.

October 23, 2018 26 / 29

October 23, 2018 25 / 29

Naive Bayes Connection to logistic regression

What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$\begin{aligned} \operatorname*{argmax}_{c\in[\mathsf{C}]} p(y=c\mid x) \\ &= \operatorname*{argmax}_{c\in[\mathsf{C}]} \left(\ln|\{n:y_n=c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln\sigma + \frac{(x_d - \mu_{cd})^2}{2\sigma^2} \right) \right) \\ &= \operatorname*{argmax}_{c\in[\mathsf{C}]} \left(\ln|\{n:y_n=c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2} + \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}}{\sigma^2} x_d \right) \\ &= \operatorname*{argmax}_{c\in[\mathsf{C}]} \left(w_{c0} + \sum_{d=1}^{\mathsf{D}} w_{cd} x_d \right) = \operatorname*{argmax}_{c\in[\mathsf{C}]} w_c^{\mathsf{T}} x \quad (\text{linear classifier!}) \\ \end{aligned}$$
where we denote $w_{c0} = \ln|\{n:y_n=c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2} \text{ and } w_{cd} = \frac{\mu_{cd}}{\sigma^2}. \end{aligned}$

Naive Bayes Connection to logistic regression

Connection to logistic regression

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, *the same model we used for a probabilistic interpretation of logistic regression!*

So what is different then? They learn the parameters in different ways:

- both via MLE, one on $p(y = c \mid x)$, the other on p(x, y)
- solutions are different: logistic regression has no closed-form, naive Bayes admits a simple closed-form

Generative model v.s discriminative model

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x,y)$ (might have same $p(y \mid x)$)
Learning	MLE	MLE
Accuracy	usually better for large N	usually better for small ${\cal N}$
Remark		more flexible, can generate data after learning

October 23, 2018 29 / 29