CSCI567 Machine Learning (Fall 2018)

Prof. Haipeng Luo

U of Southern California

Aug 22, 2018

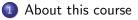
A D N A B N A B N A B N

3

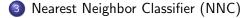
1/63

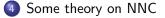
August 22, 2018

Outline



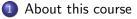
Overview of machine learning





э

Outline



Overview of machine learning

3 Nearest Neighbor Classifier (NNC)

4 Some theory on NNC

3

イロト イヨト イヨト イヨト

Enrollment

- There was some delay unfortunately. It is closing by the end of *today*.
- Two offerings: on-campus and DEN. You only need to attend one.
- Two sections: a lecture and a discussion section. You need to *attend both*. Discussion section is starting next week.

< ロ > < 同 > < 回 > < 回 >

Teaching staff

Instructors:

Lecture: Haipeng Luo Discussion: Dr. Victor Adamchik and Dr. Kim Peters and a lot of help from Dr. Michael Shindler

• TAs:

- Chin-Cheng Hsu Shamim Samadi Chi Zhang Ke Zhang and more...
- More course producers and graders
- Office hours: TBA

.

A course website:

http://www-bcf.usc.edu/~haipengl/courses/CSCI567/2018_fall

• general information (course schedule, homework, etc.)

< □ > < 同 > < 回 > < 回 > < 回 >

A course website:

http://www-bcf.usc.edu/~haipengl/courses/CSCI567/2018_fall

• general information (course schedule, homework, etc.)

Piazza: https://piazza.com/usc/fall2018/20183csci567/home

- main discussion forum
- everyone has to enroll

A course website:

http://www-bcf.usc.edu/~haipengl/courses/CSCI567/2018_fall

• general information (course schedule, homework, etc.)

Piazza: https://piazza.com/usc/fall2018/20183csci567/home

- main discussion forum
- everyone has to enroll

D2L: https://courses.uscden.net/d21/login

- lecture videos
- submit written assignments
- grade posting

A course website:

http://www-bcf.usc.edu/~haipengl/courses/CSCI567/2018_fall

• general information (course schedule, homework, etc.)

Piazza: https://piazza.com/usc/fall2018/20183csci567/home

- main discussion forum
- everyone has to enroll

D2L: https://courses.uscden.net/d21/login

- Iecture videos
- submit written assignments
- grade posting

GitHub: https://github.com/

- submit programming assignments
- everyone needs to have a GitHub account

Required preparation

- Undergraduate courses in probability and statistics, linear algebra, multivariate calculus
- Programming: Python and necessary packages, git

Required preparation

- Undergraduate courses in probability and statistics, linear algebra, multivariate calculus
- Programming: Python and necessary packages, git

not an intro-level CS course, no training of basic programming skills.

Slides and readings

Lectures

Lecture slides will be posted before or soon after class.

3

A D N A B N A B N A B N

Slides and readings

Lectures

Lecture slides will be posted before or soon after class.

Readings

- No required textbooks
- Main recommended readings:
 - Machine Learning: A Probabilistic Perspective by Kevin Murphy
 - Elements of Statistical Learning by Hastie, Tibshirani and Friedman
- More: see course website

Grade

- 15%: 5 written assignments
- 25%: 5 programming assignments
- 60%: 2 exams

3

A D N A B N A B N A B N

Homework assignments

Five, each consists of

- problem set (3%)
 - submit one PDF to D2L (scan copy or typeset with LaTeX etc.)
 - graded based on effort

3

< □ > < 同 > < 回 > < 回 > < 回 >

Homework assignments

Five, each consists of

- problem set (3%)
 - submit one PDF to D2L (scan copy or typeset with LaTeX etc.)
 - graded based on effort
- programming tasks (5%)
 - submit through GitHub
 - graded by scripts

Policy

Collaboration:

- Allowed, but only at high-level
- Each has to make a separate submission
- State clearly who you collaborated with (or obtained help from)

< □ > < 同 > < 回 > < 回 > < 回 >

Policy

Collaboration:

- Allowed, but only at high-level
- Each has to make a separate submission
- State clearly who you collaborated with (or obtained help from)

Late submissions:

- A total of 5 grace days for the semester
- fill a form to apply within 24 hours of due time
- in place of "excused late" submissions, not in addition to
- no grace period
- late submissions without using grace days will be scored as 0
- your responsibility to keep track

Exams

- One midterm: 10/03, 5:00-7:00 PM
- One final: 11/28, 5:00-7:00 PM
- Location: TBA
- Individual effort, closed-book and closed-notes
- Request for a different date/time must be submitted within first two weeks or asap in case of emergence

3

Academic honesty and integrity

Plagiarism and other unacceptable violations

- Neither ethical nor in your self-interest
- Zero-tolerance

< □ > < 同 > < 回 > < 回 > < 回 >

Teaching philosophy

The nature of this course

- Describe basic concepts and tools
- Describe algorithms and their development with intuition and rigor

< □ > < 同 > < 回 > < 回 > < 回 >

Teaching philosophy

The nature of this course

- Describe basic concepts and tools
- Describe algorithms and their development with intuition and rigor

Expectation on you

- Hone skills on grasping abstract concepts and thinking critically to solve problems with machine learning techniques
- Solidify your knowledge with hand-on programming assignments
- Prepare you for studying advanced machine learning techniques

Teaching philosophy

The nature of this course

- Describe basic concepts and tools
- Describe algorithms and their development with intuition and rigor

Expectation on you

- Hone skills on grasping abstract concepts and thinking critically to solve problems with machine learning techniques
- Solidify your knowledge with hand-on programming assignments
- Prepare you for studying advanced machine learning techniques

Feel free to interrupt and ask questions!

Important things for you to do

- Take a look at the course website
- Enroll in Piazza
- Get a GitHub account
- Brush up your Python skills

э

< □ > < 同 > < 回 > < 回 > < 回 >

Important things for you to do

- Take a look at the course website
- Enroll in Piazza
- Get a GitHub account
- Brush up your Python skills

Questions?

э

Outline

Overview of machine learning

3 Nearest Neighbor Classifier (NNC)

4 Some theory on NNC

3

A D N A B N A B N A B N

What is machine learning?

One possible definition¹

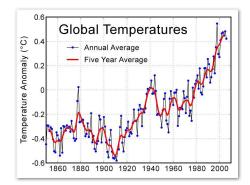
a set of methods that can automatically *detect patterns* in data, and then use the uncovered patterns to *predict future data*, or to perform other kinds of decision making *under uncertainty*

cf. Murphy's book

August 22, 2018 17 / 63

Example: detect patterns

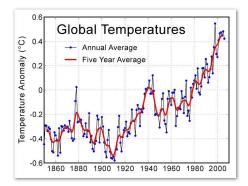
How the temperature has been changing?



< 4 ► >

Example: detect patterns

How the temperature has been changing?



August 22, 2018

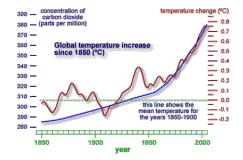
18/63

Patterns

- Seems going up
- Repeated periods of going up and down.

How do we describe the pattern?

Build a model: fit the data with a polynomial function

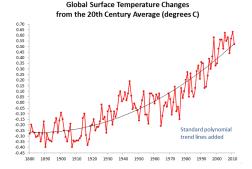


- The model is not accurate for individual years
- But collectively, the model captures the major trend
- Still, not able to model the pattern of the repeated up and down

August 22, 2018 19 / 63

Predicting future

What is temperature of 2010?



- Again, the model is not accurate for that specific year
- But then, it is close to the actual one

A D F A B F A B F A B

What we have learned from this example?

Key ingredients in machine learning

Data

collected from past observation (we often call them *training data*)

< □ > < 同 > < 回 > < 回 > < 回 >

What we have learned from this example?

Key ingredients in machine learning

Data

collected from past observation (we often call them *training data*)

Modeling

devised to capture the patterns in the data

• The model does not have to be true — "All models are wrong, but some are useful" by George Box.

イロト イポト イヨト イヨト

What we have learned from this example?

Key ingredients in machine learning

Data

collected from past observation (we often call them *training data*)

- Modeling devised to capture the patterns in the data
 - The model does not have to be true "All models are wrong, but some are useful" by George Box.

イロト イポト イヨト イヨト

August 22, 2018

21/63

Prediction

apply the model to forecast what is going to happen in future

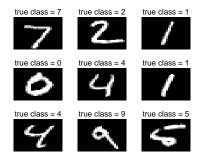
A rich history of applying statistical learning methods

Recognizing flowers (by R. Fisher, 1936) Types of Iris: setosa, versicolor, and virginica

A (10) < A (10) </p>

Huge success 20 years ago

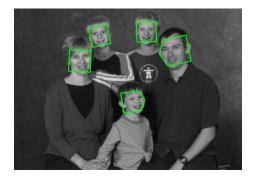
Recognizing handwritten zipcodes (AT&T Labs, late 1990s)



イロト 不得下 イヨト イヨト 二日

More modern ones, in your social life

Recognizing your friends on Facebook



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It might be possible to know about you than yourself

Recommending what you might like

Lands, Longith, Elling Street and

And in Sec. and

36.43

Why is machine learning so hot?

• Tons of consumer applications:

- speech recognition, information retrieval and search, email and document classification, stock price prediction, object recognition, biometrics, etc
- Highly desirable expertise from industry: Google, Facebook, Microsoft, Uber, Twitter, IBM, Linkedin, Amazon, ···

< □ > < □ > < □ > < □ > < □ > < □ >

Why is machine learning so hot?

• Tons of consumer applications:

- speech recognition, information retrieval and search, email and document classification, stock price prediction, object recognition, biometrics, etc
- Highly desirable expertise from industry: Google, Facebook, Microsoft, Uber, Twitter, IBM, Linkedin, Amazon, ···

• Enable scientific breakthrough

- Climate science: understand global warming cause and effect
- Biology and genetics: identify disease-causing genes and gene networks
- Social science: social network analysis; social media analysis
- Business and finance: marketing, operation research
- Emerging ones: healthcare, energy, ···

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Different flavors of learning problems

• Supervised learning Aim to predict (as in previous examples)

(日) (四) (日) (日) (日)

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden and latent patterns and explore data

(日)

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden and latent patterns and explore data
- Reinforcement learning Aim to act optimally under uncertainty

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden and latent patterns and explore data
- Reinforcement learning Aim to act optimally under uncertainty
- Many other paradigms

(4 何) トイヨト イヨト

Different flavors of learning problems

- Supervised learning Aim to predict (as in previous examples)
- Unsupervised learning Aim to discover hidden and latent patterns and explore data
- Reinforcement learning Aim to act optimally under uncertainty
- Many other paradigms

The focus and goal of this course

- Supervised learning (before midterm)
- Unsupervised learning (after midterm)

- 4 回 ト - 4 回 ト

Outline

About this course

Overview of machine learning

Over the second state of the second state o

- Intuitive example
- General setup for classification
- Algorithm
- How to measure performance
- Variants, Parameters, and Tuning
- Summary

・ 同 ト ・ ヨ ト ・ ヨ

Intuitive example

Recognizing flowers

Types of Iris: setosa, versicolor, and virginica

(日)

Intuitive example

Measuring the properties of the flowers

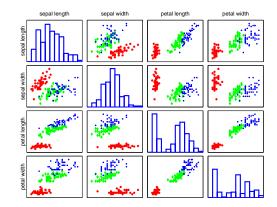
Features and attributes: the widths and lengths of sepal and petal

Intuitive example

Pairwise scatter plots of 131 flower specimens

Visualization of data helps identify the right learning model to use

Each colored point is a flower specimen: setosa, versicolor, virginica

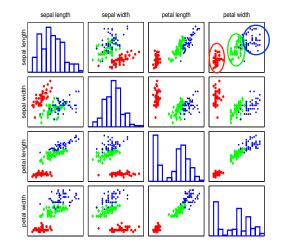


< 4[™] ▶

4 E N

Different types seem well-clustered and separable

Using two features: petal width and sepal length

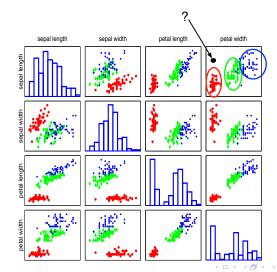


August 22, 2018 32 / 63

< 47 ▶

Labeling an unknown flower type

Closer to red cluster: so labeling it as setosa



Training data (set)

• N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$

(日) (四) (日) (日) (日)

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.

< □ > < □ > < □ > < □ > < □ > < □ >

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.
- They are used for learning $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$ for future prediction.

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.
- They are used for learning $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$ for future prediction.

Special case: binary classification

- Number of classes: C = 2
- \bullet Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

Often, data is conveniently organized as a table

Ex: Iris data (click here for all data)

- -

- 4 features
- 3 classes

Fisher's <i>Iris</i> Data					
Sepal length +	Sepal width +	Petal length +	Petal width +	Species +	
5.1	3.5	1.4	0.2	I. setosa	
4.9	3.0	1.4	0.2	I. setosa	
4.7	3.2	1.3	0.2	I. setosa	
4.6	3.1	1.5	0.2	I. setosa	
5.0	3.6	1.4	0.2	I. setosa	
5.4	3.9	1.7	0.4	I. setosa	
4.6	3.4	1.4	0.3	I. setosa	
5.0	3.4	1.5	0.2	I. setosa	
4.4	2.9	1.4	0.2	I. setosa	
4.9	3.1	1.5	0.1	I. setosa	

August 22, 2018 35 / 63

Algorithm

Nearest neighbor classification (NNC)

Nearest neighbor

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(x) \in [N] = \{1, 2, \cdots, N\}$, i.e., the index to one of the training instances,

$$\mathsf{nn}(\boldsymbol{x}) = \arg\min_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2 = \arg\min_{n \in [\mathsf{N}]} \sqrt{\sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2}$$

where $\|\cdot\|_2$ is the L_2 /Euclidean distance.

Algorithm

Nearest neighbor classification (NNC)

Nearest neighbor

$$\boldsymbol{x}(1) = \boldsymbol{x}_{\mathsf{nn}(\boldsymbol{x})}$$

where $nn(x) \in [N] = \{1, 2, \cdots, N\}$, i.e., the index to one of the training instances,

$$\mathsf{nn}(\boldsymbol{x}) = \arg\min_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2 = \arg\min_{n \in [\mathsf{N}]} \sqrt{\sum_{d=1}^{\mathsf{D}} (x_d - x_{nd})^2}$$

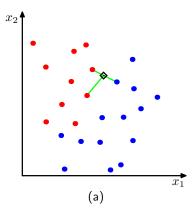
where $\|\cdot\|_2$ is the L_2 /Euclidean distance.

Classification rule

$$y = f(\boldsymbol{x}) = y_{\mathsf{nn}(\boldsymbol{x})}$$

Visual example

In this 2-dimensional example, the nearest point to x is a red training instance, thus, x will be labeled as red.



< 4 ₽ >

Algorithm

Example: classify Iris with two features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setoas
2	1.4	7.0	versicolor
3	2.5	6.7	virginica
:	:	:	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Algorithm

Example: classify Iris with two features

Training data

ID (n)	petal width (x_1)	sepal length (x_2)	category (y)
1	0.2	5.1	setoas
2	1.4	7.0	versicolor
3	2.5	6.7	virginica
:	:	:	

Flower with unknown category

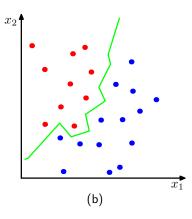
petal width = 1.8 and sepal width = 6.4 (i.e. x = (1.8, 6.4)) Calculating distance $||x - x_n||_2 = \sqrt{(x_1 - x_{n1})^2 + (x_2 - x_{n2})^2}$

ID	distance
1	1.75
2	0.72
3	0.76

Thus, the category is *versicolor*.

Decision boundary

For every point in the space, we can determine its label using the NNC rule. This gives rise to a *decision boundary* that partitions the space into different regions.



Is NNC doing the right thing for us?

Intuition

We should compute accuracy — the percentage of data points being correctly classified, or the error rate — the percentage of data points being incorrectly classified. (accuracy + error rate = 1)

イロト イヨト イヨト

Is NNC doing the right thing for us?

Intuition

We should compute accuracy — the percentage of data points being correctly classified, or the error rate — the percentage of data points being incorrectly classified. (accuracy + error rate = 1)

Defined on the training data set

$$A^{\text{train}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) == y_n], \quad \varepsilon^{\text{train}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) \neq y_n]$$

where $\mathbb{I}[\cdot]$ is the indicator function.

< □ > < □ > < □ > < □ > < □ > < □ >

Is NNC doing the right thing for us?

Intuition

We should compute accuracy — the percentage of data points being correctly classified, or the error rate — the percentage of data points being incorrectly classified. (accuracy + error rate = 1)

Defined on the training data set

$$A^{\text{train}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) == y_n], \quad \varepsilon^{\text{train}} = \frac{1}{\mathsf{N}} \sum_{n} \mathbb{I}[f(\boldsymbol{x}_n) \neq y_n]$$

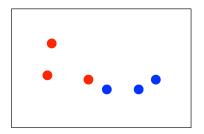
where $\mathbb{I}[\cdot]$ is the indicator function.

Is this the right measure?

< □ > < □ > < □ > < □ > < □ > < □ >

Example

Training data

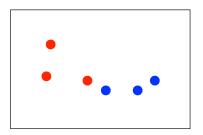


What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Training data



What are A^{TRAIN} and $\varepsilon^{\text{TRAIN}}$?

 $A^{\text{train}} = 100\%, \quad \varepsilon^{\text{train}} = 0\%$

For every training data point, its nearest neighbor is itself.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

Does it mean nearest neighbor is a very good algorithm?

э

・ロト ・四ト ・ヨト ・ヨト

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

3

イロト イポト イヨト イヨト

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

3

< □ > < □ > < □ > < □ > < □ > < □ >

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

- $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_M, y_M)\}$
- A fresh dataset, *not* overlap with training set.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test Error

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

- $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_M, y_M)\}$
- A fresh dataset, not overlap with training set.
- Test accuracy and test error

$$A^{\text{TEST}} = \frac{1}{\mathsf{M}} \sum_{m} \mathbb{I}[f(\boldsymbol{x}_m) == y_m], \quad \varepsilon^{\text{TEST}} = \frac{1}{\mathsf{M}} \sum_{M} \mathbb{I}[f(\boldsymbol{x}_m) \neq y_m]$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test Error

Does it mean nearest neighbor is a very good algorithm?

Not really, having zero training error is simple!

We should care about accuracy when predicting unseen data

Test/Evaluation data

- $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_M, y_M)\}$
- A fresh dataset, not overlap with training set.
- Test accuracy and test error

$$A^{\text{TEST}} = rac{1}{\mathsf{M}} \sum_m \mathbb{I}[f(\boldsymbol{x}_m) == y_m], \quad \varepsilon^{\text{TEST}} = rac{1}{\mathsf{M}} \sum_M \mathbb{I}[f(\boldsymbol{x}_m)
eq y_m]$$

Good measurement of a classifier's performance

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Variant 1: measure nearness with other distances Previously, we use the Euclidean distance

 $\mathsf{nn}(\boldsymbol{x}) = \arg\min_{n \in [\mathsf{N}]} \|\boldsymbol{x} - \boldsymbol{x}_n\|_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

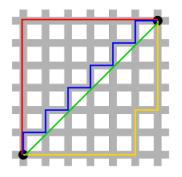
Variant 1: measure nearness with other distances Previously, we use the Euclidean distance

 $\mathsf{nn}(x) = rg\min_{n \in [\mathsf{N}]} \|x - x_n\|_2$

Many other alternative distances

E.g., the following L_1 distance (i.e., city block distance, or Manhattan distance)

$$\|\boldsymbol{x} - \boldsymbol{x}_n\|_1 = \sum_{d=1}^{\mathsf{D}} |x_d - x_{nd}|$$



Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance

August 22, 2018

43 / 63

Variant 1: measure nearness with other distances Previously, we use the Euclidean distance

 $\mathsf{nn}(x) = rg\min_{n \in [\mathsf{N}]} \|x - x_n\|_2$

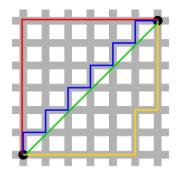
Many other alternative distances

E.g., the following L_1 distance (i.e., city block distance, or Manhattan distance)

$$\|\boldsymbol{x} - \boldsymbol{x}_n\|_1 = \sum_{d=1}^{\mathsf{D}} |x_d - x_{nd}|$$

More generally, L_p distance (for $p \ge 1$):

$$\|oldsymbol{x} - oldsymbol{x}_n\|_p = \left(\sum_d |x_d - x_{nd}|^p\right)^{1/p}$$



Green line is Euclidean distance. Red, Blue, and Yellow lines are L_1 distance

August 22, 2018

43 / 63

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\mathsf{nn}_1(\boldsymbol{x}) = \arg\min_{n \in [\mathsf{N}]} \|\boldsymbol{x} \boldsymbol{x}_n\|_2$
- 2-nearest neighbor: $nn_2(x) = \arg\min_{n \in [N] nn_1(x)} \|x x_n\|_2$
- 3-nearest neighbor: $nn_3(x) = \arg\min_{n \in [N] nn_1(x) nn_2(x)} \|x x_n\|_2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\mathsf{nn}_1(\boldsymbol{x}) = \arg\min_{n \in [\mathsf{N}]} \|\boldsymbol{x} \boldsymbol{x}_n\|_2$
- 2-nearest neighbor: $\mathsf{nn}_2(x) = \arg\min_{n \in [\mathsf{N}] \mathsf{nn}_1(x)} \|x x_n\|_2$
- 3-nearest neighbor: $nn_3(x) = \arg\min_{n \in [N] nn_1(x) nn_2(x)} \|x x_n\|_2$

The set of K-nearest neighbor

$$\mathsf{knn}(\boldsymbol{x}) = \{\mathsf{nn}_1(\boldsymbol{x}), \mathsf{nn}_2(\boldsymbol{x}), \cdots, \mathsf{nn}_K(\boldsymbol{x})\}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Variant 2: K-nearest neighbor (KNN)

Increase the number of nearest neighbors to use?

- 1-nearest neighbor: $\mathsf{nn}_1(\boldsymbol{x}) = \arg\min_{n \in [\mathsf{N}]} \|\boldsymbol{x} \boldsymbol{x}_n\|_2$
- 2-nearest neighbor: $\mathsf{nn}_2(x) = \arg\min_{n \in [\mathsf{N}] \mathsf{nn}_1(x)} \|x x_n\|_2$
- 3-nearest neighbor: $nn_3(x) = \arg\min_{n \in [N] nn_1(x) nn_2(x)} \|x x_n\|_2$

The set of K-nearest neighbor

$$\mathsf{knn}(\boldsymbol{x}) = \{\mathsf{nn}_1(\boldsymbol{x}), \mathsf{nn}_2(\boldsymbol{x}), \cdots, \mathsf{nn}_K(\boldsymbol{x})\}$$

Note: with $oldsymbol{x}(k) = oldsymbol{x}_{\mathsf{nn}_k(oldsymbol{x})}$, we have

$$\|\boldsymbol{x} - \boldsymbol{x}(1)\|_{2}^{2} \le \|\boldsymbol{x} - \boldsymbol{x}(2)\|_{2}^{2} \dots \le \|\boldsymbol{x} - \boldsymbol{x}(K)\|_{2}^{2}$$

How to classify with K neighbors?

Classification rule

• Every neighbor votes: naturally x_n votes for its label y_n .

3

(日) (四) (日) (日) (日)

How to classify with K neighbors?

Classification rule

- Every neighbor votes: naturally x_n votes for its label y_n .
- $\bullet\,$ Aggregate everyone's vote on a class label c

$$v_c = \sum_{n \in \mathsf{knn}(\mathbf{x})} \mathbb{I}(y_n == c), \quad \forall \quad c \in [\mathsf{C}]$$

How to classify with K neighbors?

Classification rule

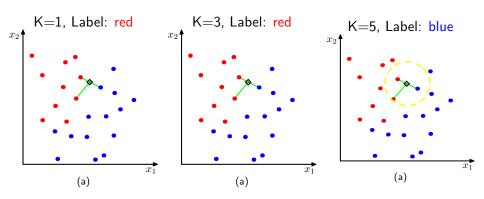
- Every neighbor votes: naturally x_n votes for its label y_n .
- $\bullet\,$ Aggregate everyone's vote on a class label c

$$v_c = \sum_{n \in \mathsf{knn}(\mathbf{x})} \mathbb{I}(y_n == c), \quad \forall \quad c \in [\mathsf{C}]$$

Predict with the majority

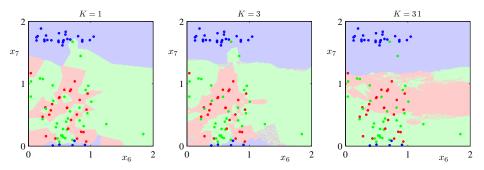
$$y = f(\boldsymbol{x}) = \arg \max_{c \in [\mathsf{C}]} v_c$$

Example



• • • • • • • • • • •

Decision boundary



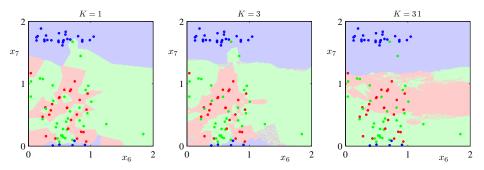
When K increases, the decision boundary becomes smoother.

(日)

August 22, 2018

47 / 63

Decision boundary



When K increases, the decision boundary becomes smoother.

What happens when K = N?

Image: A match a ma

One issue of NNC: distances depend on units of the features!

3

(日) (四) (日) (日) (日)

One issue of NNC: distances depend on units of the features!

One solution: preprocess data so it looks more "normalized".

One issue of NNC: *distances depend on units of the features!* One solution: preprocess data so it looks more "normalized". Example:

• compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N-1} \sum_n (x_{nd} - \bar{x}_d)^2$$

• Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

One issue of NNC: *distances depend on units of the features!* One solution: preprocess data so it looks more "normalized". Example:

• compute the means and standard deviations in each feature

$$\bar{x}_d = \frac{1}{N} \sum_n x_{nd}, \qquad s_d^2 = \frac{1}{N-1} \sum_n (x_{nd} - \bar{x}_d)^2$$

• Scale the feature accordingly

$$x_{nd} \leftarrow \frac{x_{nd} - \bar{x}_d}{s_d}$$

Many other ways of normalizing data.

(4) (日本)

Which variants should we use?

Hyper-parameters in NNC

- The distance measure (e.g. the parameter p for L_p norm)
- K (i.e. how many nearest neighbor?)
- Different ways of preprocessing

Which variants should we use?

Hyper-parameters in NNC

- The distance measure (e.g. the parameter p for L_p norm)
- K (i.e. how many nearest neighbor?)
- Different ways of preprocessing

Most algorithms have hyper-parameters. Tuning them is a significant part of applying an algorithm.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tuning via a development dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Tuning via a development dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{\text{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Tuning via a development dataset

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used for learning $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used for assessing how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{\text{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

These three sets should *not* overlap!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Recipe

- For each possible value of the hyperparameter (e.g. $K = 1, 3, \cdots$)
 - $\bullet~\mbox{Train}$ a model using $\mathcal{D}^{\mbox{\tiny TRAIN}}$
 - $\bullet\,$ Evaluate the performance of the model on $\mathcal{D}^{\mbox{\tiny DEV}}$

3

(日) (四) (日) (日) (日)

Recipe

- For each possible value of the hyperparameter (e.g. $K=1,3,\cdots$)
 - $\bullet~\mbox{Train}$ a model using $\mathcal{D}^{\mbox{\tiny TRAIN}}$
 - $\bullet\,$ Evaluate the performance of the model on $\mathcal{D}^{\mbox{\tiny DEV}}$
- $\bullet\,$ Choose the model with the best performance on $\mathcal{D}^{\rm DEV}$

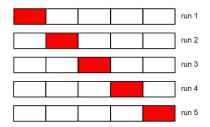
Recipe

- For each possible value of the hyperparameter (e.g. $K=1,3,\cdots$)
 - Train a model using $\mathcal{D}^{^{\mathrm{TRAIN}}}$
 - $\bullet\,$ Evaluate the performance of the model on $\mathcal{D}^{\mbox{\tiny DEV}}$
- $\bullet\,$ Choose the model with the best performance on $\mathcal{D}^{\rm DEV}$
- Evaluate the model on $\mathcal{D}^{^{\mathrm{TEST}}}$

What if we do not have a development set?

• Split the training data into S equal parts.

$$S = 5$$
: 5-fold cross validation



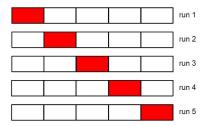
A D N A B N A B N A B N

3

What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part *in turn* as a development dataset and use the others as a training dataset.

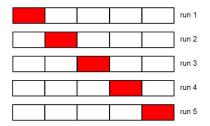
$$S = 5$$
: 5-fold cross validation



What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part *in turn* as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best *average* performance.

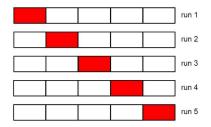
$$S = 5$$
: 5-fold cross validation



What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part *in turn* as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best *average* performance.

$$S = 5$$
: 5-fold cross validation



< □ > < □ > < □ > < □ > < □ > < □ >

August 22, 2018

52 / 63

Special case: S = N, called leave-one-out.

• Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{\mathrm{TRAIN}}$.

(日) (四) (日) (日) (日)

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{ ext{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K=1,3,\cdots$)
 - $\bullet~\mbox{For every}~s\in[{\sf S}]$
 - Train a model using $\mathcal{D}_{\backslash s}^{\text{\tiny TRAIN}} = \mathcal{D}^{\text{\tiny TRAIN}} \mathcal{D}_{s}^{\text{\tiny TRAIN}}$
 - Evaluate the performance of the model on $\mathcal{D}_s^{\scriptscriptstyle\mathrm{TRAIN}}$
 - Average the S performance metrics

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{\mathrm{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K=1,3,\cdots$)
 - For every $s \in [\mathsf{S}]$
 - Train a model using $\mathcal{D}_{\backslash s}^{\text{\tiny TRAIN}} = \mathcal{D}^{\text{\tiny TRAIN}} \mathcal{D}_{s}^{\text{\tiny TRAIN}}$
 - Evaluate the performance of the model on $\mathcal{D}_s^{\scriptscriptstyle\mathrm{TRAIN}}$
 - Average the S performance metrics
- Choose the hyper-parameter with the best averaged performance

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{\mathrm{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K = 1, 3, \cdots$)
 - For every $s \in [\mathsf{S}]$
 - Train a model using $\mathcal{D}_{\backslash s}^{\text{\tiny TRAIN}} = \mathcal{D}^{\text{\tiny TRAIN}} \mathcal{D}_{s}^{\text{\tiny TRAIN}}$
 - Evaluate the performance of the model on $\mathcal{D}_s^{\scriptscriptstyle\mathrm{TRAIN}}$
 - Average the S performance metrics
- Choose the hyper-parameter with the best averaged performance
- \bullet Use the best hyper-parameter to train a model using all $\mathcal{D}^{\text{train}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Split the training data into S equal parts. Denote each part as $\mathcal{D}_s^{\mathrm{TRAIN}}$.
- For each possible value of the hyper-parameter (e.g. $K = 1, 3, \cdots$)
 - For every $s \in [\mathsf{S}]$
 - Train a model using $\mathcal{D}_{\backslash s}^{\text{\tiny TRAIN}} = \mathcal{D}^{\text{\tiny TRAIN}} \mathcal{D}_{s}^{\text{\tiny TRAIN}}$
 - Evaluate the performance of the model on $\mathcal{D}_{s}^{\scriptscriptstyle\mathrm{TRAIN}}$
 - Average the S performance metrics
- Choose the hyper-parameter with the best averaged performance
- \bullet Use the best hyper-parameter to train a model using all $\mathcal{D}^{\text{train}}$
- Evaluate the model on $\mathcal{D}^{^{\mathrm{TEST}}}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Mini-summary

Advantages of NNC

• Simple, easy to implement (wildly used in practice)

3

A D N A B N A B N A B N

Mini-summary

Advantages of NNC

• Simple, easy to implement (wildly used in practice)

Disadvantages of NNC

• Computationally intensive for large-scale problems: O(ND) for each prediction *naively*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Mini-summary

Advantages of NNC

• Simple, easy to implement (wildly used in practice)

Disadvantages of NNC

- Computationally intensive for large-scale problems: O(ND) for each prediction *naively*.
- Need to "carry" the training data around. This type of method is called *nonparametric*.

イロト 不得下 イヨト イヨト 二日

Mini-summary

Advantages of NNC

• Simple, easy to implement (wildly used in practice)

Disadvantages of NNC

- Computationally intensive for large-scale problems: O(ND) for each prediction *naively*.
- Need to "carry" the training data around. This type of method is called *nonparametric*.
- Choosing the right hyper-parameters can be involved.

イロト イポト イヨト イヨト 二日

Mini-summary

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

< □ > < □ > < □ > < □ > < □ > < □ >

Outline

About this course

- Overview of machine learning
- 3 Nearest Neighbor Classifier (NNC)
- Some theory on NNCStep 1: Expected risk

To answer this question, we proceed in 3 steps

э

イロト イヨト イヨト イヨト

To answer this question, we proceed in 3 steps

1 Define *more carefully* a performance metric for a classifier.

To answer this question, we proceed in 3 steps

- Define *more carefully* a performance metric for a classifier.
- Wypothesize an ideal classifier the best possible one.

< □ > < □ > < □ > < □ > < □ > < □ >

To answer this question, we proceed in 3 steps

- Define *more carefully* a performance metric for a classifier.
- Q Hypothesize an ideal classifier the best possible one.
- Ompare NNC to the ideal one.

< □ > < □ > < □ > < □ > < □ > < □ >

Test error makes sense only when training set and test set are correlated.

3

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x, y) (from $\mathcal{D}^{\text{TRAIN}}$, \mathcal{D}^{DEV} , or $\mathcal{D}^{\text{TEST}}$) is an *independent and identically distributed* (*i.i.d.*) sample of an unknown joint distribution \mathcal{P} .

• often written as $(x,y) \stackrel{i.i.d.}{\sim} \mathcal{P}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x, y) (from $\mathcal{D}^{\text{TRAIN}}$, \mathcal{D}^{DEV} , or $\mathcal{D}^{\text{TEST}}$) is an *independent and identically distributed* (*i.i.d.*) sample of an unknown joint distribution \mathcal{P} .

• often written as $(x,y) \stackrel{i.i.d.}{\sim} \mathcal{P}$

Test error of a fixed classifier is therefore a *random variable*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Test error makes sense only when training set and test set are correlated.

Most standard assumption: every data point (x, y) (from $\mathcal{D}^{\text{TRAIN}}$, \mathcal{D}^{DEV} , or $\mathcal{D}^{\text{TEST}}$) is an *independent and identically distributed* (*i.i.d.*) sample of an unknown joint distribution \mathcal{P} .

• often written as $(x,y) \stackrel{i.i.d.}{\sim} \mathcal{P}$

Test error of a fixed classifier is therefore a random variable.

Need a more "certain" measure of performance (so it's easy to compare different classifiers for example).

What about the expectation of this random variable?

 $\mathbb{E}[\epsilon^{\text{TEST}}]$

- 20

A D N A B N A B N A B N

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(x_m) \neq y_m]$$

3

A D N A B N A B N A B N

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(x_m) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(x) \neq y]$$

3

A D N A B N A B N A B N

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(x_m) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(x) \neq y]$$

• i.e. the expected error/mistake of f

What about the **expectation** of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(x_m) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(x) \neq y]$$

• i.e. the expected error/mistake of f

Test error is a proxy of expected error. *The larger the test set, the better the approximation.*

What about the expectation of this random variable?

$$\mathbb{E}[\epsilon^{\text{TEST}}] = \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(\boldsymbol{x_m}, y_m) \sim \mathcal{P}} \mathbb{I}[f(x_m) \neq y_m] = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f(x) \neq y]$$

• i.e. the expected error/mistake of f

Test error is a proxy of expected error. *The larger the test set, the better the approximation.*

What about the expectation of training error? Is training error a good proxy of expected error?

Expected risk

More generally, for a loss function L(y', y),

- e.g. $L(y', y) = \mathbb{I}[y' \neq y]$, called *0-1 loss*.
- many more other losses as we will see.

イロト イヨト イヨト

Expected risk

More generally, for a loss function L(y', y),

- e.g. $L(y', y) = \mathbb{I}[y' \neq y]$, called *0-1 loss*.
- many more other losses as we will see.

the *expected risk* of f is defined as

$$R(f) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} L(f(\boldsymbol{x}), y)$$

イロト イポト イヨト イヨト

Expected risk

More generally, for a loss function L(y', y),

- e.g. $L(y', y) = \mathbb{I}[y' \neq y]$, called *0-1 loss*. **Default**
- many more other losses as we will see.

the *expected risk* of f is defined as

$$R(f) = \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} L(f(\boldsymbol{x}), y)$$

イロト 不得下 イヨト イヨト 二日

What should we predict for x, knowing $\mathcal{P}(y|x)$?

э

・ロト ・四ト ・ヨト ・ヨト

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(x) = \arg \max_{c \in [C]} \mathcal{P}(c|x)$.

イロト 不得下 イヨト イヨト 二日

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(x) = \arg \max_{c \in [C]} \mathcal{P}(c|x)$.

The optimal risk: $R(f^*) = \mathbb{E}_{x \sim \mathcal{P}_x}[1 - \max_{c \in [C]} \mathcal{P}(c|x)]$ where \mathcal{P}_x is the marginal distribution of x.

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(x) = \arg \max_{c \in [C]} \mathcal{P}(c|x)$.

The optimal risk: $R(f^*) = \mathbb{E}_{x \sim \mathcal{P}_x}[1 - \max_{c \in [C]} \mathcal{P}(c|x)]$ where \mathcal{P}_x is the marginal distribution of x.

It is easy to show $R(f^*) \leq R(f)$ for any f.

What should we predict for x, knowing $\mathcal{P}(y|x)$?

Bayes optimal classifier: $f^*(x) = \arg \max_{c \in [C]} \mathcal{P}(c|x)$.

The optimal risk: $R(f^*) = \mathbb{E}_{x \sim \mathcal{P}_x}[1 - \max_{c \in [C]} \mathcal{P}(c|x)]$ where \mathcal{P}_x is the marginal distribution of x.

It is easy to show $R(f^*) \leq R(f)$ for any f.

For special case C = 2, let $\eta(x) = \mathcal{P}(0|x)$, then

$$R(f^*) = \mathbb{E}_{x \sim \mathcal{P}_x}[\min\{\eta(x), 1 - \eta(x)\}].$$

Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

3

Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Theorem (Cover and Hart, 1967)

Let f_N be the 1-nearest neighbor binary classifier using N training data points, we have (under mild conditions)

 $R(f^*) \le \lim_{N \to \infty} \mathbb{E}[R(f_N)] \le 2R(f^*)$

i.e., expected risk of NNC in the limit is at most twice of the best possible.

< □ > < □ > < □ > < □ > < □ > < □ >

Comparing NNC to Bayes optimal classifier

Come back to the question: how good is NNC?

Theorem (Cover and Hart, 1967)

Let f_N be the 1-nearest neighbor binary classifier using N training data points, we have (under mild conditions)

 $R(f^*) \leq \lim_{N \to \infty} \mathbb{E}[R(f_N)] \leq 2R(f^*)$

i.e., expected risk of NNC in the limit is at most twice of the best possible.

A pretty strong guarantee. In particular, $R(f^*) = 0$ implies $\mathbb{E}[R(f_N)] \to 0$.

イロト 不得 トイヨト イヨト 二日

Fact: $x(1) \rightarrow x$ with probability 1

Fact: $x(1) \rightarrow x$ with probability 1

$$\mathbb{E}[R(f_N)] = \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(x) \neq y]]$$

Fact: $x(1) \rightarrow x$ with probability 1

$$\mathbb{E}[R(f_N)] = \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(x) \neq y]]$$

$$\rightarrow \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_x} \mathbb{E}_{y, y' \stackrel{i.i.d.}{\sim} \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[y' \neq y]]$$

Fact: $x(1) \rightarrow x$ with probability 1

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(x) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_x} \mathbb{E}_{y, y'} \mathbb{E}_{y, y'} \mathbb{E}_{(\cdot|\boldsymbol{x})} [\mathbb{I}[y' \neq y]] \\ &= \mathbb{E}_{\mathcal{P}_x} \mathbb{E}_{y, y'} \mathbb{E}_{(\cdot|\boldsymbol{x})} [\mathbb{I}[y' = 0 \text{ and } y = 1] + \mathbb{I}[y' = 1 \text{ and } y = 0]] \end{split}$$

Fact: $x(1) \rightarrow x$ with probability 1

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(x) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_x} \mathbb{E}_{y, y'} \mathbb{E}_{y, y'} \mathbb{E}_{(\cdot|\boldsymbol{x})} [\mathbb{I}[y' \neq y]] \\ &= \mathbb{E}_{\mathcal{P}_x} \mathbb{E}_{y, y'} \mathbb{E}_{(\cdot|\boldsymbol{x})} [\mathbb{I}[y' = 0 \text{ and } y = 1] + \mathbb{I}[y' = 1 \text{ and } y = 0]] \\ &= \mathbb{E}_{\mathcal{P}_x} [\eta(x)(1 - \eta(x)) + (1 - \eta(x))\eta(x)] \end{split}$$

Fact: $x(1) \rightarrow x$ with probability 1

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(x) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_x} \mathbb{E}_{y, y'^{i.i.d.} \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[y' \neq y]] \\ &= \mathbb{E}_{\mathcal{P}_x} \mathbb{E}_{y, y'^{i.i.d.} \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[y' = 0 \text{ and } y = 1] + \mathbb{I}[y' = 1 \text{ and } y = 0]] \\ &= \mathbb{E}_{\mathcal{P}_x} [\eta(x)(1 - \eta(x)) + (1 - \eta(x))\eta(x)] \\ &= 2\mathbb{E}_{\mathcal{P}_x} [\eta(x)(1 - \eta(x))] \end{split}$$

Fact: $x(1) \rightarrow x$ with probability 1

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{P}} \mathbb{I}[f_N(x) \neq y]] \\ &\to \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}_x} \mathbb{E}_{\boldsymbol{y}, \boldsymbol{y'}^{i.i.d.} \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[\boldsymbol{y'} \neq \boldsymbol{y}]] \\ &= \mathbb{E}_{\mathcal{P}_x} \mathbb{E}_{\boldsymbol{y}, \boldsymbol{y'}^{i.i.d.} \mathcal{P}(\cdot | \boldsymbol{x})} [\mathbb{I}[\boldsymbol{y'} = 0 \text{ and } \boldsymbol{y} = 1] + \mathbb{I}[\boldsymbol{y'} = 1 \text{ and } \boldsymbol{y} = 0]] \\ &= \mathbb{E}_{\mathcal{P}_x} [\eta(x)(1 - \eta(x)) + (1 - \eta(x))\eta(x)] \\ &= 2\mathbb{E}_{\mathcal{P}_x} [\eta(x)(1 - \eta(x))] \\ &\leq 2\mathbb{E}_{\mathcal{P}_x} [\min\{\eta(x), (1 - \eta(x))\}] \end{split}$$

Fact: $x(1) \rightarrow x$ with probability 1

$$\begin{split} \mathbb{E}[R(f_N)] &= \mathbb{E}[\mathbb{E}_{(\boldsymbol{x},\boldsymbol{y})\sim\mathcal{P}}\mathbb{I}[f_N(\boldsymbol{x})\neq\boldsymbol{y}]] \\ &\to \mathbb{E}_{\boldsymbol{x}\sim\mathcal{P}_x}\mathbb{E}_{\boldsymbol{y},\boldsymbol{y'}^{i,i,d}\cdot\mathcal{P}(\cdot|\boldsymbol{x})}[\mathbb{I}[\boldsymbol{y'}\neq\boldsymbol{y}]] \\ &= \mathbb{E}_{\mathcal{P}_x}\mathbb{E}_{\boldsymbol{y},\boldsymbol{y'}^{i,i,d}\cdot\mathcal{P}(\cdot|\boldsymbol{x})}[\mathbb{I}[\boldsymbol{y'}=0 \text{ and } \boldsymbol{y}=1] + \mathbb{I}[\boldsymbol{y'}=1 \text{ and } \boldsymbol{y}=0]] \\ &= \mathbb{E}_{\mathcal{P}_x}[\eta(\boldsymbol{x})(1-\eta(\boldsymbol{x})) + (1-\eta(\boldsymbol{x}))\eta(\boldsymbol{x})] \\ &= 2\mathbb{E}_{\mathcal{P}_x}[\eta(\boldsymbol{x})(1-\eta(\boldsymbol{x}))] \\ &\leq 2\mathbb{E}_{\mathcal{P}_x}[\min\{\eta(\boldsymbol{x}),(1-\eta(\boldsymbol{x}))\}] \\ &= 2R(f^*) \end{split}$$