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Administration

HW3 solution is available, HW4 is due on Sunday (11/4)

Minor typo in P4 for the formula of multivariate Gaussian density, see
Piazza pinned post as well as the updated P4.pdf.

the comment in gmm.py:

p = eˆ(-0.5(x-mean)*(inv(variance))*(x-mean)’/sqrt(c))

should be

p = eˆ(-0.5(x-mean)*(inv(variance))*(x-mean)’)/sqrt(c)
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Review of last lecture

General EM algorithm

Step 0 Initialize θ(1), t = 1

Step 1 (E-Step) update the posterior of latent variables

q(t)n (·) = p(· | xn ;θ(t))

and obtain Expectation of complete likelihood

Q(θ ;θ(t)) =

N∑
n=1

E
zn∼q(t)n

[ln p(xn, zn ;θ)]

Step 2 (M-Step) update the model parameter via Maximization

θ(t+1) ← argmax
θ

Q(θ ;θ(t))

Step 3 t← t+ 1 and return to Step 1 if not converged
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Review of last lecture

Applying EM to learn GMMs

EM for clustering:

Step 0 Initialize ωk,µk,Σk for each k ∈ [K]

Step 1 (E-Step) update the “soft assignment” (fixing parameters)

γnk = p(zn = k | xn) ∝ ωkN (xn | µk,Σk)

Step 2 (M-Step) update the model parameter (fixing assignments)

ωk =

∑
n γnk
N

µk =

∑
n γnkxn∑
n γnk

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)T

Step 3 return to Step 1 if not converged
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(Hidden) Markov models

Markov Models

Markov models are powerful probabilistic tools to analyze sequential data:

text or speech data

stock market data

gene data

· · ·
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(Hidden) Markov models Markov chain

Definition

A Markov chain is a stochastic process with Markov property:

a
sequence of random variables Z1, Z2, · · · s.t.

P (Zt+1 | Z1:t) = P (Zt+1 | Zt) (Markov property)

i.e. the current state only depends on the most recent state (notation Z1:t

denotes the sequence Z1, . . . , Zt).

We only consider the following case:

All Zt’s take value from the same discrete set {1, . . . , S}

P (Zt+1 = s′ | Zt = s) = as,s′ , known as transition probability

P (Z1 = s) = πs

({πs}, {as,s′}) = (π,A) are parameters of the model
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(Hidden) Markov models Markov chain

Examples

Example 1 (Language model)

States [S] represent a dictionary of words,

aice,cream = P (Zt+1 = cream | Zt = ice)

is an example of the transition probability.

Example 2 (Weather)

States [S] represent weather at each day

asunny,rainy = P (Zt+1 = rainy | Zt = sunny)
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(Hidden) Markov models Markov chain

High-order Markov chain

Is the Markov assumption reasonable?

Not completely for the language
model for example.

Higher order Markov chains make it more reasonable, e.g.

P (Zt+1 | Z1:t) = P (Zt+1 | Zt, Zt−1) (second-order Markov)

i.e. the current word only depends on the last two words.

Learning higher order Markov chains is similar, but more expensive.

We only consider standard Markov chains.

November 14, 2018 11 / 60
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(Hidden) Markov models Markov chain

Graph Representation picture from Wikipedia

It is intuitive to represent a Markov model as a graph
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(Hidden) Markov models Markov chain

Learning from examples

Now suppose we have observed N sequences of examples:

z1,1, . . . , z1,T

· · ·
zn,1, . . . , zn,T

· · ·
zN,1, . . . , zN,T

where

for simplicity we assume each sequence has the same length T

lower case zn,t represents the value of the random variable Zn,t

From these observations how do we learn the model parameters (π,A)?

November 14, 2018 13 / 60



(Hidden) Markov models Markov chain

Learning from examples

Now suppose we have observed N sequences of examples:

z1,1, . . . , z1,T

· · ·
zn,1, . . . , zn,T

· · ·
zN,1, . . . , zN,T

where

for simplicity we assume each sequence has the same length T

lower case zn,t represents the value of the random variable Zn,t

From these observations how do we learn the model parameters (π,A)?

November 14, 2018 13 / 60



(Hidden) Markov models Markov chain

Learning from examples

Now suppose we have observed N sequences of examples:

z1,1, . . . , z1,T

· · ·
zn,1, . . . , zn,T

· · ·
zN,1, . . . , zN,T

where

for simplicity we assume each sequence has the same length T

lower case zn,t represents the value of the random variable Zn,t

From these observations how do we learn the model parameters (π,A)?

November 14, 2018 13 / 60



(Hidden) Markov models Markov chain

Learning from examples

Now suppose we have observed N sequences of examples:

z1,1, . . . , z1,T

· · ·
zn,1, . . . , zn,T

· · ·
zN,1, . . . , zN,T

where

for simplicity we assume each sequence has the same length T

lower case zn,t represents the value of the random variable Zn,t

From these observations how do we learn the model parameters (π,A)?

November 14, 2018 13 / 60



(Hidden) Markov models Markov chain

Finding the MLE

Same story, find the MLE.

The log-likelihood of a sequence z1, . . . , zT is

lnP (Z1:T = z1:T )

=

T∑
t=1

lnP (Zt = zt | Z1:t−1 = z1:t−1) (always true)

=

T∑
t=1

lnP (Zt = zt | Zt−1 = zt−1) (Markov property)

= lnπz1 +

T∑
t=2

ln azt−1,zt

=
∑
s

I[z1 = s] lnπs +
∑
s,s′

(
T∑
t=2

I[zt−1 = s, zt = s′]

)
ln as,s′
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(Hidden) Markov models Markov chain

Finding the MLE

So MLE is

argmax
π,A

∑
s

(#initial states with value s) lnπs

+
∑
s,s′

(#transitions from s to s′) ln as,s′

We have seen this many times. The solution is:

πs ∝ #initial states with value s

as,s′ ∝ #transitions from s to s′
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(Hidden) Markov models Markov chain

Example

Suppose we observed the following 2 sequences of length 5

sunny, sunny, rainy, rainy, rainy

rainy, sunny, sunny, sunny, rainy

MLE is the following model
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(Hidden) Markov models Hidden Markov Model

Markov Model with outcomes

Now suppose each state Zt also “emits” some outcome Xt ∈ [O] based
on the following model

P (Xt = o | Zt = s) = bs,o (emission probability)

independent of anything else.

For example, in the language model, Xt is the speech signal for the
underlying word Zt (very useful for speech recognition).

Now the model parameters are ({πs}, {as,s′}, {bs,o}) = (π,A,B).
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(Hidden) Markov models Hidden Markov Model

Another example picture from Wikipedia

On each day, we also observe Bob’s activity: walk, shop, or clean,
which only depends on the weather of that day.
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(Hidden) Markov models Hidden Markov Model

Joint likelihood

The joint log-likelihood of a state-outcome sequence z1, x1, . . . , zT , xT is

lnP (Z1:T = z1:T , X1:T = x1:T )

= lnP (Z1:T = z1:T ) + lnP (X1:T = x1:T | Z1:T = z1:T ) (always true)

=

T∑
t=1

lnP (Zt = zt | Zt−1 = zt−1) +

T∑
t=1

lnP (Xt = xt | Zt = zt)

(due to all the independence)

= lnπz1 +
T∑
t=2

ln azt−1,zt +
T∑
t=1

ln bzt,xt
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(Hidden) Markov models Hidden Markov Model

Learning the model

If we observe N state-outcome sequences: zn,1, xn,1, . . . , zn,T , xn,T for
n = 1, . . . , N , the MLE is again very simple (verify yourself):

πs ∝ #initial states with value s

as,s′ ∝ #transitions from s to s′

bs,o ∝ #state-outcome pairs (s, o)
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(Hidden) Markov models Hidden Markov Model

Learning the model

However, most often we do not observe the states!

Think about the
speech recognition example.

This is called Hidden Markov Model (HMM), widely used in practice

How to learn HMMs? Roadmap:

first discuss how to infer when the model is known (key: dynamic
programming)

then discuss how to learn the model (key: EM)
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(Hidden) Markov models Inferring HMMs

What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

the probability of observing some sequence

P (X1:T = x1:T )

e.g. prob. of observing Bob’s activities “walk, walk, shop, clean, walk,
shop, shop” for one week

the state at some point, given an observation sequence

P (Zt = s | X1:T = x1:T )

e.g. given Bob’s activities for one week, how was the weather like on
Wed?
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(Hidden) Markov models Inferring HMMs

What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer

the transition at some point, given an observation sequence

P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

e.g. given Bob’s activities for one week, how was the weather like on
Wed and Thu?

most likely hidden states path, given an observation sequence

argmax
z1:T

P (Z1:T = z1:T | X1:T = x1:T )

e.g. given Bob’s activities for one week, what’s the most likely
weather for this week?

November 14, 2018 23 / 60



(Hidden) Markov models Inferring HMMs

What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer

the transition at some point, given an observation sequence

P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

e.g. given Bob’s activities for one week, how was the weather like on
Wed and Thu?

most likely hidden states path, given an observation sequence

argmax
z1:T

P (Z1:T = z1:T | X1:T = x1:T )

e.g. given Bob’s activities for one week, what’s the most likely
weather for this week?

November 14, 2018 23 / 60



(Hidden) Markov models Inferring HMMs

Forward and backward messages

The key to infer all these is to compute two things:

forward messages: for each s and t

αs(t) = P (Zt = s,X1:t = x1:t)

backward messages: for each s and t

βs(t) = P (Xt+1:T = xt+1:T | Zt = s)
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(Hidden) Markov models Inferring HMMs

Computing forward messages

Key: establish a recursive formula

αs(t)

= P (Zt = s,X1:t = x1:t)

= P (Xt = xt | Zt = s,X1:t−1 = x1:t−1)P (Zt = s,X1:t−1 = x1:t−1)

= bs,xt
∑
s′

P (Zt = s, Zt−1 = s′, X1:t−1 = x1:t−1) (marginalizing)

= bs,xt
∑
s′

P (Zt = s|Zt−1 = s′, X1:t−1 = x1:t−1)P (Zt−1 = s′, X1:t−1 = x1:t−1)

= bs,xt
∑
s′

as′,sαs′(t− 1) (recursive form!)

Base case: αs(1) = P (Z1 = s,X1 = x1) = πsbs,x1
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(Hidden) Markov models Inferring HMMs

Forward procedure

Forward procedure

For all s ∈ [S], compute αs(1) = πsbs,x1 .

For t = 2, . . . , T

for each s ∈ [S], compute

αs(t) = bs,xt
∑
s′

as′,sαs′(t− 1)

It takes O(S2T ) time and O(ST ) space.
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(Hidden) Markov models Inferring HMMs

Computing backward messages

Again establish a recursive formula

βs(t)

= P (Xt+1:T = xt+1:T | Zt = s)

=
∑
s′

P (Xt+1:T = xt+1:T , Zt+1 = s′ | Zt = s) (marginalizing)

=
∑
s′

P (Zt+1 = s′ | Zt = s)P (Xt+1:T = xt+1:T | Zt+1 = s′, Zt = s)

=
∑
s′

as,s′P (Xt+1 = xt+1 | Zt+1 = s′)P (Xt+2:T = xt+2:T | Zt+1 = s′)

=
∑
s′

as,s′bs′,xt+1βs′(t+ 1) (recursive form!)

Base case: βs(T ) = 1
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(Hidden) Markov models Inferring HMMs

Backward procedure

Backward procedure

For all s ∈ [S], set βs(T ) = 1.

For t = T − 1, . . . , 1

for each s ∈ [S], compute

βs(t) =
∑
s′

as,s′bs′,xt+1βs′(t+ 1)

Again it takes O(S2T ) time and O(ST ) space.
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(Hidden) Markov models Inferring HMMs

Using forward and backward messages

With forward and backward messages, we can easily infer many things,

e.g.

γs(t) = P (Zt = s | X1:T = x1:T )

∝ P (Zt = s,X1:T = x1:T )

= P (Zt = s,X1:t = x1:t)P (Xt+1:T = xt+1:T | Zt = s,X1:t = x1:t)

= αs(t)βs(t)

What constant are we omitting in “∝”? It is exactly

P (X1:T = x1:T ) =
∑
s

αs(t)βs(t),

the probability of observing the sequence x1:T .

This is true for any t; a good way to check correctness of your code.
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(Hidden) Markov models Inferring HMMs

Using forward and backward messages

Another example: the conditional probability of transition s to s′ at time t

ξs,s′(t)

= P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

∝ P (Zt = s, Zt+1 = s′, X1:T = x1:T )

= P (Zt = s,X1:t = x1:t)P (Zt+1 = s′, Xt+1:T = xt+1:T | Zt = s,X1:t = x1:t)

= αs(t)P (Zt+1 = s′ | Zt = s)P (Xt+1:T = xt+1:T | Zt+1 = s′)

= αs(t)as,s′P (Xt+1 = xt+1 | Zt+1 = s′)P (Xt+2:T = xt+2:T | Zt+1 = s′)

= αs(t)as,s′bs′,xt+1βs′(t+ 1)

The normalization constant is in fact again P (X1:T = x1:T )
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(Hidden) Markov models Inferring HMMs

Finding the most likely path

Though can’t use forward and backward messages directly to find the
most likely path, it is very similar to the forward procedure.

Key: compute

δs(t) = max
z1:t−1

P (Zt = s, Z1:t−1 = z1:t−1, X1:t = x1:t)

the probability of the most likely path for time 1 : t ending at state s

November 14, 2018 31 / 60



(Hidden) Markov models Inferring HMMs

Finding the most likely path

Though can’t use forward and backward messages directly to find the
most likely path, it is very similar to the forward procedure. Key: compute

δs(t) = max
z1:t−1

P (Zt = s, Z1:t−1 = z1:t−1, X1:t = x1:t)

the probability of the most likely path for time 1 : t ending at state s

November 14, 2018 31 / 60



(Hidden) Markov models Inferring HMMs

Computing δs(t)

Observe

δs(t) = max
z1:t−1

P (Zt = s, Z1:t−1 = z1:t−1, X1:t = x1:t)

= max
s′

max
z1:t−2

P (Zt = s, Zt−1 = s′, Z1:t−2 = z1:t−2, X1:t = x1:t)

= max
s′

P (Zt = s | Zt−1 = s′)P (Xt = xt | Zt = s)·

max
z1:t−2

P (Zt−1 = s′, Z1:t−2 = z1:t−2, X1:t−1 = x1:t−1)

= bs,xt max
s′

as′,sδs′(t− 1) (recursive form!)

Base case: δs(1) = P (Z1 = s,X1 = x1) = πsbs,x1

Exactly the same as forward messages except replacing “sum” by “max”!
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(Hidden) Markov models Inferring HMMs

Viterbi Algorithm (!)

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1)

∆s(t) = argmax
s′

as′,sδs′(t− 1)

Backtracking: let z∗T = argmaxs δs(T ).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .
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(Hidden) Markov models Inferring HMMs

Example

Arrows represent the “argmax”, i.e. ∆s(t).

The most likely path is “rainy, rainy, sunny, sunny”.
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(Hidden) Markov models Learning HMMs

Learning the parameters of an HMM

All previous inferences depend on knowing the parameters (π,A,B).

How do we learn the parameters based on N observation sequences
xn,1, . . . , xn,T for n = 1, . . . , N?

MLE is intractable due to the hidden variables Zn,t’s (similar to GMMs)

Need to apply EM again! Known as the Baum–Welch algorithm.
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(Hidden) Markov models Learning HMMs

Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the posterior
distributions q of the hidden states (for each sample n),

which leads to
the complete log-likelihood:

Ez1:T∼q [ln(Z1:T = z1:T , X1:T = x1:T )]

= Ez1:T∼q

[
lnπz1 +

T−1∑
t=1

ln azt,zt+1 +

T∑
t=1

ln bzt,xt

]

=
∑
s

γs(1) lnπs +

T−1∑
t=1

∑
s,s′

ξs,s′(t) ln as,s′ +

T∑
t=1

∑
s

γs(t) ln bs,xt

We have discussed how to compute

γs(t) = P (Zt = s | X1:T = x1:T )

ξs,s′(t) = P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

November 14, 2018 36 / 60



(Hidden) Markov models Learning HMMs

Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the posterior
distributions q of the hidden states (for each sample n), which leads to
the complete log-likelihood:

Ez1:T∼q [ln(Z1:T = z1:T , X1:T = x1:T )]

= Ez1:T∼q

[
lnπz1 +

T−1∑
t=1

ln azt,zt+1 +
T∑
t=1

ln bzt,xt

]

=
∑
s

γs(1) lnπs +
T−1∑
t=1

∑
s,s′

ξs,s′(t) ln as,s′ +
T∑
t=1

∑
s

γs(t) ln bs,xt

We have discussed how to compute

γs(t) = P (Zt = s | X1:T = x1:T )

ξs,s′(t) = P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

November 14, 2018 36 / 60



(Hidden) Markov models Learning HMMs

Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the posterior
distributions q of the hidden states (for each sample n), which leads to
the complete log-likelihood:

Ez1:T∼q [ln(Z1:T = z1:T , X1:T = x1:T )]

= Ez1:T∼q

[
lnπz1 +

T−1∑
t=1

ln azt,zt+1 +

T∑
t=1

ln bzt,xt

]

=
∑
s

γs(1) lnπs +
T−1∑
t=1

∑
s,s′

ξs,s′(t) ln as,s′ +
T∑
t=1

∑
s

γs(t) ln bs,xt

We have discussed how to compute

γs(t) = P (Zt = s | X1:T = x1:T )

ξs,s′(t) = P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

November 14, 2018 36 / 60



(Hidden) Markov models Learning HMMs

Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the posterior
distributions q of the hidden states (for each sample n), which leads to
the complete log-likelihood:

Ez1:T∼q [ln(Z1:T = z1:T , X1:T = x1:T )]

= Ez1:T∼q

[
lnπz1 +

T−1∑
t=1

ln azt,zt+1 +

T∑
t=1

ln bzt,xt

]

=
∑
s

γs(1) lnπs +
T−1∑
t=1

∑
s,s′

ξs,s′(t) ln as,s′ +

T∑
t=1

∑
s

γs(t) ln bs,xt

We have discussed how to compute

γs(t) = P (Zt = s | X1:T = x1:T )

ξs,s′(t) = P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

November 14, 2018 36 / 60



(Hidden) Markov models Learning HMMs

Applying EM: M-Step

The maximizer of complete log-likelihood is simply doing weighted
counting (compared to the unweighted counting on Slide 20):

πs ∝
∑
n

γ(n)s (1) = Eq [ #initial states with value s]

as,s′ ∝
∑
n

T−1∑
t=1

ξ
(n)
s,s′(t) = Eq

[
#transitions from s to s′

]
bs,o ∝

∑
n

∑
t:xt=o

γ(n)s (t) = Eq [ #state-outcome pairs (s, o)]

where

γ(n)s (t) = P (Zn,t = s | Xn,1:T = xn,1:T )

ξ
(n)
s,s′(t) = P (Zn,t = s, Zn,t+1 = s′ | Xn,1:T = xn,1:T )
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(Hidden) Markov models Learning HMMs

Baum–Welch algorithm

Step 0 Initialize the parameters (π,A,B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward

messages for all sample sequences, then use these to compute γ
(n)
s (t) and

ξ
(n)
s,s′(t) for each n, t, s, s′ (see Slides 29 and 30).

Step 2 (M-Step) Update parameters:

πs ∝
∑
n

γ(n)s (1), as,s′ ∝
∑
n

T−1∑
t=1

ξ
(n)
s,s′(t), bs,o ∝

∑
n

∑
t:xt=o

γ(n)s (t)

Step 3 Return to Step 1 if not converged
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(Hidden) Markov models Learning HMMs

Summary

Very important models: Markov chains, hidden Markov models

Several algorithms:

forward and backward procedures

inferring HMMs based on forward and backward messages

Viterbi algorithm

Baum–Welch algorithm
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Principal Component Analysis (PCA)

Outline

1 Review of last lecture

2 (Hidden) Markov models

3 Principal Component Analysis (PCA)
PCA
Kernel PCA
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Principal Component Analysis (PCA) PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so

it is easier to visualize and discover patterns

it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

· · ·

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)

November 14, 2018 41 / 60



Principal Component Analysis (PCA) PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so

it is easier to visualize and discover patterns

it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

· · ·

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)

November 14, 2018 41 / 60



Principal Component Analysis (PCA) PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so

it is easier to visualize and discover patterns

it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

· · ·

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)

November 14, 2018 41 / 60



Principal Component Analysis (PCA) PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so

it is easier to visualize and discover patterns

it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

· · ·

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)

November 14, 2018 41 / 60



Principal Component Analysis (PCA) PCA

Dimensionality reduction

Dimensionality reduction is yet another important unsupervised learning
problem.

Goal: reduce the dimensionality of a dataset so

it is easier to visualize and discover patterns

it takes less time and space to process for any applications
(classification, regression, clustering, etc)

noise is reduced

· · ·

There are many approaches, we focus on a linear method:
Principal Component Analysis (PCA)

November 14, 2018 41 / 60



Principal Component Analysis (PCA) PCA

Example picture from here

Consider the following dataset:

17 features, each represents the average consumption of some food

4 data points, each represents some country

What can you tell?

Hard to say anything
looking at all these 17
features.
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Principal Component Analysis (PCA) PCA

Example picture from here

PCA can help us!

The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.
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http://setosa.io/ev/principal-component-analysis/


Principal Component Analysis (PCA) PCA

Example picture from here

PCA can help us! The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.

November 14, 2018 43 / 60

http://setosa.io/ev/principal-component-analysis/


Principal Component Analysis (PCA) PCA

Example picture from here

PCA can help us! The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.

November 14, 2018 43 / 60

http://setosa.io/ev/principal-component-analysis/


Principal Component Analysis (PCA) PCA

Example picture from here

PCA can help us! The first principal component of this dataset:

i.e. we reduce the dimensionality from 17 to just 1.

Now one data point is clearly different from the rest!

That turns out to be data from Northern Ireland, the only country not on
the island of Great Britain out of the 4 samples.

November 14, 2018 43 / 60

http://setosa.io/ev/principal-component-analysis/


Principal Component Analysis (PCA) PCA

Example picture from here

PCA can find the second (and more) principal component of the data
too:
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Principal Component Analysis (PCA) PCA

High level idea

How does PCA find these principal components (PC)?

This is in fact the direction with the most variance, i.e. the direction
where the data is most spread out.
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Principal Component Analysis (PCA) PCA

Finding the first PC

More formally, we want to find a direction v ∈ RD with ‖v‖2 = 1, so that
the projection of the dataset on this direction has the most variance,

i.e.

max
v:‖v‖2=1

N∑
n=1

(
xT
nv −

1

N

∑
m

xT
mv

)2

xT
nv is exactly the projection of xn onto the direction v

if we pre-center the data, i.e. let x′n = xn − 1
N

∑
m xm, then the

objective simply becomes

max
v:‖v‖2=1

N∑
n=1

(
x′n

T
v
)2

= max
v:‖v‖2=1

vT

(
N∑
n=1

x′nx
′
n
T

)
v

we will simply assume {xn} is centered (to avoid notation x′n)
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Principal Component Analysis (PCA) PCA

Finding the first PC

With X ∈ RN×D being the data matrix (as in Lec 2), we want

max
v:‖v‖2=1

vT
(
XTX

)
v

The Lagrangian is
vT
(
XTX

)
v − λ(‖v‖22 − 1)

The stationary condition implies XTXv = λv, which means v is exactly
an eigenvector! And the objective becomes

vT
(
XTX

)
v = λvTv = λ

To maximize this, we want the eigenvector with the largest eigenvalue

Conclusion: the first PC is the top eigenvector of the covariance matrix
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Principal Component Analysis (PCA) PCA

Finding the other PCs

If v1 is the first PC, then the second PC is found via

max
v2:‖v2‖2=1,vT1 v2=0

vT2
(
XTX

)
v2

i.e. the direction that maximizes the variance among all other dimensions

This is just the second top eigenvector of the covariance matrix!

Conclusion: the d-th principal component is the d-th eigenvector (sorted
by the eigenvalue from largest to smallest).
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Principal Component Analysis (PCA) PCA

PCA

Input: a dataset represented as X, #components p we want

Step 1 Center the data by subtracting the mean

Step 2 Find the top p (unit norm) eigenvectors of the covariance matrix
XTX, denote it by V ∈ RD×p

Step 3 Construct the new compressed dataset XV ∈ RN×p

November 14, 2018 49 / 60
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Principal Component Analysis (PCA) PCA

How many PCs do we want?

One common rule: pick p large enough so it covers about 90% of the
spectrum,

i.e. ∑p
d=1 λd∑D
d=1 λd

≥ 90%

where λ1 ≥ · · · ≥ λN are sorted eigenvalues.

Note:
∑D

d=1 λd = Tr(XTX), so no need to actually find all eigenvalues.

For visualization, also often pick p = 1 or p = 2.
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Principal Component Analysis (PCA) PCA

Another visualization example

A famous study of genetic map

dataset: genomes of 1,387 Europeans

First 2 PCs shown below;

looks remarkably like the geographic map

November 14, 2018 51 / 60



Principal Component Analysis (PCA) PCA

Another visualization example

A famous study of genetic map

dataset: genomes of 1,387 Europeans

First 2 PCs shown below;

looks remarkably like the geographic map

November 14, 2018 51 / 60



Principal Component Analysis (PCA) PCA

Another visualization example

A famous study of genetic map

dataset: genomes of 1,387 Europeans

First 2 PCs shown below; looks remarkably like the geographic map

November 14, 2018 51 / 60



Principal Component Analysis (PCA) Kernel PCA

Does PCA always work? picture from Wikipedia

PCA is a linear method (recall the new dataset is XV ),

it does not do
much when every direction has similar variance.
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Principal Component Analysis (PCA) Kernel PCA

KPCA: high level idea

Similar to learning a linear classifier, when we encounter such data, we can
apply kernel methods.

Kernel PCA (KPCA):

first map the data to a more complicated space via φ : RD → RM

then apply regular PCA to reduce the dimensionality

Sounds a bit counter-intuitive, but the key is this gives a nonlinear method.

How to implement KPCA efficiently without actually working in RM?
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Principal Component Analysis (PCA) Kernel PCA

KPCA: finding the PCs

Suppose v ∈ RM is the first PC for the nonlinearly-transformed data
Φ ∈ RN×M (centered).

Then

v =
1

λ
ΦTΦv = ΦTα

for some α ∈ RN , i.e. it’s a linear combination of data.

Plugging into ΦTΦv = λv gives

ΦTΦΦTα = λΦTα

and thus with the Gram matrix K = ΦΦT,

ΦT(Kα− λα) = 0.

So α is an eigenvector of K!

Conclusion: KPCA is just finding top eigenvectors of the Gram matrix
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Principal Component Analysis (PCA) Kernel PCA

One issue: scaling

Should we scale α s.t ‖α‖2 = 1?

No. Recall we want v = ΦTα to have unit L2 norm, so

vTv = αTΦΦTα = λ‖α‖22 = 1

In other words, we in fact need to scale α so that its L2 norm is 1/
√
λ,

where λ it’s the corresponding eigenvalue.
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Principal Component Analysis (PCA) Kernel PCA

Another issue: centering

Should we still pre-center X?

No. Centering X does not mean Φ is centered!

Remember all we need is Gram matrix. What is the Gram matrix after Φ
is centered?

Let E ∈ RN×N be the matrix with all entries being 1
N ,

K̄ = (Φ−EΦ)(Φ−EΦ)T

= ΦΦT −EΦΦT −ΦΦTE +EΦΦTE

= K −EK −KE +EKE
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Principal Component Analysis (PCA) Kernel PCA

KPCA

Input: a dataset X, #components p we want, a Kernel fucntion k

Step 1 Compute the Gram matrix K and the centered Gram matrix

K̄ = K −EK −KE +EKE

Step 2 Find the top p eigenvectors of K̄ with the appropriate scaling,
denote it by A ∈ RN×p

Step 3 Construct the new dataset (Φ−EΦ)(Φ−EΦ)TA = K̄A
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Principal Component Analysis (PCA) Kernel PCA

Example picture from Wikipedia

Applying kernel k(x,x′) = (xTx′ + 1)2:
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Example picture from Wikipedia

Applying Gaussian kernel k(x,x′) = exp
(
−‖x−x′‖2

2σ2

)
:
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Principal Component Analysis (PCA) Kernel PCA

Denoising via PCA
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