CSCI567 Machine Learning (Fall 2018)

Prof. Haipeng Luo

U of Southern California

Sep 5, 2018

イロト イヨト イヨト イヨト

September 18, 2018

3

1/46

Administration

- HW 1 has been released.
- Complete the GitHub survey ASAP if you haven't.
- Follow Piazza for clarifications/typos of HW 1.
- DO NOT post your programming assignment outputs on Piazza.
- DEN problems should have been resolved.

(I) < (II) <

Outline

2 Linear Classifier and Surrogate Losses

3

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

- 2 Linear Classifier and Surrogate Losses
- 3 Perceptron
- 4 Logistic regression

3

・ロト ・四ト ・ヨト ・ヨト

Regression

Predicting a continuous outcome variable using past observations

• temperature, amount of rainfall, house price, etc.

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with <u>linear models</u>: $f(w) = w^{T}x$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Least square solution

Two approaches to find the minimum:

- find stationary points by setting gradient = 0
- "complete the square"

< □ > < □ > < □ > < □ > < □ > < □ >

Regression with nonlinear basis

Model: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^M$

Similar least square solution: $oldsymbol{w}^* = ig(oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{\Phi} ig)^{-1} oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{y}$

Underfitting and Overfitting

- $M \leq 2$ is underfitting the data
 - large training error
 - large test error
- $M\geq 9$ is overfitting the data
 - small training error
 - large test error

How to prevent overfitting? more data + regularization

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}} ig(\mathrm{RSS}(oldsymbol{w}) + \lambda \|oldsymbol{w}\|_2^2 ig) = ig(oldsymbol{\Phi}^\mathrm{T} oldsymbol{\Phi} + \lambda oldsymbol{I} ig)^{-1} oldsymbol{\Phi}^\mathrm{T} oldsymbol{y}$$

General idea to derive ML algorithms

Step 1. Pick a set of models \mathcal{F} • e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$ • e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

Step 2. Define error/loss L(y', y)

Step 3. Find empirical risk minimizer (ERM):

$$f^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization

イロト 不得 トイヨト イヨト 二日

A D N A B N A B N A B N

September 18, 2018

3

10/46

Outline

- 2 Linear Classifier and Surrogate Losses
 - 3) Perceptron
 - 4 Logistic regression

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

This lecture: binary classification

- Number of classes: C = 2
- Labels: $\{-1, +1\}$ (cat or dog, fraud or not, price up or down...)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Classification

Recall the setup:

- input (feature vector): $\boldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$
- goal: learn a mapping $f : \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

This lecture: binary classification

- Number of classes: C = 2
- Labels: $\{-1, +1\}$ (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

- require carrying the training set
- more like a heuristic

Let's follow the steps:

Step 1. Pick a set of models \mathcal{F} .

3

< □ > < 同 > < 回 > < 回 > < 回 >

Let's follow the steps:

Step 1. Pick a set of models \mathcal{F} .

Again try linear models, but how to predict a label using $w^{\mathrm{T}}x$?

< □ > < 同 > < 回 > < 回 > < 回 >

Let's follow the steps:

Step 1. Pick a set of models \mathcal{F} .

Again try linear models, but how to predict a label using $w^{\mathrm{T}}x$?

September 18, 2018

12 / 46

Let's follow the steps:

Step 1. Pick a set of models \mathcal{F} .

Again try linear models, but how to predict a label using $w^{\mathrm{T}}x$?

Sign of $w^{\mathrm{T}}x$ predicts the label:

$$\mathsf{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) = \left\{ \begin{array}{ll} +1 & \text{if } \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} > 0 \\ -1 & \text{if } \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \leq 0 \end{array} \right.$$

(Sometimes use sgn for sign too.)

The set of (separating) hyperplanes:

$$\mathcal{F} = \{ f(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The set of (separating) hyperplanes:

$$\mathcal{F} = \{f(\boldsymbol{x}) = \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

Good choice for *linearly separable* data, i.e., $\exists w$ s.t.

$$\mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n}) = y_{n}$$

for all $n \in [N]$.

< □ > < □ > < □ > < □ > < □ > < □ >

The set of (separating) hyperplanes:

$$\mathcal{F} = \{f(\boldsymbol{x}) = \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

Good choice for *linearly separable* data, i.e., $\exists w$ s.t.

$$\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n}) = y_{n} \quad \text{ or } \quad y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n} > 0$$

for all $n \in [N]$.

< □ > < □ > < □ > < □ > < □ > < □ >

Still makes sense for "almost" linearly separable data

э

イロト イヨト イヨト イヨト

For clearly not linearly separable data,

< ∃⇒ September 18, 2018 15 / 46

э

For clearly not linearly separable data,

Again can apply a **nonlinear mapping** Φ :

$$\mathcal{F} = \{f(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x})) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$$

More discussions in the next two lectures.

0-1 Loss

Step 2. Define error/loss L(y', y).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

0-1 Loss

Step 2. Define error/loss L(y', y).

Most natural one for classification: **0-1** loss $L(y', y) = \mathbb{I}[y' \neq y]$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

16/46

0-1 Loss

Step 2. Define error/loss L(y', y).

Most natural one for classification: 0-1 loss $L(y',y) = \mathbb{I}[y' \neq y]$

For classification, more convenient to look at the loss as a function of $yw^{T}x$. That is, with

 $\ell_{\text{0-1}}(z) = \mathbb{I}[z \le 0]$

the loss for hyperplane w on example (x, y) is $\ell_{0,1}(yw_{\neg}^{T}x)$

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is *NP-hard in general*.

э

< □ > < □ > < □ > < □ > < □ > < □ >

Solution: find a convex surrogate loss

3

イロト イヨト イヨト イヨト

Solution: find a convex surrogate loss

• perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)

< □ > < □ > < □ > < □ > < □ > < □ >

September 18, 2018

3

18 / 46

Solution: find a convex surrogate loss

- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{hinge}(z) = \max\{0, 1-z\}$ (used in SVM and many others)

< □ > < 同 > < 三 > < 三 >

Solution: find a convex surrogate loss

- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{hinge}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z))$ (used in logistic regression; the base of log doesn't matter)

• • • • • • • • • • • •

September 18, 2018

18 / 46

Step 3. Find ERM:

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

19 / 46

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

Step 3. Find ERM:

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

• no closed-form in general (unlike linear regression)

イロト イヨト イヨト

Step 3. Find ERM:

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^{N} \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

< □ > < □ > < □ > < □ > < □ > < □ >

Step 3. Find ERM:

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^{N} \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

Note: minimizing perceptron loss *does not really make sense* (try w = 0), but the algorithm derived from this perspective does.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Outline

Review of Last Lecture

Linear Classifier and Surrogate Losses

O Perceptron

- Numerical optimization
- Applying (S)GD to perceptron loss

4 Logistic regression

イロト イヨト イヨト

In one sentence: Stochastic Gradient Descent applied to perceptron loss

3

< □ > < 同 > < 回 > < 回 > < 回 >

In one sentence: Stochastic Gradient Descent applied to perceptron loss

i.e. find the minimizer of

$$F(\boldsymbol{w}) = \sum_{n=1}^{N} \ell_{\mathsf{perceptron}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$$
$$= \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

< □ > < 同 > < 回 > < 回 > < 回 >

September 18, 2018

3

21/46

using SGD

A detour of numerical optimization methods

We describe two simple yet extremely popular methods

- Gradient Descent (GD): simple and fundamental
- Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

< □ > < □ > < □ > < □ > < □ > < □ >

A detour of numerical optimization methods

We describe two simple yet extremely popular methods

- Gradient Descent (GD): simple and fundamental
- Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

Gradient is sometimes referred to as *first-order* information of a function. Therefore, these methods are called *first-order methods*.

< □ > < □ > < □ > < □ > < □ > < □ >

September 18, 2018

22 / 46

Numerical optimization

Gradient Descent (GD)

Goal: minimize F(w)

3

・ロト ・四ト ・ヨト ・ヨト

Gradient Descent (GD)

Goal: minimize F(w)

Algorithm: move a bit in the negative gradient direction

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$

where $\eta>0$ is called step size or learning rate

イロト イポト イヨト イヨト 二日

Gradient Descent (GD)

Goal: minimize F(w)

Algorithm: move a bit in the negative gradient direction

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)})$$

where $\eta>0$ is called step size or learning rate

- in theory η should be set in terms of some parameters of F
- in practice we just try several small values

< □ > < □ > < □ > < □ > < □ > < □ >

Numerical optimization

An example

Example:
$$F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣.

Example:
$$F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣.

Example:
$$F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

GD:

• Initialize
$$w_1^{(0)}$$
 and $w_2^{(0)}$ (to be 0 or *randomly*), $t=0$

(日) (四) (王) (王) (王)

Example:
$$F(w) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

GD:

• Initialize
$$w_1^{(0)}$$
 and $w_2^{(0)}$ (to be 0 or randomly), $t=0$
• do

$$\begin{split} w_1^{(t+1)} &\leftarrow w_1^{(t)} - \eta \left[2(w_1^{(t)^2} - w_2^{(t)})w_1^{(t)} + w_1^{(t)} - 1 \right] \\ w_2^{(t+1)} &\leftarrow w_2^{(t)} - \eta \left[-(w_1^{(t)^2} - w_2^{(t)}) \right] \\ t &\leftarrow t+1 \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example:
$$F(\boldsymbol{w}) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$$
. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

GD:

• Initialize
$$w_1^{(0)}$$
 and $w_2^{(0)}$ (to be 0 or randomly), $t=0$
• do

$$\begin{split} w_1^{(t+1)} &\leftarrow w_1^{(t)} - \eta \left[2(w_1^{(t)}{}^2 - w_2^{(t)})w_1^{(t)} + w_1^{(t)} - 1 \right] \\ w_2^{(t+1)} &\leftarrow w_2^{(t)} - \eta \left[-(w_1^{(t)}{}^2 - w_2^{(t)}) \right] \\ t &\leftarrow t+1 \end{split}$$

• until $F(\boldsymbol{w}^{(t)})$ does not change much

- 2

・ロト ・四ト ・ヨト ・ヨト

Intuition: by first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Intuition: by first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

GD ensures

$$F(\boldsymbol{w}^{(t+1)}) \approx F(\boldsymbol{w}^{(t)}) - \eta \|\nabla F(\boldsymbol{w}^{(t)})\|_2^2 \le F(\boldsymbol{w}^{(t)})$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

25 / 46

Intuition: by first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

GD ensures

$$F(\boldsymbol{w}^{(t+1)}) \approx F(\boldsymbol{w}^{(t)}) - \eta \|\nabla F(\boldsymbol{w}^{(t)})\|_2^2 \le F(\boldsymbol{w}^{(t)})$$

reasonable η decreases function value

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Intuition: by first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

GD ensures

$$F(\boldsymbol{w}^{(t+1)}) \approx F(\boldsymbol{w}^{(t)}) - \eta \|\nabla F(\boldsymbol{w}^{(t)})\|_2^2 \le F(\boldsymbol{w}^{(t)})$$

reasonable η decreases function value

but large n is unstable September 18, 2018 25/46

Stochastic Gradient Descent (SGD)

GD: move a bit in the negative gradient direction

SGD: move a bit in a *noisy* negative gradient direction

< □ > < □ > < □ > < □ > < □ > < □ >

Stochastic Gradient Descent (SGD)

GD: move a bit in the negative gradient direction

SGD: move a bit in a *noisy* negative gradient direction

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \tilde{\nabla} F(\boldsymbol{w}^{(t)})$$

where $\tilde{\nabla} F(\boldsymbol{w}^{(t)})$ is a random variable (called stochastic gradient) s.t.

$$\mathbb{E}\left[\tilde{\nabla}F(\boldsymbol{w}^{(t)})\right] = \nabla F(\boldsymbol{w}^{(t)}) \qquad \text{(unbiasedness)}$$

< □ > < 同 > < 三 > < 三 >

< □ > < □ > < □ > < □ > < □ > < □ >

September 18, 2018

26 / 46

Stochastic Gradient Descent (SGD)

GD: move a bit in the negative gradient direction

SGD: move a bit in a *noisy* negative gradient direction

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \tilde{\nabla} F(\boldsymbol{w}^{(t)})$$

where $\tilde{\nabla} F(\boldsymbol{w}^{(t)})$ is a random variable (called **stochastic gradient**) s.t.

$$\mathbb{E}\left[\tilde{\nabla}F(\boldsymbol{w}^{(t)})\right] = \nabla F(\boldsymbol{w}^{(t)}) \qquad \text{(unbiasedness)}$$

Key point: it could be *much faster to obtain a stochastic gradient*!

Convergence Guarantees

Many for both GD and SGD on convex objectives.

3

・ロト ・四ト ・ヨト ・ヨト

Convergence Guarantees

Many for both GD and SGD on convex objectives.

They tell you at most how many iterations you need to achieve

$$F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) \le \epsilon$$

3

(日) (四) (日) (日) (日)

Convergence Guarantees

Many for both GD and SGD on convex objectives.

They tell you at most how many iterations you need to achieve

$$F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) \le \epsilon$$

Even for *nonconvex objectives*, many recent works show effectiveness of GD/SGD.

イロト イポト イヨト イヨト

September 18, 2018

27 / 46

Objective

$$F(\boldsymbol{w}) = \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Objective

$$F(\boldsymbol{w}) = \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Gradient (or really *sub-gradient*) is

$$abla F(oldsymbol{w}) = \sum_{n=1}^{N} -\mathbb{I}[y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n \leq 0]y_noldsymbol{x}_n$$

(only misclassified examples contribute to the gradient)

イロト イポト イヨト イヨト 二日

Objective

$$F(\boldsymbol{w}) = \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Gradient (or really *sub-gradient*) is

$$abla F(oldsymbol{w}) = \sum_{n=1}^{N} - \mathbb{I}[y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

(only misclassified examples contribute to the gradient)

GD update

$$oldsymbol{w} \leftarrow oldsymbol{w} + \eta \sum_{n=1}^N \mathbb{I}[y_n oldsymbol{w}^{ ext{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

イロト 不得下 イヨト イヨト 二日

Objective

$$F(\boldsymbol{w}) = \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Gradient (or really *sub-gradient*) is

$$abla F(oldsymbol{w}) = \sum_{n=1}^{N} -\mathbb{I}[y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n \leq 0]y_noldsymbol{x}_n$$

(only misclassified examples contribute to the gradient)

GD update

$$oldsymbol{w} \leftarrow oldsymbol{w} + \eta \sum_{n=1}^N \mathbb{I}[y_n oldsymbol{w}^{ ext{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

Slow: each update makes one pass of the entire training set!

How to construct a stochastic gradient?

イロト 不得 トイヨト イヨト 二日

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$\tilde{\nabla} F(\boldsymbol{w}^{(t)}) = -N\mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

clearly unbiased.

イロト イポト イヨト イヨト 二日

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$\tilde{\nabla} F(\boldsymbol{w}^{(t)}) = -N\mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

clearly unbiased.

SGD update (with η absorbing the constant N)

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta \mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$\tilde{\nabla} F(\boldsymbol{w}^{(t)}) = -N\mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

clearly unbiased.

SGD update (with η absorbing the constant N)

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta \mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

Fast: each update touches only one data point!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$\tilde{\nabla} F(\boldsymbol{w}^{(t)}) = -N\mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

clearly unbiased.

SGD update (with η absorbing the constant N)

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta \mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの September 18, 2018

29 / 46

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a *finite sum* (over each training point) and the above trick applies!

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$\tilde{\nabla} F(\boldsymbol{w}^{(t)}) = -N\mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

clearly unbiased.

SGD update (with η absorbing the constant N)

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta \mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a *finite sum* (over each training point) and the above trick applies!

Exercise: try SGD to minimize RSS for linear regression,

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

3

イロト イヨト イヨト

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

Repeat:

- Pick a data point $oldsymbol{x}_n$ uniformly at random
- If $\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) \neq y_n$

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$

イロト 不得 トイヨト イヨト 二日

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

Repeat:

- Pick a data point $oldsymbol{x}_n$ uniformly at random
- If $\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) \neq y_n$

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

September 18, 2018

30 / 46

Note:

• w is always a *linear combination* of the training examples
The Perceptron Algorithm

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

Repeat:

- Pick a data point $oldsymbol{x}_n$ uniformly at random
- If $\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) \neq y_n$

 $\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$

Note:

- w is always a *linear combination* of the training examples
- why $\eta = 1$? Does not really matter in terms of training error

イロト 不得下 イヨト イヨト 二日

Why does it make sense?

If the current weight $oldsymbol{w}$ makes a mistake

 $y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n < 0$

< □ > < 同 > < 回 > < 回 > < 回 >

э

Why does it make sense?

If the current weight w makes a mistake

$$y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n < 0$$

then after the update $oldsymbol{w}' = oldsymbol{w} + y_n oldsymbol{x}_n$ we have

$$y_n {\boldsymbol{w}'}^{\mathrm{T}} {\boldsymbol{x}}_n = y_n {\boldsymbol{w}}^{\mathrm{T}} {\boldsymbol{x}}_n + y_n^2 {\boldsymbol{x}}_n^{\mathrm{T}} {\boldsymbol{x}}_n \ge y_n {\boldsymbol{w}}^{\mathrm{T}} {\boldsymbol{x}}_n$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Why does it make sense?

If the current weight w makes a mistake

$$y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n < 0$$

then after the update $oldsymbol{w}' = oldsymbol{w} + y_n oldsymbol{x}_n$ we have

$$y_n {\boldsymbol{w}'}^{\mathrm{T}} {\boldsymbol{x}}_n = y_n {\boldsymbol{w}}^{\mathrm{T}} {\boldsymbol{x}}_n + y_n^2 {\boldsymbol{x}}_n^{\mathrm{T}} {\boldsymbol{x}}_n \ge y_n {\boldsymbol{w}}^{\mathrm{T}} {\boldsymbol{x}}_n$$

Thus it is more likely to get it right after the update.

Any theory?

(HW 1) If training set is linearly separable

- Perceptron *converges in a finite number of steps*
- training error is 0

< □ > < 同 > < 回 > < 回 > < 回 >

Any theory?

(HW 1) If training set is linearly separable

- Perceptron *converges in a finite number of steps*
- training error is 0

< □ > < 同 > < 三 > < 三 >

September 18, 2018

32 / 46

There are also guarantees when the data is not linearly separable.

Outline

Review of Last Lecture

Linear Classifier and Surrogate Losses

3 Perceptron

4 Logistic regression

- A Probabilistic View
- Optimization

э

イロト イヨト イヨト イヨト

A simple view

In one sentence: find the minimizer of

$$F(\boldsymbol{w}) = \sum_{n=1}^{N} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$$
$$= \sum_{n=1}^{N} \ln(1 + e^{-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n})$$

・ロト ・四ト ・ヨト ・ヨト

September 18, 2018

- 2

34 / 46

A simple view

In one sentence: find the minimizer of

$$F(\boldsymbol{w}) = \sum_{n=1}^{N} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)$$
$$= \sum_{n=1}^{N} \ln(1 + e^{-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n})$$

э

34 / 46

イロト イポト イヨト イヨト

September 18, 2018

But why logistic loss? and why "regression"?

Predicting probability

Instead of predicting a discrete label, can we *predict the probability of each label*? i.e. regress the probabilities

- 3

イロト イヨト イヨト

Predicting probability

Instead of predicting a discrete label, can we *predict the probability of each label*? i.e. regress the probabilities

One way: sigmoid function + linear model

$$\mathbb{P}(y = +1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x})$$

where σ is the sigmoid function:

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

• between 0 and 1 (good as probability)

September 18, 2018 36 / 46

イロト イヨト イヨト イヨト

- 34

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $w^{\mathrm{T}}x \Rightarrow$ larger $\sigma(w^{\mathrm{T}}x) \Rightarrow$ higher confidence in label 1

3

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $w^{\mathrm{T}}x \Rightarrow$ larger $\sigma(w^{\mathrm{T}}x) \Rightarrow$ higher confidence in label 1

•
$$\sigma(z) + \sigma(-z) = 1$$
 for all z

3

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $w^{\mathrm{T}}x \Rightarrow$ larger $\sigma(w^{\mathrm{T}}x) \Rightarrow$ higher confidence in label 1

•
$$\sigma(z) + \sigma(-z) = 1$$
 for all z

The probability of label -1 is naturally

$$1 - \mathbb{P}(y = +1 \mid \boldsymbol{x}; \boldsymbol{w}) = 1 - \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \sigma(-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x})$$

September 18, 2018 36 / 46

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with sgn $(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $w^{\mathrm{T}}x \Rightarrow$ larger $\sigma(w^{\mathrm{T}}x) \Rightarrow$ higher confidence in label 1

•
$$\sigma(z) + \sigma(-z) = 1$$
 for all z

The probability of label -1 is naturally

$$1 - \mathbb{P}(y = +1 \mid \boldsymbol{x}; \boldsymbol{w}) = 1 - \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \sigma(-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x})$$

and thus

$$\mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}$$

September 18, 2018 36 / 46

A Probabilistic View

How to regress with discrete labels?

What we observe are labels, not probabilities.

- 34

イロト イヨト イヨト

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

- ullet assume data is generated in this way by some w
- perform Maximum Likelihood Estimation (MLE)

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

- ullet assume data is generated in this way by some w
- perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y_1, \dots, y_n given x_1, \dots, x_n , as a function of some w?

$$P(\boldsymbol{w}) = \prod_{n=1}^{N} \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

MLE: find w^* that maximizes the probability P(w)

$$\boldsymbol{w}^* = \operatorname*{argmax}_{\boldsymbol{w}} P(\boldsymbol{w}) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

3

<ロト < 四ト < 三ト < 三ト

$$egin{aligned} oldsymbol{w}^* &= rgmax \mathop{m}\limits_{oldsymbol{w}} P(oldsymbol{w}) = rgmax \mathop{m}\limits_{oldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid oldsymbol{x_n}; oldsymbol{w}) \ &= rgmax \mathop{m}\limits_{oldsymbol{w}} \sum_{n=1}^N \ln \mathbb{P}(y_n \mid oldsymbol{x_n}; oldsymbol{w}) \end{aligned}$$

3

$$\boldsymbol{w}^* = \underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w}) = \underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^N \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$
$$= \underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{n=1}^N \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w}) = \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^N - \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

3

$$w^* = \underset{w}{\operatorname{argmax}} P(w) = \underset{w}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}(y_n \mid \boldsymbol{x_n}; w)$$
$$= \underset{w}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; w) = \underset{w}{\operatorname{argmin}} \sum_{n=1}^{N} - \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; w)$$
$$= \underset{w}{\operatorname{argmin}} \sum_{n=1}^{N} \ln(1 + e^{-y_n w^{\mathrm{T}} \boldsymbol{x_n}})$$

3

$$\boldsymbol{w}^{*} = \operatorname*{argmax}_{\boldsymbol{w}} P(\boldsymbol{w}) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^{N} \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w})$$
$$= \operatorname*{argmax}_{\boldsymbol{w}} \sum_{n=1}^{N} \ln \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} - \ln \mathbb{P}(y_{n} \mid \boldsymbol{x_{n}}; \boldsymbol{w})$$
$$= \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} \ln(1 + e^{-y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x_{n}}}) = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^{N} \ell_{\mathsf{logistic}}(y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x_{n}})$$

3

$$w^* = \underset{w}{\operatorname{argmax}} P(w) = \underset{w}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}(y_n \mid \boldsymbol{x_n}; w)$$
$$= \underset{w}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; w) = \underset{w}{\operatorname{argmin}} \sum_{n=1}^{N} - \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; w)$$
$$= \underset{w}{\operatorname{argmin}} \sum_{n=1}^{N} \ln(1 + e^{-y_n w^{\mathrm{T}} \boldsymbol{x_n}}) = \underset{w}{\operatorname{argmin}} \sum_{n=1}^{N} \ell_{\mathsf{logistic}}(y_n w^{\mathrm{T}} \boldsymbol{x_n})$$
$$= \underset{w}{\operatorname{argmin}} F(w)$$

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

・ロト ・四ト ・ヨト ・ヨト

September 18, 2018

- 20

38 / 46

$$\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w})$$

~

$$oldsymbol{w} \leftarrow oldsymbol{w} - \eta \nabla F(oldsymbol{w})$$

= $oldsymbol{w} - \eta \nabla_{oldsymbol{w}} \ell_{\text{logistic}}(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$ ($n \in [N]$ is drawn u.a.r.)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

39 / 46

Let's apply SGD again

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \end{split}$$

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1+e^{-z}} \Big|_{z=y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \end{split}$$

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1 + e^{-z}} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} + \eta \sigma (-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) y_{n} \boldsymbol{x}_{n} \end{split}$$

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1+e^{-z}} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} + \eta \sigma (-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} + \eta \mathbb{P}(-y_{n} \mid \boldsymbol{x}_{n}; \boldsymbol{w}) y_{n} \boldsymbol{x}_{n} \end{split}$$

Let's apply SGD again

$$\begin{split} \boldsymbol{w} &\leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1 + e^{-z}} \Big|_{z=y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} + \eta \sigma (-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) y_{n} \boldsymbol{x}_{n} \\ &= \boldsymbol{w} + \eta \mathbb{P}(-y_{n} \mid \boldsymbol{x}_{n}; \boldsymbol{w}) y_{n} \boldsymbol{x}_{n} \end{split}$$

$$\mathbb{P}(-y_n | \boldsymbol{x}_n; \boldsymbol{w})$$
 versus $\mathbb{I}[y_n \neq \mathsf{sgn}(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n)]$

A second-order method: Newton method

Recall the intuition of GD: we look at first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

3

A second-order method: Newton method

Recall the intuition of GD: we look at first-order Taylor approximation

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

What if we look at *second-order* Taylor approximation?

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

(日) (四) (日) (日) (日)

A second-order method: Newton method

Recall the intuition of GD: we look at first-order **Taylor approximation**

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

What if we look at *second-order* Taylor approximation?

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

where $\boldsymbol{H}_t = \nabla^2 F(\boldsymbol{w}^{(t)}) \in \mathbb{R}^{\mathsf{D} \times \mathsf{D}}$ is the *Hessian* of *F* at $\boldsymbol{w}^{(t)}$, i.e.,

$$H_{t,ij} = \frac{\partial^2 F(\boldsymbol{w})}{\partial w_i \partial w_j} \Big|_{\boldsymbol{w} = \boldsymbol{w}^{(t)}}$$

September 18, 2018

40 / 46

(think "second derivative" when D = 1)
Deriving Newton method

If we minimize the second-order approximation (via "complete the square")

$$\begin{split} F(\boldsymbol{w}) \\ &\approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) \\ &= \frac{1}{2}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right)^{\mathrm{T}}\boldsymbol{H}_{t}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right) + \operatorname{cnt} \end{split}$$

Deriving Newton method

If we minimize the second-order approximation (via "complete the square")

$$\begin{split} F(\boldsymbol{w}) \\ &\approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) \\ &= \frac{1}{2}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right)^{\mathrm{T}}\boldsymbol{H}_{t}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right) + \operatorname{cnt} \end{split}$$

for convex F (so H_t is *positive semidefinite*) we obtain **Newton method**:

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$

Comparing GD and Newton

$$\begin{split} \boldsymbol{w}^{(t+1)} &\leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)}) & (\text{GD}) \\ \boldsymbol{w}^{(t+1)} &\leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)}) & (\text{Newton}) \end{split}$$

イロト イヨト イヨト イヨト

September 18, 2018

3

42 / 46

Both are iterative optimization procedures,

Comparing GD and Newton

$$\begin{split} \boldsymbol{w}^{(t+1)} &\leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)}) & (\text{GD}) \\ \boldsymbol{w}^{(t+1)} &\leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)}) & (\text{Newton}) \end{split}$$

< □ > < 同 > < 回 > < 回 > < 回 >

September 18, 2018

- 3

42 / 46

Both are iterative optimization procedures, but Newton method

• has no learning rate η (so no tuning needed!)

Comparing GD and Newton

< □ > < □ > < □ > < □ > < □ > < □ >

September 18, 2018

42 / 46

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)
- converges *super fast* in terms of *#*iterations needed

Comparing GD and Newton

$$\begin{split} \boldsymbol{w}^{(t+1)} &\leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)}) & (\text{GD}) \\ \boldsymbol{w}^{(t+1)} &\leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)}) & (\text{Newton}) \end{split}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

September 18, 2018

42 / 46

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)
- converges *super fast* in terms of *#*iterations needed
 - e.g. how many iterations needed when applied to a quadratic?

Comparing GD and Newton

$$\begin{split} \boldsymbol{w}^{(t+1)} &\leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)}) & (\text{GD}) \\ \boldsymbol{w}^{(t+1)} &\leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)}) & (\text{Newton}) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

42 / 46

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)
- converges *super fast* in terms of *#*iterations needed
 - e.g. how many iterations needed when applied to a quadratic?
- requires second-order information and is slow each iteration (there are many ways to improve it though)

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

September 18, 2018 43 / 46

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

$$\nabla^2_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z = -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n} \right) y_n^2 \boldsymbol{x}_n \boldsymbol{x}_n^{\mathrm{T}}$$

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

$$\begin{aligned} \nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) &= \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \left(\frac{e^{-z}}{(1+e^{-z})^{2}} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \end{aligned}$$

$$abla_{oldsymbol{w}}\ell_{\mathsf{logistic}}(y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n) = -\sigma(-y_noldsymbol{w}^{\mathrm{T}}oldsymbol{x}_n)y_noldsymbol{x}_n$$

$$\nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) = \left(\frac{\partial \sigma(z)}{\partial z}\Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}$$
$$= \left(\frac{e^{-z}}{(1+e^{-z})^{2}}\Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}}\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}$$
$$= \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \left(1 - \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n})\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}}$$

September 18, 2018 43 / 46

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

$$\begin{aligned} \nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) &= \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \left(\frac{e^{-z}}{(1+e^{-z})^{2}} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \left(1 - \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \end{aligned}$$

Exercises:

• why is the Hessian of logistic loss positive semidefinite?

September 18, 2018 43 / 46

イロト 不得 トイラト イラト 一日

$$\nabla_{\boldsymbol{w}} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) = -\sigma(-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n$$

$$\begin{aligned} \nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) &= \left(\frac{\partial \sigma(z)}{\partial z} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \left(\frac{e^{-z}}{(1+e^{-z})^{2}} \Big|_{z=-y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}} \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \\ &= \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \left(1 - \sigma(y_{n} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{n}) \right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathrm{T}} \end{aligned}$$

Exercises:

- why is the Hessian of logistic loss positive semidefinite?
- can we apply Newton method to perceptron/hinge loss?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Summary

Linear models for classification:

Step 1. Model is the set of separating hyperplanes

$$\mathcal{F} = \{f(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

э

イロト イヨト イヨト イヨト

Step 2. Pick the surrogate loss

- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{hinge}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z))$ (used in logistic regression)

- 34

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Step 3. Find empirical risk minimizer (ERM):

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}\in\mathbb{R}^{\mathsf{D}}} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n)$$

using **GD/SGD/Newton**.

< □ > < 同 > < 回 > < 回 > < 回 >

э