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Administration

@ HW 1 has been released.

Complete the GitHub survey ASAP if you haven't.

Follow Piazza for clarifications/typos of HW 1.

DO NOT post your programming assignment outputs on Piazza.

@ DEN problems should have been resolved.
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Outline

@ Review of Last Lecture
© Linear Classifier and Surrogate Losses
© Perceptron

@ Logistic regression
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Outline

© Review of Last Lecture
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Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

@ lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(w) = w'a
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Review of Last Lecture

Least square solution

w” = argmin RSS(w) x] Y1
v x5 Y2

= argmin | Xw — y||3 X = : Y= :

w . .

= (XTX) ' Xy zy UN

Two approaches to find the minimum:
o find stationary points by setting gradient = 0

o “complete the square”
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Review of Last Lecture

Regression with nonlinear basis
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Model: f(x) = wT¢(x) where w € RM

Similar least square solution: w* = ((I'Tti’)_1 Ty

September 18, 2018
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Underfitting and Overfitting

M < 2 is underfitting the data
@ large training error

o large test error

M > 9 is overfitting the data
@ small training error

o large test error

—6— Training
—— Test

How to prevent overfitting? more data + regularization

w* = argmin (RSS(w) + Aw[3) = (7@ + AI) ' &Ty

September 18, 2018
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Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
oeg F={f(x)=w"z|wecRP}
o eg F={f(z)=w"®(z) | weR"}

Step 2. Define error/loss L(y',y)

Step 3. Find empirical risk minimizer (ERM):

f* = argmin Z L(f Yn)

feF

n=1

or regularized empirical risk minimizer:

f* = argmin Z L(f(xn),yn) + AR(f)

feFr

n=1

ML becomes optimization
] September 18, 2018  9/46



Linear Classifier and Surrogate Losses
Outline

© Linear Classifier and Surrogate Losses
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Linear Classifier and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]
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Linear Classifier and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)
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Linear Classifier and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ more like a heuristic
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Linear Classifier and Surrogate Losses

Deriving classification algorithms

Let’s follow the steps:

Step 1. Pick a set of models F.
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Linear Classifier and Surrogate Losses

Deriving classification algorithms

Let’s follow the steps:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTa?
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Linear Classifier and Surrogate Losses

Deriving classification algorithms

Let's follow the steps:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?
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Linear Classifier and Surrogate Losses

Deriving classification algorithms

Let's follow the steps:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

Sign of wra predicts the label:

. T +1 ifwTz >0
sign(w'x) =9 ) wle <0

(Sometimes use sgn for sign too.)
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Linear Classifier and Surrogate Losses

The models

The set of (separating) hyperplanes:
F ={f(x) =sgn(wTx) | w € RP}
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Linear Classifier and Surrogate Losses

The models
The set of (separating) hyperplanes:
F ={f(x) =sgn(wTx) | w € RP}

Good choice for linearly separable data, i.e., Jw s.t.

sgn (men) = Yn

for all n € [N].
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Linear Classifier and Surrogate Losses

The models
The set of (separating) hyperplanes:
F ={f(x) =sgn(wTx) | w € RP}

Good choice for linearly separable data, i.e., Jw s.t.

sgn(men) —y, OfF yYpw Ty >0

for all n € [N].
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Linear Classifier and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data
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Linear Classifier and Surrogate Losses

The models

For clearly not linearly separable data,
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Linear Classifier and Surrogate Losses

The models

For clearly not linearly separable data,
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Again can apply a nonlinear mapping ®:
F={f(z) =sgn(w' ®(z)) | w € RM}

More discussions in the next two lectures.
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0-1 Loss

Step 2. Define error/loss L(y',y).
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0-1 Loss

Step 2. Define error/loss L(y',y).

Most natural one for classification: 0-1 loss L(y/,y) = Iy’ # y]
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0-1 Loss

Step 2. Define error/loss L(y',y).
Most natural one for classification: 0-1 loss L(y/,y) = Iy’ # y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

Eo_l(z) = ]I[Z S 0]

L L
2 1 0 1 2

the loss for hyperplane w on example (x,y) is fo.1(yw )
] September 18, 2018 16 /46



Linear Classifier and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

15
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Linear Classifier and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

15

[
—
=1 5
5]

Even worse, minimizing 0-1 loss is NP-hard in general.
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Linear Classifier and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

2.0

15
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Linear Classifier and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

2.0

1.5

@ perceptron 10ss Lperceptron(2) = max{0, —z} (used in Perceptron)
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Linear Classifier and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

N 2
N
\15
N
TN
LN
AN
e R 1 2

@ perceptron 10ss Lperceptron(2) = max{0, —z} (used in Perceptron)

o hinge loss lhinge(2) = max{0,1 — z}(used in SVM and many others)
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Linear Classifier and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

2.0

° Lperceptron(2) = max{0, —z} (used in Perceptron)
o hinge loss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss liogistic(2) = log(1 + exp(—z)) (used in logistic regression;
the base of log doesn’t matter)
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Linear Classifier and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N

w”* = argmin Z ((ynwTx,)

weRD n=1

where £(-) can be perceptron/hinge/logistic loss
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Linear Classifier and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N

w* = argmin Z ((ypwTx,)
weRD n=1

where £(-) can be perceptron/hinge/logistic loss

@ no closed-form in general (unlike linear regression)
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Linear Classifier and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N

w”* = argmin Z ((ynwTx,)
weRD

n=1
where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods
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Linear Classifier and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N

w”* = argmin Z ((ynwTx,)
weRD

n=1
where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.
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Outline

© Perceptron
@ Numerical optimization
@ Applying (S)GD to perceptron loss
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The Perceptron Algorithm

In one sentence: Stochastic Gradient Descent applied to perceptron loss
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The Perceptron Algorithm

In one sentence: Stochastic Gradient Descent applied to perceptron loss

i.e. find the minimizer of

N

F('w) = ngerceptron (yanmn)
=1
N

n
_ Z T
=) max{0,—y,w x,}
n=1

using SGD
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A detour of numerical optimization methods

We describe two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems
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A detour of numerical optimization methods

We describe two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.
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Numerica optimization
Gradient Descent (GD)

Goal: minimize F(w)
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Numerica optimization
Gradient Descent (GD)

Goal: minimize F(w)
Algorithm: move a bit in the negative gradient direction
w) — w® — pVF(w®)

where n > 0 is called step size or learning rate
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Numerica optimization
Gradient Descent (GD)

Goal: minimize F(w)
Algorithm: move a bit in the negative gradient direction
w) — w® — pVF(w®)

where n > 0 is called step size or learning rate

@ in theory 1 should be set in terms of some parameters of F

@ in practice we just try several small values

September 18, 2018
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An example

Example: F(w) = 0.5(w? — wg)? + 0.5(w; — 1)%.
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An example
Example: F(w) = 0.5(w? — wy)? + 0.5(w; — 1)2. Gradient is

OF

811)1 - -

8711)2 —(w% — w2)

2(w} — wo)wy +wy — 1
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An example

Example: F(w) = 0.5(w? — wy)? + 0.5(w; — 1)2. Gradient is

OF OF
8—%:2(w%—w2)w1+w1—1 %:—(w%—wg)
GD:
o Initialize wgo) and wgo) (to be 0 or randomly), t =0
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An example

Example: F(w) = 0.5(w? — wy)? + 0.5(w; — 1)2. Gradient is
oF oF

v = 2(w% — wo)wy +wy — 1 Sug —(w% — w3)
GD:
o Initialize wgo) and wgo) (to be 0 or randomly), t =0

e do
2
w%tﬂ) — wgt) ./ {2(10?) (t))w( ) + w(t) 1}

2
uf ™ e ulf) |l - o)

t—t+1
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An example

Example: F(w) = 0.5(w? — wy)? + 0.5(w; — 1)2. Gradient is

OF OF
Bor 2(w? — wo)wy +wy — 1 Sug = —(w? — wo)
GD:
o Initialize wgo) and wgo) (to be 0 or randomly), t =0

e do
2
w%tﬂ) — wgt) ./ {2(10?) (t))w( ) + w(t) 1}

2
uf ™ e ulf) |l - o)
tt+1

e until F(w®) does not change much
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Why GD?

Intuition: by first-order Taylor approximation

F(w) =~ F(w(t)) + VF(w(t))T('w — w(t))
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Why GD?
Intuition: by first-order Taylor approximation

F(w) ~ F(w®) + VF(w™ T (w — w®)
GD ensures

™) ~ Fw®) = 1| VF ()]} < Fw)
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Why GD?
Intuition: by first-order Taylor approximation

F(w) = F(w®) + VF(w®)T(w — w®)
GD ensures

FwV) = F(w") = gl|VF(w)|3 < F(w")

reasonable 7 decreases function value
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Why GD?

Intuition: by first-order Taylor approximation

F(w) =~ F(w(t)) + VF(w(t))T(w — w(t))

GD ensures

FwV) = F(w") = gl|VF(w)|3 < F(w")

reasonable 7 decreases function value but large 5 is unstable

e Ry



Numerica optimization
Stochastic Gradient Descent (SGD)

GD: move a bit in the negative gradient direction

SGD: move a bit in a noisy negative gradient direction

26 /46



Numerica optimization
Stochastic Gradient Descent (SGD)

GD: move a bit in the negative gradient direction
SGD: move a bit in a noisy negative gradient direction
w) — w® — pVF(w®)

where VF(w(®) is a random variable (called stochastic gradient) s.t.

E {VF(w(t))} — VF@w®)  (unbiasedness)
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Numerica optimization
Stochastic Gradient Descent (SGD)

GD: move a bit in the negative gradient direction
SGD: move a bit in a noisy negative gradient direction
w) — w® — pVF(w®)

where VF(w(®) is a random variable (called stochastic gradient) s.t.

E {VF(w(t))} — VF@w®)  (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!
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Convergence Guarantees

Many for both GD and SGD on convex objectives.
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Convergence Guarantees

Many for both GD and SGD on convex objectives.
They tell you at most how many iterations you need to achieve

Fw®) - F(w*) <e
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Convergence Guarantees

Many for both GD and SGD on convex objectives.
They tell you at most how many iterations you need to achieve

Fw®) - F(w*) <e

Even for nonconvex objectives, many recent works show effectiveness of
GD/SGD.
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AiG S e S
Applying GD to perceptron loss

Objective

N
F(w) = Z max{0, —y,w x,}
n=1
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Applying ()GD to perceptron loss
Applying GD to perceptron loss

Objective
N
= Z max{0, —y,w x,}
n=1
Gradient (or really sub-gradient) is

N
Z =1 yn'w z, < O0lypx,
n=1

(only misclassified examples contribute to the gradient)
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Applying ()GD to perceptron loss
Applying GD to perceptron loss

Objective

N
= Z max{0, —y,w x,}
n=1

Gradient (or really sub-gradient) is

N
Z =1 yn'w z, < O0lypx,
n=1

(only misclassified examples contribute to the gradient)
GD update

w—w+1n Z]I[yn'wT:cn < Olynxn

n=1
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AiG S e S
Applying GD to perceptron loss

Objective

N
= Z max{0, —y,w x,}
n=1

Gradient (or really sub-gradient) is

N
Z =1 yn'w z, < O0lypx,
n=1

(only misclassified examples contribute to the gradient)
GD update

w—w+1n Z]I[yn'wT:cn < Olynxn

n=1

Slow: each update makes one pass of the entire training set!

28 /46
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Applying SGD to perceptron loss

How to construct a stochastic gradient?
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Applying ()GD to perceptron loss
Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
VF(w®) = —NI[y,w" ez, < 0y,

clearly unbiased.
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Applying ()GD to perceptron loss
Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —N]I[yana:n < Olyn@y

clearly unbiased.

SGD update (with 7 absorbing the constant N)

w — w+ nﬂ[yanwn < 0lynn
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Applying ()GD to perceptron loss
Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —N]I[yana:n < Olyn@y
clearly unbiased.
SGD update (with 7 absorbing the constant N)
w— w+ nﬂ[yanwn < 0lynn

Fast: each update touches only one data point!
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Applying ()GD to perceptron loss
Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —N]I[yana:n < Olyn@y
clearly unbiased.
SGD update (with 7 absorbing the constant N)
w— w+ nﬂ[yanwn < 0lynn
Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!
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Applying ()GD to perceptron loss
Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —N]I[yana:n < Olyn@y
clearly unbiased.
SGD update (with 7 absorbing the constant N)
w— w+ nﬂ[yanwn < 0lynn
Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

Exercise: try SGD to minimize RSS for linear regression.
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Applying ()GD to perceptron loss
The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

. Sl G, ) S



Applying ()GD to perceptron loss
The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

. Ry



Applying ()GD to perceptron loss
The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

Note:

@ w is always a linear combination of the training examples
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Applying ()GD to perceptron loss
The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(w"x,) # yn
W <— W+ YTy

Note:
@ w is always a linear combination of the training examples

@ why n =17 Does not really matter in terms of training error

. Sl i ) S
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Why does it make sense?

If the current weight w makes a mistake

yana:n <0
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Applying ()GD to perceptron loss
Why does it make sense?

If the current weight w makes a mistake
yana:n <0

then after the update w’ = w + y,x, we have

T T
ynw' T, = yanwn + yixzxn > YW Ty,
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Applying ()GD to perceptron loss
Why does it make sense?

If the current weight w makes a mistake
yana:n <0
then after the update w’ = w + y,x, we have
T
ynw' T, = yanwn + yixzxn > yanasn

Thus it is more likely to get it right after the update.

. T



Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

September 18, 2018
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Applying ()GD to perceptron loss
Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data is not linearly separable.
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Outline

@ Logistic regression
@ A Probabilistic View
o Optimization
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Logistic regression

A simple view

In one sentence: find the minimizer of

N
F(w) = Zglogistic(yana:n)

n=1
N

= Z In(1+ e_y"me")
n=1
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Logistic regression

A simple view

In one sentence: find the minimizer of

N
F(w) = Zglogistic(yan:Bn)

n=1
N

= Z In(1+ e_y"me")
n=1

But why logistic loss? and why ‘“regression”?

34 /46



AR
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities
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A Probabilsic View
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function 4 linear model
Ply =41 | z;w) = o(w"z)

where o is the sigmoid function:

0.9
08
1 07
o (Z) . 0.
- —z 05
1 te 0.4
03
02)
0.1
% 4 ) 0 2 4 6
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A Probabilistic View
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability) :
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AR
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability) :

0.9

o o(wTz) > 0.5 < wlx >0, consistent o
with predicting the label with sgn(w™z) >

0.1
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AR
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability) :

0.9
0.8

o o(wTz) > 0.5 < wlx >0, consistent o7
with predicting the label with sgn(wTz) >

0.5
0.4

o larger whx = larger o(wTx) = higher 03

confidence in label 1 0

T
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Logistic regression A Probabilistic View

Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability)

o o(w'x) > 0.5 < wlz > 0, consistent
with predicting the label with sgn(wTx)

T

o larger whx = larger o(w
confidence in label 1

x) = higher

@ 0(z)+o(—z)=1forall z

0.9
08
07
0.6
05
04
0.3]
0.2]

0.1

September 18, 2018
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AR
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability) :

0.9
0.8

o o(wTz) > 0.5 < wlx >0, consistent o7
with predicting the label with sgn(wTz) >

0.5
0.4

o larger whx = larger o(wTx) = higher 03

confidence in label 1 0

T

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)

. Ry



AR
Properties

Properties of sigmoid o(z) = H%

@ between 0 and 1 (good as probability) :

0.9
0.8

o o(wTz) > 0.5 < wlx >0, consistent o7
with predicting the label with sgn(wTz) >

0.5
0.4

o larger whx = larger o(wTx) = higher 03

confidence in label 1 0

T

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)

and thus
1

. — Tr) = ___
Ply | @iw) = ofyw’e) = —— o
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How to regress with discrete labels?

What we observe are labels, not probabilities.

. Ry



How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

. Ry



Logistic regression A Probabilistic View

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,- -+ , v, given
T1,-++ ,Zp, as a function of some w?

N
P(w) = ]jI P(yn | Tn;w)
n=1
MLE: find w* that maximizes the probability P(w)

37/46



A Probabilistic View
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1
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A Probabilstic View
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N
= argmaxz InP(yy, | Tn;w)
w n=1
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A Probabilstic View
The MLE solution

N
w* = argmax P(w) = argmax H P(yn | n;w)
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A Probabilistic View
The MLE solution

N
w”* = argmax P(w) = argmax H P(yn | n;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y”me") = argmin Z €|ogistic(yn'wTaf;n)
w n=1 w n=1

= argmin F'(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!
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= w — x
" <1 +e % z:yanwn> Ynin

w + na(—yanmn)ynwn

. Ry



En T
Let's apply SGD again

w <+ w — nVF(w)

=w— 77vw£Iogistic(y'n,'wTwn) (n S [N] is drawn u.a.r.)

—w-n <3€|ogais;ic(z)

T >yn93n
z=ynwTen

T )ynmn
z=ynwTen

—w-n (e

=w + no(—y,w mn)ynwn

(—
= w + NP(—yn | Tn; W)Yy
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En T
Let's apply SGD again

w +— w —nVF(w)
=w — ﬁvwglogistic(yanxn)
—w <3€Igt<Z>

0z

=w — T
n<1+e Zlz= yanﬂcn> Ynin

=w + no(—y,w mn)ynwn

=w+ UP( Un | Ln; W )ynmn

This is a soft version of Perceptron!

versus [y, # sgn('wTazn)]

P(=yn|zn; w)

(n € [N] is drawn u.a.r.)

T >yn93n
z=ynwTa,
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A second-order method: Newton method

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T (w — w®)
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Logistic regression Optimization

A second-order method: Newton method

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T (w — w®)

What if we look at second-order Taylor approximation?
1
F(w) ~ F(w®) + VF(w")T(w — w®) + 5w = wNTHy(w — w®)

where H; = V2F(w®) € RP*P is the Hessian of F at w, i.e.,

0?F (w)

tij =
" 8wi8wj w=w?)

(think “second derivative” when D = 1)

. Ry



Deriving Newton method
If we minimize the second-order approximation (via “complete the square”)
F(w)

(w®) + VF (w7 (w — w®) + %(w — wNTH, (w — w®)

F
1 T
3 (w —w® 4 H;IVF(w(t))) H, <w —w® 4 Ht_IVF(w(t))> + cnt

wht wA{t+1}
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Logistic regression Optimization

Deriving Newton method

If we minimize the second-order approximation (via “complete the square”)

F(w)

~ F(w®) + VE(w) T (w — w®) + %(w — wNTH, (w — w®)
_1

2

T
(w —w® 4 H;IVF(w(t))) H, <w —w® 4 Ht_IVF(w(t))> + cnt

for convex F' (so Hy is positive semidefinite)
we obtain Newton method:

w) — w® — H'VF(w®)

wht wA{t+1}
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En T
Comparing GD and Newton

w) — w® — v F(w®)
w) — w® — H'VF(w®)

Both are iterative optimization procedures,

(GD)

(Newton)

September 18, 2018
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En T
Comparing GD and Newton

w) — w® — v F(w®) (GD)
w  w® — H W F(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate n (so no tuning needed!)
@ converges super fast in terms of #iterations needed

e e.g. how many iterations needed when applied to a quadratic?

e requires second-order information and is slow each iteration (there
are many ways to improve it though)

. R Y



En T
Applying Newton to logistic loss

vwflogistic(yn'wTZBn) = *U(*yanwn)ynmn
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Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanwn)ynmn

0o (z)
0z

2 T
T > ynm’nmn
z=—ynwlaen,

Vi;glogistic (yanmn) = (
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En T
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yn'men)ynmn
T

= L
1—|—€ Z z=—ynwTla, nen
Y
T

= o(ynw Ccn) (1 - U(yanmn)) Lndy

V2 Eloglstlc(ynw mn >y721mnmg

z—fyanwn
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En T
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanan)ynan
T

2
z=—ypwlay,

T
= Ty
( 1 + e~ Z Z=’yanwn> "
T

= o(ynw xn) (1 - U(yanmn)) Lndy

V £|OgIStIC (ynw mn

Exercises:

@ why is the Hessian of logistic loss positive semidefinite?
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En T
Applying Newton to logistic loss

vwflogistic(yn'men) = *U(*yanan)ynan
T

= Ty
( 1 + e Z Z=’yanwn> e
T

= o(ynw xn) (1 - U(yanmn)) Lndy

V2 Eloglstlc(ynw mn >y721mnmg

z—fyanwn

Exercises:
@ why is the Hessian of logistic loss positive semidefinite?

@ can we apply Newton method to perceptron/hinge loss?
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Summary

Linear models for classification:
Step 1. Model is the set of separating hyperplanes

F={f(z) =sgn(w'z) |w e RD}
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Step 2. Pick the surrogate loss

@ perceptron 10ss Lperceptron(z) = max{0, —z} (used in Perceptron)
@ hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss logistic(2) = log(1 4 exp(—z)) (used in logistic regression)

. Sl i, ) B



Step 3. Find empirical risk minimizer (ERM):

N

w* = argmin Z ynwTx,)

weRP n=1

using GD/SGD/Newton.
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