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Administration

GitHub repos are setup (ask TA Chi Zhang for any issues)
HW 1 is due this Sunday (09/16) 11:59PM

You need to submit a form if you use late days (see course website)
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Administration

GitHub repos are setup (ask TA Chi Zhang for any issues)
HW 1 is due this Sunday (09/16) 11:59PM
You need to submit a form if you use late days (see course website)
Effort-based grade for written assignments:
@ see the explanation on Piazza

@ key: let us know what you have tried and how you thought

@ “I spend an hour and came up with nothing” = empty solution
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Outline

© Review of Last Lecture

© Muilticlass Classification

© Neural Nets
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Summary
Linear models for binary classification:
Step 1. Model is the set of separating hyperplanes

F={f(z) = sgn(w"x) | w € R°}
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Review of Last Lecture

Step 2. Pick the surrogate loss

@ perceptron 10ss Lperceptron(z) = max{0, —z} (used in Perceptron)
@ hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss logistic(2) = log(1 4 exp(—z)) (used in logistic regression)
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Review of Last Lecture

Step 3. Find empirical risk minimizer (ERM):

N
w* = argmin F'(w) = argmin Z ((ynw T x,)

weRP weRP

using
e GD: w4+ w—nVEF(w)
e SGD:  w + w —nVF(w)
e Newton: w + w — (VgF(w))_1 VF(w)
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Review of Last Lecture

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

N N
w* = argmin Z €|ogist;c(yanacn) = argmax H P(yy | Tn;w)
w n=1 w n=1

where
1
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Outline

© Multiclass Classification
@ Multinomial logistic regression
@ Reduction to binary classification

September 12, 2018
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Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]
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Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)
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Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

What should a linear model look like for multiclass tasks?
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0

can be written as

flx) =

T

1 ifwle>wlx
2 ifwiz>wix

for any wi,ws s.t. w = w; — wq
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwfz <0

can be written as

(@) 1 ifwle>wlx
x) =
2 ifwiz>wix

= argmax wg:c
ke{1,2}

for any wi, w9 s.t. w = w; — wq
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

flx) =

1 ifwfz >0
2 ifwfz <0

can be written as

- T

fla) = 1 ifwimeQTa:
2 fwyx >wizx

= argmax wg:c
ke{1,2}

for any wi, w9 s.t. w = w; — wq
Think of wlx as a score for class k.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

_.___._______.——-'
@ Blue class:
{z:wTz >0}
1 1 ° :
{x:wrz <0}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass
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{ ] @ Blue class:

{x: 1 = argmax, wlx}

1 1 ("] .
{x : 2 = argmax, wlz}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w1 = (l—%)

~_ ] @ Blue class:

{x : 1 = argmax, wlx}
° ;
{z : 2 = argmax;, wi z}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

@ Blue class:
T~ ] {x: 1 = argmax;, w] =}
° ;
! 1 {x : 2 = argmax, wlx}
° :
{z : 3 = argmax;, w} z}
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F {f(w):argmax wgw\wl,...,wceRD}

kelC]

f(x) = argmax (W), | W € ROP
ke[C]
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

={ f(x) = argmax (W), | W € RSP
ke[C]

How do we generalize perceptron/hinge/logistic loss?
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(x) = argmax wix | wi,...,wc € RP
kelC]

= { f(x) = argmax (Wz), | W € R“P
ke[C]

How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T ) _ 1 B ewle

T
_ wix

—wTe wie wlx e
1+e eWi® | W3

Ply=1|z;w) =0c(w
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T
1 ewi® T
P(y:1|x;w):0(wT ): T, T T oc L ®
1+67wz €w1z+ew2w
Naturally, for multiclass:
ewi® wTla
kec) € ¥
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T
1 ewr® T
HD(y = 1| €T3 lU) = cr(lvq? ) = T, T T X et
1+67wz €w1z+ew2w
Naturally, for multiclass:
e’UJECIE me
P(y:k‘|w;W):—meo<e k
kec) € ¥

This is called the softmax function.

September 12, 2018
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Multinomial logistic regression
Applying MLE again

Maximize probability of see labels y1,...,yn given @1, ..., N

N N wl @
€ Yn
P(”):llp(yn’xm”)zll wiz
n=1 et 2okelc) €
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Multinomial logistic regression
Applying MLE again

Maximize probability of see labels y1,...,yn given @1, ..., N
N N R
P(W) = }_Ilp(yn | 2 W) = }_[1 ST
By taking negative log, this is equivalent to minimizing

3o (B

e
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Multinomial logistic regression
Applying MLE again

Maximize probability of see labels y1,...,yn given @1, ..., N

N N R
= }_Ilp(yn W)= }_11 2 kelq) i
By taking negative log, this is equivalent to minimizing

Zl (Zkeu(,:]emnk ) Zln 1+Zewk Wy, ) Te,

k#yn
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Multinomial logistic regression
Applying MLE again

Maximize probability of see labels y1,...,yn given @1, ..., N
N N ewgnw

P(W):HIP’(yn]a:n;W):Hinm

n=1 n=1 Zke[q ek

By taking negative log, this is equivalent to minimizing

Zl (Zkeu(,:]emnk ) Zln 1+Zewk Wy, ) Te,

k#yn

This is the multiclass logistic loss, a.k.a cross-entropy loss.
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Multinomial logistic regression
Applying MLE again

Maximize probability of see labels y1,...,yn given @1, ..., N

N wl x

N
€ Yn
P(W> = H ]P)(yn ’ anW) = H wrz
nel n—1 Zke[c] ek

By taking negative log, this is equivalent to minimizing

Zl (Zkeu(,:]emnk ) Zln 1+Zewk Wy, ) Te,

k#yn

This is the multiclass logistic loss, a.k.a cross-entropy loss.

When C = 2, this is the same as binary logistic loss.



Multiclass Classification Multinomial logistic regression

Optimization

Apply SGD: what is the gradient of

g(W) = ln 1 + Z e(wkliwyn)T‘Bn 7
K'#yn
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Multiclass Classification Multinomial logistic regression

Optimization

Apply SGD: what is the gradient of

g(W) = ln 1 + Z e(wkliwyn)T‘Bn 7
K'#yn

It's a C x D matrix. Let's focus on the k-th row:
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Multiclass Classification Multinomial logistic regression

Optimization

Apply SGD: what is the gradient of

g(W) = ln 1 + Z e(wkliwyn)T‘Bn 7
K'#yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:
(wk_wyn)Twn
_ € T
vwkg(W) - 1+ Zk/;éy e(wk/—wyn)Tmn T
]
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Multiclass Classification Multinomial logistic regression

Optimization

Apply SGD: what is the gradient of

g(W) = ln 1 + Z e(wkliwyn)T‘Bn 7
K'#yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:
(w—wy,)
Vard(W) = 5y @ = P |20 W)
k' Zyn e\Wg! yn n
.
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Multiclass Classification Multinomial logistic regression

Optimization

Apply SGD: what is the gradient of

g(W) = ln 1 + Z e(wkliwyn)T‘Bn 7
K'#yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:
(wp—wy,, ) Te,
Ve, g(W) = e —aT =Pk | 2y W)z
1+ Zk/;éyn e(wk’_wyn) Tn
else:
— Zk’ . e(wk’_'wyn)Tzn
vwkg(W) = < &l ) :BE

1+ Zk’;ﬁy e(wyr—wy, ) Tan
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Multiclass Classification Multinomial logistic regression

Optimization

Apply SGD: what is the gradient of

g(W) = ln 1 + Z e(wkliwyn)T‘Bn 7
K'#yn

It's a C x D matrix. Let's focus on the k-th row:

If k& # yn:
(wp—wy,, ) Te,
Ve, g(W) = e —aT =Pk | 2y W)z
1+ Zk/;éyn e(wk’_wyn) Tn
else:
— (S, el wom)
Vu,g(W) = < ) , =

1+ Z e(Wy —wy, )Tz Tn = (P(yn | Ln; W) - 1) xz
k' #yn n

. PR



Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|zn; W)

n

WW-n| Py=yn|zp; W) -1 |t

Ply=C|ax,;, W)

18 /49



Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

P(y:1|mn§w)
WeW-n| PhU=y, |z, ;W) -1 |z}
Ply=C|ax,;, W)

Think about why the algorithm makes sense intuitively.
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

@ make a randomized prediction according to P(k | x;

W) o eWi®

September 12, 2018
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss
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A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [ 1+ pwr—wy)T@
k#y
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [ 1+ pwr—wy)T@
k#y

@ randomized
E[I[f(x) # y]]
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [ 1+ pwr—wy)T@
k#y

@ randomized
EIlf(x) #yl] =1-P(y |z W)
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wiz

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy [ 1+ pwr—wy)T@
k#y

@ randomized

Ellf(z) #y]l =1-P(y | ;W) < —InP(y | &; W)

. e EREY



Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?
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Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?
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Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
o one-versus-all (one-versus-rest, one-against-all, etc)
@ one-versus-one (all-versus-all, etc)

Error-Correcting Output Codes (ECOC)

tree-based reduction

. e PR



Multiclass Classification Reduction to binary classification

One-versus-all (OVA) (picture credit: link)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.
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Multiclass Classification Reduction to binary classification

One-versus-all (OVA) (picture credit: link)
Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others as —1

@ train a binary classifier hj using this new dataset

. R


http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],

(picture credit: link)

@ relabel examples with class k as +1, and all others as —1
@ train a binary classifier hj using this new dataset
| | O
X1 X1 X1 X1 X1
x N X2 X2 X2 X
x3 B = | X3 X3 X3 X3 +
X4 X4 X4 X4 X4
X5 | X5 X5 X5 X5
hy ho h3 hy
] September 12, 2018
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Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x

@ ask each hy: does this belong to class k7 (i.e. hi(x))
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Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hgx(x) = +1.

22 /49



Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hgx(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)
Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),
@ relabel examples with class k as +1 and examples with class &’ as —1
@ discard all other examples

e train a binary classifier iy, ;) using this new dataset
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

(picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k),

@ relabel examples with class k as +1 and examples with class &’ as —1

@ discard all other examples

e train a binary classifier iy, ;) using this new dataset

W vs. HMvs. B | Wvs. W | Wvs. Mvs. W | Hvs.
X1 X1 X1 X1
X2 X2 X2 + X2 +
X3 X3 x3 + | X3
X4 X4 X4 X4
X5 X5 4+ | x5 + X5  +
h12) ha3) hs,1) ha2) hia) s,2)
] September 12, 2018
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x

e ask each classifier (3 1) to vote for either class £ or K
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class £ or K

@ predict the class with the most votes (break tie in some way)
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class £ or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.
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Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC) (picture credit: link)

Idea: based on a code M € {—1,+1}“*L, train L binary classifiers to
learn “is bit b on or off".

M |
|

+ | =
~- +
+ o

|
+ +
+ +
n
n

. e PRI
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Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC)

(picture credit: link)

Idea: based on a code M € {—1,+1}“*L, train L binary classifiers to
learn “is bit b on or off".

Training: for each bit b € [L]

M1 3 4 5
o relabel example x,, as M, ol + +
+ o+ o+
@ train a binary classifier h; using ||+
this new dataset. m |+ + +
1 2 3 4 5
X1 X1 X1 X1+ | x1 X1+
x N X X X2 X2 X2
x3 B = | x3 X3 X3 + | X3 X3
X4 X4 X4 X4 + | Xa X4 +
x5 W X5 X X5 + | X5 X5 +
3 I 3 \ U
hy ho hs ha hs
] September 12, 2018
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Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x

e compute the predicted code ¢ = (hi(x),...,h (x))T
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Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x

e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax;(Mc)y
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Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax;(Mc)y

How to pick the code M?
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Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax;(Mc)y

How to pick the code M?

@ the more dissimilar the codes between different classes are, the better
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Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax;(Mc)y

How to pick the code M?
@ the more dissimilar the codes between different classes are, the better

@ random code is a good choice,

. PRy



Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax;(Mc)y

How to pick the code M?
@ the more dissimilar the codes between different classes are, the better

@ random code is a good choice, but might create hard training sets

. RV



Reduction to binary classification
Tree based method

Idea: train = C binary classifiers to learn "belongs to which half?".
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Reduction to binary classification
Tree based method

Idea: train = C binary classifiers to learn "belongs to which half?".

Training: see pictures

= [ S o hy
X1 X1+ X | . |
x W X2 Xy + [ |
x3 W = | x3 X3
X4 X4+ | X4 / \
x5 W x5 + | x5 + ho hs
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Reduction to binary classification
Tree based method

Idea: train = C binary classifiers to learn "belongs to which half?".

Training: see pictures

= [ S o hy
X1 X1+ X | . |
x W X2 Xy + [ |
x3 W = | x3 X3
X4 X4+ | X4 / \
x5 W x5 + | x5 + ho hs

Prediction is also natural,
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Reduction to binary classification
Tree based method

Idea: train = C binary classifiers to learn "belongs to which half?".

Training: see pictures

= = [ S o hy
X1 X1+ | x1 | . |
x W X2 X2 + [ |
x3 W = | x3 X3
X4 X4+ | X4 / \
x5 W X5 + | X5 + ho hs

Prediction is also natural, but is very fast! (think ImageNet where
C =~ 20K)

27 /49



Multiclass Classification Reduction to binary classification

Comparisons

In big O notation,

Reduction #tra!ining test time remark
points

OvA

OvO

ECOC

Tree
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Comparisons

In big O notation,
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Multiclass Classification Reduction to binary classification

Comparisons

In big O notation,

Reduction #tra!ining test time remark
points
OvA CN C not robust
OvO CN C? can achieve very small training error
ECOC LN L need diversity when designing code
Tree (logs C)N log, C good for “extreme classification”
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Outline

© Neural Nets
@ Definition
@ Backpropagation
@ Preventing overfitting
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Linear models are not always adequate
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We can use a nonlinear mapping as discussed:

¢(x):x € RP — z ¢ RM
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We can use a nonlinear mapping as discussed:

¢(x):x € RP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?
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Linear models are not always adequate
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We can use a nonlinear mapping as discussed:

¢(x):x € RP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets
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Linear model as a one-layer neural net

h(a) = a for linear model
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Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use

@ Rectified Linear Unit (ReLU): h(a) = max{0,a}
@ sigmoid function: h(a) = H%

e TanH: h(a) = ZZ;::Z

@ many more
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Neural Nets Definition

More output nodes

T

Z2 o=h(Wgx)

T3

w

W e R, bR - RY so h(a) = (hi(ay), ha(as), hs(as), ha(as))
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Neural Nets Definition

More output nodes

I

x2 o=h(Wax)

T3

w

W e R4X3, h:R* = R*so h(a) = (hl(al),hQ(ag),hg(ag), h4(a4))
Can think of this as a nonlinear basis: ®(x) = h(Wx)

. e R
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Neural Nets Definition

More layers

Becomes a network:

@ eac h n Od e iS ca | |ed a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function

e can use h(a) = 1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
o deep neural nets can have many layers and millions of parameters

@ this is a feedforward, fully connected neural net, there are many
variants

. e PR



Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.
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Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

. e PRI



Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrhi 1 (Wp_1---hy (Wiz)))
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Neural Nets Definition

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrhi 1 (Wp_1---hy (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input x, define recursively

Oy =@, ay = WgOg_l, Oy = hg(ag) (f = 1, e

where
o W, € RPexDe-1 is the weights for layer £
Do =D, Dy, ...,D. are numbers of neurons at each layer
a; € RP? is input to layer ¢
o, € RP¢ is output to layer £
h : RP¢ — RPr is activation functions at layer ¢

L)
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Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
EWi,..., W) =) E(Wh,..., W)

n=1
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Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
EWi,..., W) =) E(Wh,..., W)
n=1
where
| F(zn) — ynll3 for regression
En(Wh,..., W) = o
(W1 L {ln (1 + D kg ef(“’”)k*f(“’”)yn) for classification

. RV



How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
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How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0f 9y
dw ~ dg Ow
e for a composite function f(g1(w),...,gq(w))
95 Z of 0gi
dg; Ow
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How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0f og
dw ~ dg Ow

e for a composite function f(g1(w),...,gq(w))
Z af 0gi
dg; Ow

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

. R



Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;
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Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

8gn o 8€n (90,2' - 8€n 8(w¢joj) . 8Sn

8w,-j N 8a7; 8w¢j 8ai Bwij N 8ai Oj
9E, 9, Do
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Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

8gn o 8€n (90,2' - 8€n 8(w¢joj) . 8Sn
8w,-j N 8a7; 8w¢j - 8ai Bwij 8ai

0, 0, 00; o0&, Oay, '
da;  Do; Da; <Z Oay, 0o; ) (a:)

. Ry



Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

8gn o 8€n (90,2' - 8€n 8(w¢joj) . 8Sn
8w,-j N 8a7; 8w¢j - 8ai Bwij 8ai J

8871 o agn aoz . 88 8ak N % ' o
aa/i - 80z‘ 80/2 <Z 8ak 80 ) Z) - ( - aakwk‘l> hi(az)

. e R



Computing the derivative

Adding the subscript for layer:

9E,  9&,
aw&ij N 8&(71'

i | heilaei
3% (Z 8ag+1k.w£+1’k) vi(ae;)

O¢—1,5

. e PR



Computing the derivative

Adding the subscript for layer:

9E,  9&,
aw&ij N 8&(71'

i | hoiac
3% (Z aam,cw“lv’f) vi(ac)

For the last layer, for square loss

0&, _ O(hii(aLi) — Yn.i)?
Oay ; day ;

O¢—1,5
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Computing the derivative

Adding the subscript for layer:

9E,  9&,
aw&ij N 8&(71'

i | heilaei
3% (Z aam,cw“lv’f) vi(ae;)

For the last layer, for square loss

08, _ Olhuulon) — . |
— 5 5 y _ 2 ] N ‘ ‘ '
aCLL’i 804_,1. (hL7Z(a/L,Z) yn,z)hL’Z(aL,l)

O¢—1,5
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Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

9E,  9&,
aw&ij N 8&(71'

i | hoiac
8% (Z aag+1kwe+1,k) vilacs)

For the last layer, for square loss

08, _ Olhuulon) — . |
— 5 5 y _ 2 ] N ‘ ‘ '
aCLL’i 804_,1. (hL7Z(a/L,Z) yn,z)hL’Z(aL,l)

O¢—1,5

Exercise: try to do it for logistic loss yourself.
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Neural Nets Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

0E, _ 0 v
oW,  Oda, 1

. (WEH 8%&) ohj(a))  ifl<L
Oay 2(hi(ar) —yn) o h(ay) else

where v1 0 vg = (v11V21, -+ ,U1pV2p) is the element-wise product (a.k.a.
Hadamard product).

Verify yourself!

. Ry



Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W7, ..., W (all 0 or randomly). Repeat:
@ randomly pick one data point n € [N]
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Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W7, ..., W (all 0 or randomly). Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer £ =1,...,L
o compute ay = Wyop_1 and oy = hy(ay) (00 = x1)

© backward propagation: foreach /= 1L,...,1
e compute

Z=n dapi1
day 2(hi(aL) —yn) o h{(aL) else

€, {(WKTH ) ohj(ar)  ifl<L
e update weights
oc, 26,

nan - Zinaagog_l

Wg(*Wg*
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Backpropagation
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W7, ..., W (all 0 or randomly). Repeat:

@ randomly pick one data point n € [N]

@ forward propagation: for each layer £ =1,...,L

o compute ay = Wyop_1 and oy = hy(ay) (00 = x1)
© backward propagation: foreach /= 1L,...,1

e compute

Z=n dapi1
day 2(hi(aL) —yn) o h{(aL) else

€, {(WgH ) ohj(ar)  ifl<L
e update weights
0&n &, T
nan = We— 7787(”05—1
Think about how to do the last two steps properly!
] September 12, 2018 41 /49
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More tricks to optimize neural nets

Many variants based on backprop

@ SGD with minibatch: randomly sample a batch of examples to form
a stochastic gradient

e SGD with momentum

. R



SGD with momentum

Initialize wg and velocity v = 0
Fort=1,2,...
@ form a stochastic gradient g;
@ update velocity v «+ av — ng; for some discount factor o € (0, 1)

@ update weight wy + wy_1 + v

. RV



Neural Nets Backpropagation

SGD with momentum

Initialize wg and velocity v = 0
Fort=1,2,...
@ form a stochastic gradient g;
@ update velocity v «+ av — ng; for some discount factor o € (0, 1)

@ update weight wy + wy_1 + v

Updates for first few rounds:
¢ w; = wo —Ng1
® w2 = w1 —ang: — 192

® ws =w2—0627791 — angz —ngs
° o« e

. RV



Preventing overfitting
Overfitting

Overfitting is very likely since the models are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping

. RV



Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?
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Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine . Elastic
Distortion Noise Deformation

om
flip Translation

BT,

o

Horizontal Rand

Hue Shift

o

. RV



Neural Nets Preventing overfitting

Regularization

L2 regularization: minimize

L
EWi,..., W) =EWr,..., W)+ A W3
(=1

. RV



\ETEIMNSEI  Preventing overfitting

Regularization

L2 regularization: minimize
L
EWi,..., W) =EWr,..., W)+ A W3

Simple change to the gradient:

o0&’ o€

8wi] 811)%]

+ 2 w;;
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\ETEIMNSEI  Preventing overfitting

Regularization

L2 regularization: minimize

L
EWi,..., W) =EWr,..., W)+ A W3

Simple change to the gradient:

o0&’ o€
8wi] 811)%]

+ 2 w;;

Introduce weight decaying effect

. RV



Neural Nets Preventing overfitting

Dropout

Randomly delete neurons during training

S o X

~'.3:¢:‘-g’~'.::0:s’
RS KRR

LRI /

Very effective, makes training faster as well

. R



Preventing overfitting
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

T T T
e—e Training set loss

0.15 — Validation set loss |

0.10 4 —

0.05 |- a

Loss (negative log-li

0.00

0 50 100 150 200 250
Time (epochs)
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Conclusions for neural nets

Deep neural networks

@ are hugely popular, achieving best performance on many problems
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\ETEIMNSEI  Preventing overfitting

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory

. R TV
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