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Administration

Midterm:

grading is in process

depending on the final outcomes, we will decide whether to curve the
exam and to discuss some of the problems in class

Homework 2 was due on 10/7

W3 is available, P3 will be available soon
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Review of last lecture

Support Vector Machine

SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

min
w,b,{ξn}

C
∑
n

ξn +
1

2
‖w‖22

s.t. 1− yn(wTφ(xn) + b) ≤ ξn, ∀ n
ξn ≥ 0, ∀ n

Dual (kernelizable, reveals what training points are support vectors):

max
{αn}

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)
Tφ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n
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Review of last lecture

Separable Case

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1
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Review of last lecture

Geometric interpretation of support vectors

A support vector satisfies α∗n 6= 0 and

1− ξ∗n − yn(w∗Tφ(xn) + b∗) = 0

When

ξ∗n = 0, yn(w
∗Tφ(xn) + b∗) = 1

and thus the point is 1/‖w∗‖2
away from the hyperplane.

ξ∗n < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

ξ∗n > 1, the point is
misclassified.

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors (circled with the
orange line) are the only points that
matter!
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Review of last lecture

The Karush-Kuhn-Tucker (KKT) conditions

If w∗ and {λ∗j} are the primal and dual solution respectively, then:

Stationarity:

∇w L
(
w∗, {λ∗j}

)
= ∇F (w∗) +

J∑
j=1

λ∗j∇hj(w∗) = 0

Complementary slackness:

λ∗jhj(w
∗) = 0 for all j ∈ [J]

Feasibility:

hj(w
∗) ≤ 0 and λ∗j ≥ 0 for all j ∈ [J]

These are necessary conditions. They are also sufficient when F is convex
and h1, . . . , hJ are continuously differentiable convex functions.
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Decision tree

Outline

1 Review of last lecture

2 Decision tree
The model
Learning a decision tree

3 Boosting
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Decision tree The model

Decision tree

We have seen different ML models for classification/regression:

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general

works for both classification and regression; we focus on classification

one key advantage is good interpretability

used to be very popular; ensemble of trees (i.e. “forest”) can still be
very effective

not to be confused with the “tree reduction” in Lec 4
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Decision tree The model

Example

Many decisions are made based on some tree structure

Medical treatment

Fever 

𝑇 > 100 𝑇 < 100 

Treatment #1 Muscle Pain 

Treatment #2 

High 

Treatment #3 

Low 

Salary in a company

Degree 

High School College Graduate 

Work Experience Work Experience Work Experience 

< 5yr > 5yr 

$𝑿𝟏 $𝑿𝟐 

< 5yr > 5yr 

$𝑿𝟑 $𝑿𝟒 

< 5yr > 5yr 

$𝑿𝟓 $𝑿𝟔 

October 10, 2018 11 / 47



Decision tree The model

Example

Many decisions are made based on some tree structure

Medical treatment

Fever 

𝑇 > 100 𝑇 < 100 

Treatment #1 Muscle Pain 

Treatment #2 

High 

Treatment #3 

Low 

Salary in a company

Degree 

High School College Graduate 

Work Experience Work Experience Work Experience 

< 5yr > 5yr 

$𝑿𝟏 $𝑿𝟐 

< 5yr > 5yr 

$𝑿𝟑 $𝑿𝟒 

< 5yr > 5yr 

$𝑿𝟓 $𝑿𝟔 

October 10, 2018 11 / 47



Decision tree The model

Tree terminology

Node 

Root 

Edge 

Leaf 
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Decision tree The model

A more abstract example of decision trees

Input: x = (x1, x2)

Output: f(x) determined
naturally by traversing the tree

start from the root

test at each node to decide
which child to visit next

finally the leaf gives the
prediction f(x)

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

For example, f((θ1 − 1, θ2 + 1)) = B

Complex to formally write down, but easy to represent pictorially or as
codes.
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Decision tree The model

The decision boundary

Corresponds to a classifier with boundaries:

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

A

B

C D

E

θ1 θ4

θ2

θ3

x1

x2
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Decision tree The model

Parameters

Parameters to learn for a decision tree:

the structure of the tree, such as the depth, #branches, #nodes, etc

some of them are sometimes considered as hyperparameters

unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

the test at each internal node

which feature(s) to test on?

if the feature is continuous,
what threshold (θ1, θ2, . . .)?

x1 > θ1

x2 > θ3

x1 6 θ4

x2 6 θ2

A B C D E

the value/prediction of the leaves (A, B, . . .)
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Decision tree Learning a decision tree

Learning the parameters

So how do we learn all these parameters?

Recall typical approach is to find the parameters that minimize some loss.

This is unfortunately not feasible for trees

suppose there are Z nodes, there are roughly #featuresZ different
ways to decide “which feature to test on each node”, which is a lot.

enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.
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Decision tree Learning a decision tree

A running example [Russell & Norvig, AIMA]

12 examples

predict whether a customer will wait for a table at a restaurant

10 features (all discrete)
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Decision tree Learning a decision tree

First step: how to build the root?

I.e., which feature should we test at the root? Examples:

Which split is better?

intuitively “patrons” is a better feature since it leads to “more pure”
or “more certain” children

how to quantify this intuition?
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Decision tree Learning a decision tree

Measure of uncertainty of a node

It should be a function of the distribution of classes

e.g. a node with 2 positive and 4
negative examples can be
summarized by a distribution P
with P (Y = +1) = 1/3 and
P (Y = −1) = 2/3

One classic uncertainty measure of a distribution is its entropy:

H(P ) = −
C∑
k=1

P (Y = k) logP (Y = k)
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Decision tree Learning a decision tree

Properties of entropy

H(P ) = −
C∑
k=1

P (Y = k) logP (Y = k)

the base of log can be 2, e or 10

always non-negative

it’s the smallest codeword length to encode symbols drawn from P

maximized if P is uniform (max = lnC): most uncertain case

minimized if P focuses on one class (min = 0): most certain case

e.g. P = (1, 0, . . . , 0)

0 log 0 is defined naturally as limz→0+ z log z = 0
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Decision tree Learning a decision tree

Examples of computing entropy

With base e and 4 classes:
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Decision tree Learning a decision tree

Another example

Entropy in each child if root tests on “patrons”

So how good is choosing “patrons” overall?
Very naturally, we take the weighted average of entropy:

2

12
× 0 +

4

12
× 0 +

6

12
× 0.9 = 0.45
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Decision tree Learning a decision tree

Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)

=
∑
a

P (A = a)H(Y | A = a)

=
∑
a

P (A = a)

(
−

C∑
k=1

P (Y | A = a) logP (Y | A = a)

)
=
∑
a

“fraction of example at node A = a”× “entropy at node A = a”

Pick the feature that leads to the smallest conditional entropy.
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Decision tree Learning a decision tree

Deciding the root

The conditional entropy is 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1 > 0.45

So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).
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Decision tree Learning a decision tree

Repeat recursively

Split each child in the same way.

but no need to split children “none”
and “some”: they are pure already
and become leaves

for “full”, repeat, focusing on those
6 examples:
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Decision tree Learning a decision tree

Greedily we build the tree and get this

Again, very easy to interpret.
October 10, 2018 26 / 47



Decision tree Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features−{A})
add Child to Tree as a new branch

return Tree
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Decision tree Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features−{A})
add Child to Tree as a new branch

return Tree

October 10, 2018 27 / 47



Decision tree Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features−{A})
add Child to Tree as a new branch

return Tree

October 10, 2018 27 / 47



Decision tree Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features−{A})
add Child to Tree as a new branch

return Tree

October 10, 2018 27 / 47



Decision tree Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features−{A})
add Child to Tree as a new branch

return Tree

October 10, 2018 27 / 47



Decision tree Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features−{A})
add Child to Tree as a new branch

return Tree

October 10, 2018 27 / 47



Decision tree Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features−{A})
add Child to Tree as a new branch

return Tree

October 10, 2018 27 / 47



Decision tree Learning a decision tree

Putting it together

DecisionTreeLearning(Examples, Features)

if Examples have the same class, return a leaf with this class

else if Features is empty, return a leaf with the majority class

else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree ← a root with test on A

For each value a of A:

Child ← DecisionTreeLearning(Examples with A = a, Features−{A})
add Child to Tree as a new branch

return Tree

October 10, 2018 27 / 47



Decision tree Learning a decision tree

Variants

Popular decision tree algorithms (e.g. C4.5, CART, etc) are all based on
this framework.

Variants:

replace entropy by Gini impurity:

G(P ) =
C∑
k=1

P (Y = k)(1− P (Y = k))

meaning: how often a randomly chosen example would be incorrectly
classified if we predict according to another randomly picked example

if a feature is continuous, we need to find a threshold that leads to
minimum conditional entropy or Gini impurity. Think about how to
do it efficiently.
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Decision tree Learning a decision tree

Regularization

If the dataset has no contradiction (i.e. same feature but different label),
the training error of a tree is always zero, which might indicate overfitting.

Pruning is a typical way to prevent overfitting for a tree:

restrict the depth or #nodes

other more principled approaches

all make use of a validation set
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Boosting Examples

Introduction

Boosting

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)

often is resistant to overfitting

has strong theoretical guarantees

We again focus on binary classification.
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Boosting Examples

A simple example

Email spam detection:

given a training set like:
(“Want to make money fast? ...”, spam)
(“Viterbi Research Gist ...”, not spam)

first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:

e.g. contains the word “money” ⇒ spam

reweight the examples so that “difficult” ones get more attention
e.g. spam that doesn’t contain the word “money”

obtain another classifier by applying the same base algorithm:
e.g. empty “to address” ⇒ spam

repeat ...

final classifier is the (weighted) majority vote of all weak classifiers
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Boosting Examples

The base algorithm

A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h← A(S,D)

this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss”)

even if it’s not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset
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Boosting Examples

Boosting Algorithms

Given:

a training set S

a base algorithm A

Two things to specify a boosting algorithm:

how to reweight the examples?

how to combine all the weak classifiers?

AdaBoost is one of the most successful boosting algorithms.
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Boosting AdaBoost

The AdaBoost Algorithm

Given a training set S and a base algorithm A, initialize D1 to be uniform

For t = 1, . . . , T

obtain a weak classifier ht ← A(S,Dt)

calculate the importance of ht as

βt =
1

2
ln

(
1− εt
εt

)
(βt > 0⇔ εt < 0.5)

where εt =
∑

n:ht(xn)6=yn Dt(n) is the weighted error of ht.

update weights

Dt+1(n) ∝ Dt(n)e
−βtynht(xn) =

{
Dt(n)e

−βt if ht(xn) = yn

Dt(n)e
βt else

Output the final classifier H(x) = sgn
(∑T

t=1 βtht(x)
)
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Boosting AdaBoost

Example

10 data points in R2

The size of + or - indicates the
weight, which starts from uniform D1

Toy ExampleToy ExampleToy ExampleToy ExampleToy Example

D1

weak classifiers = vertical or horizontal half-planes

Base algorithm is decision stump:

Observe that no stump can predict very accurately for this dataset
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Boosting AdaBoost

Round 1: t = 1
Round 1Round 1Round 1Round 1Round 1

h1

!

"1
1

=0.30
=0.42

2D

3 misclassified (circled): ε1 = 0.3→ β1 =
1
2 ln

(
1−εt
εt

)
≈ 0.42.

D2 puts more weights on those examples
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Boosting AdaBoost

Round 2: t = 2
Round 2Round 2Round 2Round 2Round 2

!

"2
2

=0.21
=0.65

h2 3D

3 misclassified (circled): ε2 = 0.21→ β2 = 0.65.

D3 puts more weights on those examples
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Boosting AdaBoost

Round 3: t = 3

Round 3Round 3Round 3Round 3Round 3

h3

!

"3
3=0.92
=0.14

again 3 misclassified (circled): ε3 = 0.14→ β3 = 0.92.
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Boosting AdaBoost

Final classifier: combining 3 classifiers
Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

All data points are now classified correctly, even though each weak
classifier makes 3 mistakes.
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Boosting AdaBoost

Overfitting

When T is large, the model is very complicated and overfitting can happen
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Boosting AdaBoost

Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

Used to be a mystery, but by now rigorous theory has been developed to
explain this phenomenon.
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Boosting Derivation of AdaBoost

Why AdaBoost works?

In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

Step 1: the model that AdaBoost considers is{
sgn (f(·))

∣∣∣ f(·) = T∑
t=1

βtht(·) for some βt ≥ 0 and ht ∈ H
}

where H is the set of models considered by the base algorithm

Step 2: the loss that AdaBoost
minimizes is the exponential loss

N∑
n=1

exp (−ynf(xn))
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Boosting Derivation of AdaBoost

Greedy minimization

Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find βt, ht one by one for t = 1, . . . , T .

Specifically, let ft =
∑t

τ=1 βτhτ . Suppose we have found ft−1, what
should ft be? Greedily, we want to find βt, ht to minimize

N∑
n=1

exp (−ynft(xn)) =
N∑
n=1

exp (−ynft−1(xn)) exp (−ynβtht(xn))

∝
N∑
n=1

Dt(n) exp (−ynβtht(xn))

where the last step is by the definition of weights

Dt(n) ∝ Dt−1(n) exp (−ynβt−1ht−1(xn)) ∝ · · · ∝ exp (−ynft−1(xn))
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Boosting Derivation of AdaBoost

Greedy minimization

So the goal becomes finding βt ≥ 0, ht ∈ H that minimize

N∑
n=1

Dt(n) exp (−ynβtht(xn))

=
∑

n:yn 6=ht(xn)

Dt(n)e
βt +

∑
n:yn=ht(xn)

Dt(n)e
−βt

= εte
βt + (1− εt)e−βt (recall εt =

∑
n:yn 6=ht(xn)

Dt(n))

= εt(e
βt − e−βt) + e−βt

It is now clear we should find ht to minimize its the weighted classification
error εt, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.
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Boosting Derivation of AdaBoost

Greedy minimization

When ht (and thus εt) is fixed, we then find βt to minimize

εt(e
βt − e−βt) + e−βt

In HW 3, you will verify that this exactly gives:

βt =
1

2
ln

(
1− εt
εt

)

Keep doing this greedy minimization gives the AdaBoost algorithm.
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Boosting Derivation of AdaBoost

Summary for boosting

Key idea of boosting is to combine weak predictors into a strong one.

There are many boosting algorithms; AdaBoost is the most classic one.

AdaBoost is greedily minimizing the exponential loss.

AdaBoost tends to not overfit.
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