CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Nov 05, 2020

1 / 40

(Hidden) Markov models

Outline

- (Hidden) Markov models
 - Markov chain
 - Hidden Markov Model
 - Inferring HMMs
 - Learning HMMs

Administration

HW5 is due on Tue, Nov 10.

Today's plan:

- one new topic (HMMs)
- HW4 review
- more exercises

Next week's plan:

- final topics: multi-armed bandits and reinforcement learning
- only multiple-choice questions in Quiz 2

Markov Models

Markov models are powerful probabilistic tools to analyze **sequential data**:

- text or speech data
- stock market data
- gene data
-

40

2 / 40

(Hidden) Markov models

Definition

A Markov chain is a stochastic process with Markov property: a sequence of random variables Z_1, Z_2, \cdots s.t.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t)$$
 (Markov property)

i.e. the current state only depends on the most recent state (notation $Z_{1:t}$ denotes the sequence Z_1, \ldots, Z_t).

We only consider the following case:

- All Z_t 's take value from the same discrete set $\{1, \ldots, S\}$
- $P(Z_{t+1} = s' \mid Z_t = s) = a_{s,s'}$, known as transition probability
- $P(Z_1 = s) = \pi_s$
- $(\{\pi_s\}, \{a_{s,s'}\}) = (\boldsymbol{\pi}, \boldsymbol{A})$ are parameters of the model

5 / 40

(Hidden) Markov models

Markov chain

High-order Markov chain

Is the Markov assumption reasonable? Not completely for the language model for example.

Higher order Markov chains make it more reasonable, e.g.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t, Z_{t-1})$$
 (second-order Markov)

i.e. the current word only depends on the last two words.

Learning higher order Markov chains is similar, but more expensive.

We only consider standard Markov chains.

Examples

• Example 1 (Language model)

States [S] represent a dictionary of words,

(Hidden) Markov models

$$a_{ice.cream} = P(Z_{t+1} = cream \mid Z_t = ice)$$

is an example of the transition probability.

• Example 2 (Weather)

States [S] represent weather at each day

$$a_{\text{sunnv,rainv}} = P(Z_{t+1} = \text{rainy} \mid Z_t = \text{sunny})$$

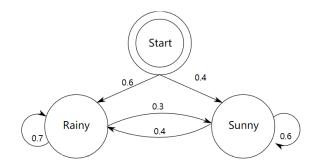
(Hidden) Markov models

Markov chain

Graph Representation

picture from Wikipedia

It is intuitive to represent a Markov model as a graph



(Hidden) Markov models Markov chain

Learning from examples

Now suppose we have observed N sequences of examples:

- \bullet $z_{1,1},\ldots,z_{1,T}$
-
- \bullet $z_{n,1},\ldots,z_{n,T}$
- o . . .
- \bullet $z_{N,1},\ldots,z_{N,T}$

where

- ullet for simplicity we assume each sequence has the same length T
- ullet lower case $z_{n,t}$ represents the value of the random variable $Z_{n,t}$

From these observations how do we *learn the model parameters* (π, A) ?

9 / 40

(Hidden) Markov models Markov chain

Finding the MLE

So MLE is

$$\begin{split} \operatorname*{argmax}_{\pmb{\pi},\pmb{A}} \sum_s (\textit{\#initial states with value } s) \ln \pi_s \\ + \sum_{s,s'} (\textit{\#transitions from } s \text{ to } s') \ln a_{s,s'} \end{split}$$

We have seen this many times. The solution is:

 $\pi_s \propto \# {
m initial} \ {
m states} \ {
m with value} \ s$ $a_{s,s'} \propto \# {
m transitions} \ {
m from} \ s \ {
m to} \ s'$

Finding the MLE

Same story, find the **MLE**. The log-likelihood of a sequence z_1, \ldots, z_T is

$$\ln P(Z_{1:T} = z_{1:T})$$

$$= \sum_{t=1}^{T} \ln P(Z_t = z_t \mid Z_{1:t-1} = z_{1:t-1}) \qquad \text{(always true)}$$

$$= \sum_{t=1}^{T} \ln P(Z_t = z_t \mid Z_{t-1} = z_{t-1}) \qquad \text{(Markov property)}$$

$$= \ln \pi_{z_1} + \sum_{t=2}^{T} \ln a_{z_{t-1}, z_t}$$

$$= \sum_{s} \mathbb{I}[z_1 = s] \ln \pi_s + \sum_{s,s'} \left(\sum_{t=2}^{T} \mathbb{I}[z_{t-1} = s, z_t = s'] \right) \ln a_{s,s'}$$

10 / 40

(Hidden) Markov models

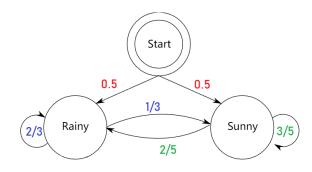
Markov chain

Example

Suppose we observed the following 2 sequences of length $5\,$

- sunny, sunny, rainy, rainy, rainy
- rainy, sunny, sunny, rainy

MLE is the following model



Markov Model with outcomes

Now suppose each state Z_t also "emits" some **outcome** $X_t \in [O]$ based on the following model

$$P(X_t = o \mid Z_t = s) = b_{s,o}$$
 (emission probability)

independent of anything else.

For example, in the language model, X_t is the speech signal for the underlying word Z_t (very useful for speech recognition).

Now the model parameters are $(\{\pi_s\}, \{a_{s,s'}\}, \{b_{s,o}\}) = (\boldsymbol{\pi}, \boldsymbol{A}, \boldsymbol{B}).$

13 / 40

(Hidden) Markov models

Hidden Markov Model

Joint likelihood

The joint log-likelihood of a state-outcome sequence $z_1, x_1, \dots, z_T, x_T$ is

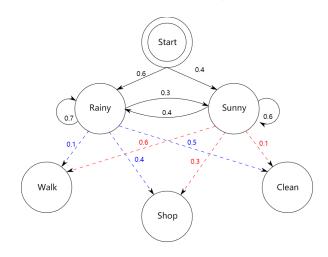
$$\begin{split} \ln P(Z_{1:T} = z_{1:T}, X_{1:T} = x_{1:T}) \\ = \ln P(Z_{1:T} = z_{1:T}) + \ln P(X_{1:T} = x_{1:T} \mid Z_{1:T} = z_{1:T}) \quad \text{(always true)} \\ = \sum_{t=1}^T \ln P(Z_t = z_t \mid Z_{t-1} = z_{t-1}) + \sum_{t=1}^T \ln P(X_t = x_t \mid Z_t = z_t) \\ \text{(due to all the independence)} \end{split}$$

$$= \ln \pi_{z_1} + \sum_{t=2}^{T} \ln a_{z_{t-1}, z_t} + \sum_{t=1}^{T} \ln b_{z_t, x_t}$$

Another example

picture from Wikipedia

On each day, we also observe **Bob's activity: walk, shop, or clean**, which only depends on the weather of that day.



14 / 40

(Hidden) Markov models

Hidden Markov Model

Learning the model

If we observe N state-outcome sequences: $z_{n,1}, x_{n,1}, \ldots, z_{n,T}, x_{n,T}$ for $n = 1, \ldots, N$, the MLE is again very simple (verify yourself):

 $\pi_s \propto$ #initial states with value s $a_{s,s'} \propto$ #transitions from s to s' $b_{s,o} \propto$ #state-outcome pairs (s,o)

15 / 40

16 / 40

(Hidden) Markov models Inferring HMMs

Learning the model

However, most often we do not observe the states! Think about the speech recognition example.

This is called **Hidden Markov Model (HMM)**, widely used in practice

How to learn HMMs? **Roadmap**:

- first discuss how to **infer** when the model is known (key: dynamic programming)
- then discuss how to learn the model (key: EM)

17 / 40

(Hidden) Markov models Inferring HMMs

What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer

the transition at some point, given an observation sequence

$$P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

e.g. given Bob's activities for one week, how was the weather like on Wed and Thu?

most likely hidden states path, given an observation sequence

$$\operatorname*{argmax}_{z_{1:T}} P(Z_{1:T} = z_{1:T} \mid X_{1:T} = x_{1:T})$$

e.g. given Bob's activities for one week, what's the most likely weather for this week?

What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

the probability of observing some sequence

$$P(X_{1:T} = x_{1:T})$$

e.g. prob. of observing Bob's activities "walk, walk, shop, clean, walk, shop, shop" for one week

the state at some point, given an observation sequence

$$P(Z_t = s \mid X_{1:T} = x_{1:T})$$

e.g. given Bob's activities for one week, how was the weather like on Wed?

18 / 40

(Hidden) Markov models

Inferring HMMs

Forward and backward messages

The key to infer all these is to compute two things:

ullet forward messages: for each s and t

$$\alpha_s(t) = P(Z_t = s, X_{1:t} = x_{1:t})$$

backward messages: for each s and t

$$\beta_s(t) = P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s)$$

Computing forward messages

Key: establish a recursive formula

$$\begin{split} &\alpha_s(t)\\ &=P(Z_t=s,X_{1:t}=x_{1:t})\\ &=P(X_t=x_t\mid Z_t=s,X_{1:t-1}=x_{1:t-1})P(Z_t=s,X_{1:t-1}=x_{1:t-1})\\ &=b_{s,x_t}\sum_{s'}P(Z_t=s,Z_{t-1}=s',X_{1:t-1}=x_{1:t-1}) \qquad \qquad \text{(marginalizing)}\\ &=b_{s,x_t}\sum_{s'}P(Z_t=s|Z_{t-1}=s',X_{1:t-1}=x_{1:t-1})P(Z_{t-1}=s',X_{1:t-1}=x_{1:t-1})\\ &=b_{s,x_t}\sum_{s'}a_{s',s}\alpha_{s'}(t-1) \qquad \qquad \text{(recursive form!)} \end{split}$$

(Hidden) Markov models Inferring HMMs

Base case: $\alpha_s(1) = P(Z_1 = s, X_1 = x_1) = \pi_s b_{s,x_1}$

Forward procedure

Forward procedure

For all $s \in [S]$, compute $\alpha_s(1) = \pi_s b_{s,x_1}$.

For $t = 2, \ldots, T$

• for each $s \in [S]$, compute

$$\alpha_s(t) = b_{s,x_t} \sum_{s'} a_{s',s} \alpha_{s'}(t-1)$$

It takes $O(S^2T)$ time and O(ST) space.

21 / 40

(Hidden) Markov models

Inferring HMMs

Computing backward messages

Again establish a recursive formula

$$\begin{split} &\beta_{s}(t) \\ &= P(X_{t+1:T} = x_{t+1:T} \mid Z_{t} = s) \\ &= \sum_{s'} P(X_{t+1:T} = x_{t+1:T}, Z_{t+1} = s' \mid Z_{t} = s) \\ &= \sum_{s'} P(Z_{t+1} = s' \mid Z_{t} = s) P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s', Z_{t} = s) \\ &= \sum_{s'} a_{s,s'} P(X_{t+1} = x_{t+1} \mid Z_{t+1} = s') P(X_{t+2:T} = x_{t+2:T} \mid Z_{t+1} = s') \\ &= \sum_{s'} a_{s,s'} b_{s',x_{t+1}} \beta_{s'}(t+1) \end{split}$$
 (recursive form!)

Backward procedure

For all $s \in [S]$, set $\beta_s(T) = 1$.

Backward procedure

For t = T - 1, ..., 1

• for each $s \in [S]$, compute

$$\beta_s(t) = \sum_{s'} a_{s,s'} b_{s',x_{t+1}} \beta_{s'}(t+1)$$

Again it takes $O(S^2T)$ time and O(ST) space.

Base case: $\beta_s(T) = 1$

22 / 40

(Hidden) Markov models Inferring HMMs

Using forward and backward messages

With forward and backward messages, we can easily infer many things, e.g.

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$= \alpha_s(t)\beta_s(t)$$

What constant are we omitting in " \propto "? It is exactly

$$P(X_{1:T} = x_{1:T}) = \sum_{s} \alpha_s(t)\beta_s(t),$$

the probability of observing the sequence $x_{1:T}$.

This is true for any t; a good way to check correctness of your code.

25 / 40

(Hidden) Markov models

Inferring HMMs

Finding the most likely path

Though can't use forward and backward messages directly to find the most likely path, it is very similar to the forward procedure. Key: compute

$$\delta_s(t) = \max_{z_{1:t-1}} P(Z_t = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t})$$

the probability of the most likely path for time 1:t ending at state s

Using forward and backward messages

Another example: the conditional probability of transition s to s^\prime at time t

$$\xi_{s,s'}(t)$$

$$= P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, Z_{t+1} = s', X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(Z_{t+1} = s', X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$= \alpha_s(t)P(Z_{t+1} = s' \mid Z_t = s)P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s')$$

$$= \alpha_s(t)a_{s,s'}P(X_{t+1} = x_{t+1} \mid Z_{t+1} = s')P(X_{t+2:T} = x_{t+2:T} \mid Z_{t+1} = s')$$

$$= \alpha_s(t)a_{s,s'}b_{s',x_{t+1}}\beta_{s'}(t+1)$$

The normalization constant is in fact again $P(X_{1:T} = x_{1:T})$

26 / 40

(Hidden) Markov models

Inferring HMMs

Computing $\delta_s(t)$

Observe

$$\begin{split} \delta_s(t) &= \max_{z_{1:t-1}} P(Z_t = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t}) \\ &= \max_{s'} \max_{z_{1:t-2}} P(Z_t = s, Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t} = x_{1:t}) \\ &= \max_{s'} P(Z_t = s \mid Z_{t-1} = s') P(X_t = x_t \mid Z_t = s) \cdot \\ &\qquad \qquad \max_{s'} P(Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t-1} = x_{1:t-1}) \\ &= b_{s,x_t} \max_{s',s} \delta_{s'}(t-1) & (\textit{recursive form!}) \end{split}$$

Base case: $\delta_s(1) = P(Z_1 = s, X_1 = x_1) = \pi_s b_{s,x_1}$

Exactly the same as forward messages except replacing "sum" by "max"!

Viterbi Algorithm (!)

Viterbi Algorithm

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1),$$

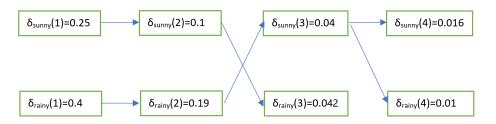
$$\Delta_s(t) = \operatorname*{argmax}_{s',s} \delta_{s'}(t-1).$$

Backtracking: let $z_T^* = \operatorname{argmax}_s \delta_s(T)$. For each $t = T, \dots, 2$: set $z_{t-1}^* = \Delta_{z_t^*}(t)$.

Output the most likely path z_1^*, \ldots, z_T^* .

Example

Arrows represent the "argmax", i.e. $\Delta_s(t)$.



The most likely path is "rainy, rainy, sunny, sunny".

(Hidden) Markov models

30 / 40

29 / 40

Inferring HMMs

Exercise 1

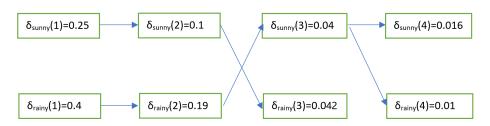
What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

(Hidden) Markov models

• Is it the first T_0 outputs of the Viterbi algorithm (with all data)?

No. It should be

- $z_{T_0}^* = \operatorname{argmax}_s \delta_s(T_0)$
- for each $t = T_0, \dots, 2$: $z_{t-1}^* = \Delta_{z_t^*}(t)$



The answer for $T_0 = 3$ is: "sunny, sunny, rainy".

Inferring HMMs

Exercise 2

What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T}$ for some $T_0 < T$?

- Is it the same as Exercise 1?
- Is it the first T_0 outputs of the Viterbi algorithm (with all data)?

Neither. It should be

- $z_{T_0}^* = \operatorname{argmax}_s \delta_s(T_0) \beta_s(T_0)$
- for each $t = T_0, \dots, 2$: $z_{t-1}^* = \Delta_{z_t^*}(t)$

Exercise 2 (cont.)

Reasoning:

$$\begin{split} z_{T_0}^* &= \underset{s}{\operatorname{argmax}} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T} = x_{1:T}) \\ &= \underset{s}{\operatorname{argmax}} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \cdot \\ &P(X_{T_0+1,T} = x_{T_0+1:T} \mid Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \\ &= \underset{s}{\operatorname{argmax}} \left(\max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \right) \cdot \\ &P(X_{T_0+1,T} = x_{T_0+1:T} \mid Z_{T_0} = s) \\ &= \underset{s}{\operatorname{argmax}} \delta_s(T_0) \beta_s(T_0) \end{split}$$

Exercise 3

What is the most likely sequence $z_{1:T}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

- Is it the same as the Viterbi algorithm (with all data)?
- Are the first T_0 states the same as Exercise 1?

Again, neither is true.

(Hidden) Markov models

Learning HMMs

Learning the parameters of an HMM

Viterbi Algorithm with partial data $x_{1:T_0}$

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

(Hidden) Markov models

For each $t = 2, \ldots, T$,

Exercise 3 (cont.)

• for each $s \in [S]$, compute

$$\delta_s(t) = \begin{cases} b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{if } t \leq T_0 \\ \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{else} \end{cases}$$

$$\Delta_s(t) = \operatorname*{argmax}_{s'} a_{s',s} \delta_{s'}(t-1).$$

Inferring HMMs

Backtracking: let $z_T^* = \operatorname{argmax}_s \delta_s(T)$.

For each t = T, ..., 2: set $z_{t-1}^* = \Delta_{z_t^*}(t)$.

Output the most likely path z_1^*, \ldots, z_T^* .

All previous inferences depend on knowing the parameters (π, A, B) .

How do we learn the parameters based on N observation sequences $x_{n,1}, \dots, x_{n,T}$ for $n = 1, \dots, N$?

MLE is intractable due to the hidden variables $Z_{n,t}$'s (similar to GMMs)

Need to apply **EM** again! Known as the **Baum–Welch algorithm**.

Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the **posterior** distributions q of the hidden states (for each sample n), which leads to the complete log-likelihood:

$$\mathbb{E}_{z_{1:T} \sim q} \left[\ln(Z_{1:T} = z_{1:T}, X_{1:T} = x_{1:T}) \right]$$

$$= \mathbb{E}_{z_{1:T} \sim q} \left[\ln \pi_{z_1} + \sum_{t=1}^{T-1} \ln a_{z_t, z_{t+1}} + \sum_{t=1}^{T} \ln b_{z_t, x_t} \right]$$

$$= \sum_{s} \gamma_s(1) \ln \pi_s + \sum_{t=1}^{T-1} \sum_{s, s'} \xi_{s, s'}(t) \ln a_{s, s'} + \sum_{t=1}^{T} \sum_{s} \gamma_s(t) \ln b_{s, x_t}$$

We have discussed how to compute

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

$$\xi_{s,s'}(t) = P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

37 / 40

(Hidden) Markov models

Learning HMMs

Baum-Welch algorithm

Step 0 Initialize the parameters (π, A, B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward messages for all sample sequences, then use these to compute $\gamma_s^{(n)}(t)$ and $\xi_{s\,s'}^{(n)}(t)$ for each n,t,s,s' (see Slides 25 and 26).

Step 2 (M-Step) Update parameters:

$$\pi_s \propto \sum_n \gamma_s^{(n)}(1), \quad a_{s,s'} \propto \sum_n \sum_{t=1}^{T-1} \xi_{s,s'}^{(n)}(t), \quad b_{s,o} \propto \sum_n \sum_{t:x_t=o} \gamma_s^{(n)}(t)$$

Step 3 Return to Step 1 if not converged

Applying EM: M-Step

The maximizer of complete log-likelihood is simply doing **weighted counting** (compared to the unweighted counting on Slide 16):

$$\pi_s \propto \sum_n \gamma_s^{(n)}(1) = \mathbb{E}_q \left[\text{ \#initial states with value } s \right]$$

$$a_{s,s'} \propto \sum_n \sum_{t=1}^{T-1} \xi_{s,s'}^{(n)}(t) = \mathbb{E}_q \left[\text{ \#transitions from } s \text{ to } s' \right]$$

$$b_{s,o} \propto \sum_n \sum_{t:x_t=o} \gamma_s^{(n)}(t) = \mathbb{E}_q \left[\text{ \#state-outcome pairs } (s,o) \right]$$

where

$$\gamma_s^{(n)}(t) = P(Z_{n,t} = s \mid X_{n,1:T} = x_{n,1:T})$$

$$\xi_{s,s'}^{(n)}(t) = P(Z_{n,t} = s, Z_{n,t+1} = s' \mid X_{n,1:T} = x_{n,1:T})$$

38 / 40

(Hidden) Markov models

Learning HMMs

Summary

Very important models: Markov chains, hidden Markov models

Several algorithms:

- forward and backward procedures
- inferring HMMs based on forward and backward messages
- Viterbi algorithm
- Baum–Welch algorithm