CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Nov 12, 2020

. VA
Outline
© Review of last lecture

© Multi-armed Bandits

© Reinforcement learning

Administration

HWS5 should be graded by the end of the week.

Quiz 2 coverage:
@ non-MC: SVM, boosting, clustering, HMM, MLE and EM

@ MC: all other topics, with the focus on materials after Quiz 1

Quiz 2 logistics:
@ same as Quiz 1
@ make sure to go to the assigned breakout room

@ submit before 7:30pm, no exception

Review of last lecture

Outline

© Review of last lecture

Hidden Markov Models

Model parameters:

@ initial distribution
P(Z) = s) =y

@ transition distribution

PUin =+ | 2= 5) = s

@ emission distribution
P(Xt:O|Zt:8):b5’o

5/43
Viterbi Algorithm
Viterbi Algorithm
For each s € [S], compute 04(1) = msbs 4,
Foreacht=2,...,T,
e for each s € [S], compute
ds(t) = bs 4, max ag 0y (t —1)
Ag(t) = argmax ay 0y (t — 1)
S/
Backtracking: let z}. = argmax, 05(7).
Foreacht =T,...,2: set z; | = A.:(1).
Output the most likely path 27,...,27.
7/ 43

Review of last lecture

Baum—-Welch algorithm

Step 0 Initialize the parameters (m, A, B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward
messages for all sample sequences, then use these to compute %E") (t) and
§(n) (t) for each n,t,s,s’.

s,s’

Step 2 (M-Step) Update parameters:

T—-1
g s X Z Z 5215)/ (t)a
t=1

n

boo o Y > M)

n t:x¢y=o

ms oy (D),

Step 3 Return to Step 1 if not converged

6 /43

Review of last lecture

Example

Arrows represent the “argmax”, i.e. Ag(t).

Ssunny(1)=0.25

A\ 4

Ssunny(2)=0.1

Ssunny(3)=0.04 Ssunny(4)=0.016

\4

Brainy(1)=0.4

Braimy(2)=0.19

Brainy(3)=0.042

Srainy(4)=0.01

The most likely path is “rainy, rainy, sunny, sunny”.

8 /43

Review of last lecture

Viterbi Algorithm with missing data

Viterbi Algorithm with partial data z;.7;
For each s € [S], compute 04(1) = msbs 4, .
Foreacht=2,...,T,

e for each s € [S], compute

5.(1) = {bx maxy ay Oy (t—1) ift < Tp

maxy ay g (t — 1) else

Ag(t) = argmaxay 0y (t —1).

S

Backtracking: let z}. = argmax, d5(7).
Foreacht =T,...,2: set z; | = A (1).

Output the most likely path z7,..., 27.

9/ 43

\NIEETTL ECREERENE Online decision making

Decision making

Problems we have discussed so far:
@ start with a training dataset

@ learn a predictor or discover some patterns

But many real-life problems are about learning continuously:
@ make a prediction/decision
@ receive some feedback

@ repeat

Broadly, these are called online decision making problems.

11/ 43

Outline

© Multi-armed Bandits
@ Online decision making
@ Motivation and setup
@ Exploration vs. Exploitation

10/ 43

\NIEETT ECREERENE Online decision making

Examples

Amazon/Netflix/MSN recommendation systems:

@ a user visits the website

@ the system recommends some products/movies/news stories

@ the system observes whether the user clicks on the recommendation

Playing games (Go/Atari/StarCraft/...) or controlling robots:

@ make a move

@ receive some reward (e.g. score a point) or loss (e.g. fall down)

@ make another move...

12 / 43

\NITEETT ECREEREIE Online decision making

Two formal setups

We discuss two such problems today:
o multi-armed bandit

e reinforcement learning

13 /43

Motivation and setup
Applications

This simple model and its variants capture many real-life applications

@ recommendation systems, each product/movie/news story is an arm
(Microsoft MSN indeed employs a variant of bandit algorithm)

@ game playing, each possible move is an arm
(AlphaGo indeed has a bandit algorithm as one of the components)

o
= o

Pokémon GO announced its biggest update
yet, including 80 new Pokémon | »

. 00:01:00

15 / 43

Multi-armed Bandits Motivation and setup

Mulit-armed bandits: motivation

Imagine going to a casino to play a slot machine
@ it robs you, like a “bandit” with a single arm

Of course there are many slot machines in the casino
@ like a bandit with multiple arms (hence the name)

e if | can play for 10 times, which machines should | play?

—aparigeime

14 / 43

Multi-armed Bandits Motivation and setup

Formal setup

There are K arms (actions/choices/...)

The problem proceeds in rounds between the environment and a learner:
for each timet=1,...,T

@ the environment decides the reward for each arm r;1,... 7 i

@ the learner picks an arm a; € [K]

@ the learner observes the reward for arm a;, i.e., 1,

Importantly, learner does not observe rewards for arms not selected!

This kind of limited feedback is now usually referred to as bandit feedback

16 / 43

Objective
What is the goal of this problem?

- T
Maximizing total rewards), r;,, seems natural

But the absolute value of rewards is not meaningful, instead we should
compare it to some benchmark. A classic benchmark is

i.e. the largest reward one can achieve by always playing a fixed arm

So we want to minimize

max E Tt,a_ E Tt,at
a€[K]

T
t=1 t=1

This is called the regret: how much | regret for not sticking with the best
fixed arm in hindsight?

17 / 43
Empirical means
Let fit, be the empirical mean of arm a up to time ¢:
. 1
Ht,a = Z T'ra
nt?a . pr—
T<t:ar=a
where
Nt = Z]I[aT == qaj
<t
is the number of times we have picked arm a.
Concentration: [i; , should be close to i, if 144 is large
19 / 43

Multi-armed Bandits Motivation and setup

Environments

How are the rewards generated by the environments?
@ they could be generated via some fixed distribution
o they could be generated via some changing distribution

@ they could be generated even completely arbitrarily /adversarially

We focus on a simple setting:

@ rewards of arm a are i.i.d. samples of Ber(s,), that is, ;4 is 1 with
prob. g, and O with prob. 1 — p,, independent of anything else.

@ each arm has a different mean (u1, ..., px); the problem is essentially
about finding the best arm argmax, 1, as quickly as possible

18 / 43

Multi-armed Bandits Exploration vs. Exploitation

Exploitation only

Greedy

Pick each arm once for the first K rounds.

Fort=K+1,...,T, pick a; = argmax, fit—1,q

What's wrong with this greedy algorithm?
Consider the following example:
K =2,u; =0.6,u2 = 0.5 (so arm 1 is the best)

@ suppose the alg. first pick arm 1 and see reward 0, then pick arm 2
and see reward 1 (this happens with decent probability)

@ the algorithm will never pick arm 1 again!

20 / 43

sl o EpET T T
The key challenge A natural first attempt

All bandit problems face the same dilemma:

Exploitation vs. Exploration trade-off Explore-then-Exploit

Input: a parameter Ty € [T]

® on one hand we want to exploit the arms that we think are good Exploration phase: for the first T rounds, pick each arm for Tp/K times

@ on the other hand we need to explore all arms often enough in order

to figure out which one is better Exploitation phase: for the remaining T' — T rounds, stick with the

empirically best arm argmax, fity.q

@ so each time we need to ask: do | explore or exploit? and how?

We next discuss three ways to trade off exploration and exploitation for Parameter Ty clearly controls the exploration/exploitation trade-off

our simple multi-armed bandit setting.

21 /43 22 /43

sl EgE g sl e g T
Issues of Explore—then—Exploit A slightly better algorithm

e-Greedy
Pick each arm once for the first K rounds.

It's pretty reasonable, but the disadvantages are also clear: Fort=K+1,. . ..T,

@ not clear how to tune the hyperparameter T @ with probability €, explore: pick an arm uniformly at random

@ in the exploration phase, even if an arm is clearly worse than others o with probability 1 — ¢, exploit: pick a; = argmax, fit—1,0

based on a few pulls, it's still pulled for 7))/ K times

_ _ _ _ _ Pros Cons
@ clearly it won't work if the environment is changing o always exploring and exploiting o need to tune ¢
@ applicable to many other problems @ same uniform exploration

o first thing to try usually

Is there a more adaptive way to explore?

23 /43 24 / 43

Multi-armed Bandits Exploration vs. Exploitation

More adaptive exploration

A simple modification of “Greedy” leads to the well-known:

Upper Confidence Bound (UCB) algorithm
Fort=1,...,T, pick a; = argmax, UCB;, where

Int

Nt—1,a

UCBt,a £ ,at—l,a +2

o the first term in UCB;, represents exploitation, while the second
(bonus) term represents exploration

@ the bonus term is large if the arm is not pulled often enough, which
encourages exploration (adaptive due to the first term)

@ a parameter-free algorithm, and it enjoys optimal regret!

25 / 43
Outline
© Reinforcement learning
@ Markov decision process
@ Learning MDPs
27 / 43

Multi-armed Bandits Exploration vs. Exploitation

Upper confidence bound
Why is it called upper confidence bound?

One can prove that with high probability,
Ha < UCBt,a

so UCBy,, is indeed an upper bound on the true mean.

Another way to interpret UCB, “optimism in face of uncertainty”:
@ true environment is unknown due to randomness (uncertainty)

@ just pretend it's the most preferable one among all plausible
environments (optimism)

This principle is useful for many other bandit problems.

26 / 43

Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

Environment

Environment

It's often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

@ e.g. for Atari games, after making one move, the agent moves to a
different state, with possible different rewards for each action

28 / 43

Reinforcement learning Reinforcement learning Markov decision process

Reinforcement learning Markov decision process

An MDP is parameterized by five elements

@ S: a set of possible states
Reinforcement learning (RL) is one way to deal with this issue.])
e A: a set of possible actions

Huge recent success when combined with deep learning techniques e P: transition probability, P,(s,s’) is the probability of transiting from

state s to state s’ after taking action a (Markov property)
@ Atari games, poker, self-driving cars, etc.

e r: reward function, 7,(s) is (expected) reward of action a at state s

The foundation of RL is Markov Decision Process (MDP) @ v € (0,1): discount factor, informally, reward of 1 from tomorrow is
a combination of Markov model (Lec 10) and multi-armed bandit only counted as «y for today

Different from Markov models discussed in Lec 10, the state transition is
influenced by the taken action.

Different from Multi-armed bandit, the reward depends on the state.

29 /43 30 /43

EICIENINIAEETOINEE Markov decision process Markov decision process
Example Policy

3 states, 2 actions A policy 7 : S — A indicates which action to take at each state.

If we start from state sp € S and act according to a policy 7, the
discounted rewards for time 0,1,2, ... are respectively

TTI’(S())(SO)7 ’7747r(s1)($1)7 72rw(52)($2)7
where 51 ~ 7"(50)(80")’ §2 ~ 7r(s1)($17')7

If we follow the policy forever, the total (discounted) reward is

Z ’Ytrw(st)(st)]
t=0

where the randomness is from s;41 ~ P,r(st)(st,).

E

Note: the discount factor allows us to consider an infinite learning process

31/ 43 32/ 43

Reinforcement learning Markov decision process Reinforcement learning Markov decision process

Optimal policy and Bellman equation Value lteration

First goal: knowing all parameters, how to find the optimal policy

ny T'r m(st) (St)

t=0

argmax E Initialize V(s) randomly for all s € S

] Value lteration
o

For k =1,2,... (until convergence)
We first answer a related question: what is the maximum reward one

can
achieve starting from an arbitrary state s? Vi(s) = max <rs

/ /
max a)+ v Z P,(s,8)Vi_1(s)> (Bellman upate)
. s'eS)
nytrw(st)(st) ’ S0 = S]
t=0

Knowing V/, the optimal policy 7* is simply
_gleax<r8 —}—’yZP s5,8")))

ey m*(s) = argér;ax (rs(a) + Z P, (s, s')V(s'))

s'eS

V(s) = maxE

V is called the value function. It satisfies the above Bellman equation:
|S| unknowns, nonlinear, how to solve it?

33 /43 34 /43
Convergence of Value Iteration Learning MDPs
Does Value Iteration always find the true value function V7 Yes!
Now suppose we do not know the parameters of the MDP
[Vie(s) = V(s)| = 15163% <7"s(a) +7 Z Py(s, Sl)Vk:—l(Sl)> @ transition probability P
s'eS
e reward function r
—max(rs +’yZP s,5")))‘
acA
s'es But we do still assume we can observe the states (in contrast to HMM),
how do we find the optimal policy?
< ymax |3 Pu(s,s') (Vier () = V(5))) pHmal poticy
acA es
) We discuss examples from two families of learning algorithms:
< ymax Pa(s, ") |Viea (s) = V()|
acA
s'eS

@ model-based approaches
k
= 7 max ’Vk—l (s") - V(SH)‘ S s max |VO(S”) - V(SN)‘ e model-free approaches

So the distance between Vi and V is shrinking exponentially fast.

35 / 43 36 / 43

Reinforcement learning Learning MDPs

Model-based approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions:
$1,a1,71,82,a2,72,...,ST,ar,rr, then the MLE for P and r are simply

P,(s,s") oc #transitions from s to s’ after taking action a

ro(s) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to
find the optimal policy.

37 /43

Reinforcement learning [EETGILES VYD1

Model-free approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the @ : S x A — R function as

Qls, @) = rals) +7 Y Pals,) max Q(s',)

s'eS

In words, (s, a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

Clearly, V(s) = max, Q(s,a).
Knowing Q(s, a), the optimal policy at state s is simply argmax, Q(s,a).

Model-free approaches learn the () function directly from samples.

39 / 43

el
Model-based approaches

How do we collect data s1,a1,711,S2,a2,72,...,8T, a1, rT?

Simplest idea: follow a random policy for T" steps. This is similar to
explore—then—exploit, and we know this is not the best way.

Let's adopt the e-Greedy idea instead.

A sketch for model-based approaches
Initialize V, P, randomly

Fort=1,2,...,
e with probability ¢, explore: pick an action uniformly at random
e with probability 1 — ¢, exploit: pick the optimal action based on V'

@ update the model parameters P, r

@ update the value function V' (via value iteration)

38 / 43

Reinforcement learning BEETGILESVYID]

Temporal difference

How to learn the Q function?

Qls,0) = 7a(s) +7 Y Pals,) max Q(s',)

s'eS

On experience (S, at, 1, Se+1), with the current guess on @,
ri + vy maxy Q(si41,a") is like a sample of the RHS of the equation.

So it's natural to do the following update:
Qovsar) ¢ (1= @)Qstsan) + a1+ 7 mx Q1.0

= Qlotar)+ a1y Qovir,a) - Qo))

~
temporal difference

« is like the learning rate

40 / 43

Q-learning
The simplest model-free algorithm:

Q-learning

Initialize @ randomly; denote the initial state by s;.
Fort=1,2,...,
e with probability ¢, explore: a; is chosen uniformly at random
e with probability 1 — ¢, exploit: a; = argmax, Q(s¢, a)
@ execute action a;, receive reward r, arrive at state ;11

@ update the @) function

Qlstsar) — (1=)Qstsar) + o (ri +y maxQ(s1,)

for some learning rate «.

41/ 43

Reinforcement learning [EETGILES VYD1

Summary

A brief introduction to some online decision making problems:

@ Multi-armed bandits

e most basic problem to understand exploration vs. exploitation

o algorithms: explore—then—exploit, e-greedy, UCB

@ Markov decision process and reinforcement learning
e a combination of Markov models and multi-armed bandits
o learning the optimal policy with a known MDP: value iteration

o learning the optimal policy with an unknown MDP: model-based
approach and model-free approach (e.g. Q-learning)

43 / 43

Reinforcement learning SEETGTLES VYD1

Comparisons

Model-based Model-free

What it learns | model parameters P,r,... | (@ function
Space O(|SI?|Al) O(|SIAl)

Performance usually better usually worse

There are many different algorithms and RL is an active research area.

42 /43

	Review of last lecture
	Multi-armed Bandits
	Reinforcement learning

