
CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Sep 10, 2020

1 / 46

Administration

HW 1 is due on Tue, 9/15.

Last week to enroll.

2 / 46

Outline

1 Review of Last Lecture

2 Linear Classifier and Surrogate Losses

3 Perceptron

4 Logistic regression

3 / 46

Review of Last Lecture

Outline

1 Review of Last Lecture

2 Linear Classifier and Surrogate Losses

3 Perceptron

4 Logistic regression

4 / 46



Review of Last Lecture

Regression

Predicting a continuous outcome variable using past observations

temperature, amount of rainfall, house price, etc.

Key difference from classification

continuous vs discrete

measure prediction errors differently.

lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(w) = wTx

5 / 46

Review of Last Lecture

Least square solution

w∗ = argmin
w

RSS(w)

= argmin
w

‖Xw − y‖22

=
(
XTX

)−1
XTy

X =


xT
1

xT
2
...
xT

N

 , y =


y1
y2
...
yN



Two approaches to find the minimum:

find stationary points by setting gradient = 0

“complete the square”

6 / 46

Review of Last Lecture

Regression with nonlinear basis

Model: f(x) = wTφ(x) where w ∈ RM

Similar least square solution: w∗ =
(
ΦTΦ

)−1
ΦTy

7 / 46

Review of Last Lecture

Underfitting and Overfitting

M ≤ 2 is underfitting the data

large training error

large test error

M ≥ 9 is overfitting the data

small training error

large test error M

E
R
M
S

 

 

0 3 6 9
0

0.5

1
Training
Test

How to prevent overfitting? more data + regularization

w∗ = argmin
w

(
RSS(w) + λ‖w‖22

)
=
(
ΦTΦ + λI

)−1
ΦTy

8 / 46



Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
e.g. F = {f(x) = wTx | w ∈ RD}
e.g. F = {f(x) = wTΦ(x) | w ∈ RM}

Step 2. Define error/loss L(y′, y)

Step 3. Find empirical risk minimizer (ERM):

f∗ = argmin
f∈F

N∑
n=1

L(f(xn), yn)

or regularized empirical risk minimizer:

f∗ = argmin
f∈F

N∑
n=1

L(f(xn), yn) + λR(f)

ML becomes optimization
9 / 46

Linear Classifier and Surrogate Losses

Outline

1 Review of Last Lecture

2 Linear Classifier and Surrogate Losses

3 Perceptron

4 Logistic regression

10 / 46

Linear Classifier and Surrogate Losses

Classification

Recall the setup:

input (feature vector): x ∈ RD

output (label): y ∈ [C] = {1, 2, · · · ,C}
goal: learn a mapping f : RD → [C]

This lecture: binary classification

Number of classes: C = 2

Labels: {−1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

require carrying the training set

more like a heuristic

11 / 46

Linear Classifier and Surrogate Losses

Deriving classification algorithms

Let’s follow the recipe:

Step 1. Pick a set of models F .

Again try linear models, but how to predict a label using wTx?

Sign of wTx predicts the label:

sign(wTx) =

{
+1 if wTx > 0
−1 if wTx ≤ 0

(Sometimes use sgn for sign too.)

12 / 46



Linear Classifier and Surrogate Losses

The models

The set of (separating) hyperplanes:

F = {f(x) = sgn(wTx) | w ∈ RD}

Good choice for linearly separable data, i.e., ∃w s.t.

sgn(wTxn) = yn or ynw
Txn > 0

for all n ∈ [N ].

13 / 46

Linear Classifier and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data

14 / 46

Linear Classifier and Surrogate Losses

The models

For clearly not linearly separable data,

Again can apply a nonlinear mapping Φ:

F = {f(x) = sgn(wTΦ(x)) | w ∈ RM}

More discussions in the next two lectures.

15 / 46

Linear Classifier and Surrogate Losses

0-1 Loss

Step 2. Define error/loss L(y′, y).

Most natural one for classification: 0-1 loss L(y′, y) = I[y′ 6= y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with

`0-1(z) = I[z ≤ 0]

the loss for hyperplane w on example (x, y) is `0-1(yw
Tx)

16 / 46



Linear Classifier and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

17 / 46

Linear Classifier and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

perceptron loss `perceptron(z) = max{0,−z} (used in Perceptron)

hinge loss `hinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss `logistic(z) = log(1 + exp(−z)) (used in logistic regression;
the base of log doesn’t matter)

18 / 46

Linear Classifier and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

w∗ = argmin
w∈RD

N∑
n=1

`(ynw
Txn) = argmin

w∈RD

1

N

N∑
n=1

`(ynw
Txn)

where `(·) can be perceptron/hinge/logistic loss

no closed-form in general (unlike linear regression)

can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

19 / 46

Perceptron

Outline

1 Review of Last Lecture

2 Linear Classifier and Surrogate Losses

3 Perceptron
Numerical optimization
Applying (S)GD to perceptron loss

4 Logistic regression

20 / 46



Perceptron

The Perceptron Algorithm

In one sentence: Stochastic Gradient Descent applied to perceptron loss

i.e. find the minimizer of

F (w) =
1

N

N∑
n=1

`perceptron(ynw
Txn)

=
1

N

N∑
n=1

max{0,−ynwTxn}

using SGD

21 / 46

Perceptron Numerical optimization

A detour of numerical optimization methods

We describe two simple yet extremely popular methods

Gradient Descent (GD): simple and fundamental

Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.

22 / 46

Perceptron Numerical optimization

Gradient Descent (GD)

Goal: minimize F (w)

Algorithm: keep moving in the negative gradient direction

Start from some w(0). For t = 0, 1, 2, . . .

w(t+1) ← w(t) − η∇F (w(t))

where η > 0 is called step size or learning rate

in theory η should be set in terms of some parameters of F

in practice we just try several small values

23 / 46

Perceptron Numerical optimization

An example

Example: F (w) = 0.5(w2
1 − w2)

2 + 0.5(w1 − 1)2. Gradient is

∂F

∂w1
= 2(w2

1 − w2)w1 + w1 − 1
∂F

∂w2
= −(w2

1 − w2)

GD:

Initialize w
(0)
1 and w

(0)
2 (to be 0 or randomly), t = 0

do

w
(t+1)
1 ← w

(t)
1 − η

[
2(w

(t)
1

2
− w(t)

2 )w
(t)
1 + w

(t)
1 − 1

]
w

(t+1)
2 ← w

(t)
2 − η

[
−(w(t)

1

2
− w(t)

2 )

]
t← t+ 1

until F (w(t)) does not change much

24 / 46



Perceptron Numerical optimization

Why GD?

Intuition: by first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

GD ensures

F (w(t+1)) ≈ F (w(t))− η‖∇F (w(t))‖22 ≤ F (w(t))

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

reasonable η decreases function value

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

2

2.5

3

but large η is unstable
25 / 46

Perceptron Numerical optimization

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some noisy negative gradient direction

w(t+1) ← w(t) − η∇̃F (w(t))

where ∇̃F (w(t)) is a random variable (called stochastic gradient) s.t.

E
[
∇̃F (w(t))

]
= ∇F (w(t)) (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!

26 / 46

Perceptron Numerical optimization

Convergence Guarantees

Many for both GD and SGD on convex objectives.

They tell you at most how many iterations you need to achieve

F (w(t))− F (w∗) ≤ ε

Even for nonconvex objectives, many recent works show effectiveness of
GD/SGD.

27 / 46

Perceptron Applying (S)GD to perceptron loss

Applying GD to perceptron loss

Objective

F (w) =
1

N

N∑
n=1

max{0,−ynwTxn}

Gradient (or really sub-gradient) is

∇F (w) =
1

N

N∑
n=1

−I[ynwTxn ≤ 0]ynxn

(only misclassified examples contribute to the gradient)

GD update

w ← w +
η

N

N∑
n=1

I[ynwTxn ≤ 0]ynxn

Slow: each update makes one pass of the entire training set!
28 / 46



Perceptron Applying (S)GD to perceptron loss

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n ∈ [N ] uniformly at random, let

∇̃F (w(t)) = −I[ynwTxn ≤ 0]ynxn

clearly unbiased (convince yourself).

SGD update:
w ← w + ηI[ynwTxn ≤ 0]ynxn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

Exercise: try SGD to minimize RSS for linear regression.

29 / 46

Perceptron Applying (S)GD to perceptron loss

The Perceptron Algorithm

Perceptron algorithm is SGD with η = 1 applied to perceptron loss:

Repeat:

Pick a data point xn uniformly at random

If sgn(wTxn) 6= yn
w ← w + ynxn

Note:

w is always a linear combination of the training examples

why η = 1? Does not really matter in terms of training error

30 / 46

Perceptron Applying (S)GD to perceptron loss

Why does it make sense?

If the current weight w makes a mistake

ynw
Txn < 0

then after the update w′ = w + ynxn we have

ynw
′Txn = ynw

Txn + y2nx
T
nxn ≥ ynwTxn

Thus it is more likely to get it right after the update.

31 / 46

Perceptron Applying (S)GD to perceptron loss

Any theory?

(HW 1) If training set is linearly separable

Perceptron converges in a finite number
of steps

training error is 0

There are also guarantees when the data are not linearly separable.

32 / 46



Logistic regression

Outline

1 Review of Last Lecture

2 Linear Classifier and Surrogate Losses

3 Perceptron

4 Logistic regression
A Probabilistic View
Optimization

33 / 46

Logistic regression

A simple view

In one sentence: find the minimizer of

F (w) =
1

N

N∑
n=1

`logistic(ynw
Txn)

=
1

N

N∑
n=1

ln(1 + e−ynw
Txn)

But why logistic loss? and why “regression”?

34 / 46

Logistic regression A Probabilistic View

Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function + linear model

P(y = +1 | x;w) = σ(wTx)

where σ is the sigmoid function:

σ(z) =
1

1 + e−z

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

35 / 46

Logistic regression A Probabilistic View

Properties

Properties of sigmoid σ(z) = 1
1+e−z

between 0 and 1 (good as probability)

σ(wTx) ≥ 0.5⇔ wTx ≥ 0, consistent
with predicting the label with sgn(wTx)

larger wTx⇒ larger σ(wTx) ⇒ higher
confidence in label 1

σ(z) + σ(−z) = 1 for all z
−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The probability of label −1 is naturally

1− P(y = +1 | x;w) = 1− σ(wTx) = σ(−wTx)

and thus

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx

36 / 46



Logistic regression A Probabilistic View

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

assume data is generated in this way by some w

perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1, · · · , yn given
x1, · · · , xn, as a function of some w?

P (w) =
N∏

n=1

P(yn | xn;w)

MLE: find w∗ that maximizes the probability P (w)

37 / 46

Logistic regression A Probabilistic View

The MLE solution

w∗ = argmax
w

P (w) = argmax
w

N∏
n=1

P(yn | xn;w)

= argmax
w

N∑
n=1

lnP(yn | xn;w) = argmin
w

N∑
n=1

− lnP(yn | xn;w)

= argmin
w

N∑
n=1

ln(1 + e−ynw
Txn) = argmin

w

N∑
n=1

`logistic(ynw
Txn)

= argmin
w

F (w)

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

38 / 46

Logistic regression Optimization

Let’s apply SGD again

w ← w − η∇̃F (w)

= w − η∇w`logistic(ynw
Txn) (n ∈ [N ] is drawn u.a.r.)

= w − η
(
∂`logistic(z)

∂z

∣∣∣
z=ynwTxn

)
ynxn

= w − η
(
−e−z

1 + e−z

∣∣∣
z=ynwTxn

)
ynxn

= w + ησ(−ynwTxn)ynxn

= w + ηP(−yn | xn;w)ynxn

This is a soft version of Perceptron!

P(−yn|xn;w) versus I[yn 6= sgn(wTxn)]

39 / 46

Logistic regression Optimization

A second-order method: Newton method

Recall the intuition of GD: we look at first-order Taylor approximation

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t))

What if we look at second-order Taylor approximation?

F (w) ≈ F (w(t)) +∇F (w(t))T(w −w(t)) +
1

2
(w −w(t))THt(w −w(t))

where Ht = ∇2F (w(t)) ∈ RD×D is the Hessian of F at w(t), i.e.,

Ht,ij =
∂2F (w)

∂wi∂wj

∣∣∣
w=w(t)

(think “second derivative” when D = 1)

40 / 46



Logistic regression Optimization

Deriving Newton method

If we minimize the second-order approximation (via “complete the square”)

F (w)

≈ F (w(t)) +∇F (w(t))T(w −w(t)) +
1

2
(w −w(t))THt(w −w(t))

=
1

2

(
w −w(t) +H−1t ∇F (w(t))

)T
Ht

(
w −w(t) +H−1t ∇F (w(t))

)
+ cnt.

for convex F (so Ht is positive semidefinite)
we obtain Newton method:

w(t+1) ← w(t) −H−1t ∇F (w(t))

41 / 46

Logistic regression Optimization

Comparing GD and Newton

w(t+1) ← w(t) − η∇F (w(t)) (GD)

w(t+1) ← w(t) −H−1t ∇F (w(t)) (Newton)

Both are iterative optimization procedures, but Newton method

has no learning rate η (so no tuning needed!)

converges super fast in terms of #iterations needed

e.g. how many iterations needed when applied to a quadratic?

requires second-order information and is slow each iteration (there
are many ways to improve it though)

42 / 46

Logistic regression Optimization

Applying Newton to logistic loss

∇w`logistic(ynw
Txn) = −σ(−ynwTxn)ynxn

∇2
w`logistic(ynw

Txn) =

(
∂σ(z)

∂z

∣∣∣
z=−ynwTxn

)
y2nxnx

T
n

=

(
e−z

(1 + e−z)2

∣∣∣
z=−ynwTxn

)
xnx

T
n

= σ(ynw
Txn)

(
1− σ(ynwTxn)

)
xnx

T
n

Exercises:

why is the Hessian of logistic loss positive semidefinite?

can we apply Newton method to perceptron/hinge loss?

43 / 46

Logistic regression Optimization

Summary

Linear models for classification:

Step 1. Model is the set of separating hyperplanes

F = {f(x) = sgn(wTx) | w ∈ RD}

44 / 46



Logistic regression Optimization

Step 2. Pick the surrogate loss

perceptron loss `perceptron(z) = max{0,−z} (used in Perceptron)

hinge loss `hinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss `logistic(z) = log(1+ exp(−z)) (used in logistic regression)

45 / 46

Logistic regression Optimization

Step 3. Find empirical risk minimizer (ERM):

w∗ = argmin
w∈RD

1

N

N∑
n=1

`(ynw
Txn)

using GD/SGD/Newton.

46 / 46


	Review of Last Lecture
	Linear Classifier and Surrogate Losses
	Perceptron
	Logistic regression

