Administration

CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Sep 10, 2020

- HW 1 is due on Tue, 9/15.
- Last week to enroll.

1 / 4

2 / 46

Outline

- Review of Last Lecture
- 2 Linear Classifier and Surrogate Losses
- Perceptron
- 4 Logistic regression

Review of Last Lecture

Outline

- Review of Last Lecture
- 2 Linear Classifier and Surrogate Losses
- 3 Perceptron
- 4 Logistic regression

3 / 46

4 / 46

Regression

Predicting a continuous outcome variable using past observations

• temperature, amount of rainfall, house price, etc.

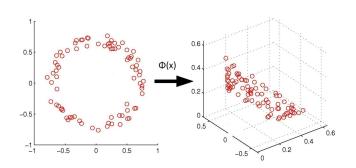
Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with <u>linear models</u>: $f(w) = w^{T}x$

Review of Last Lecture

Regression with nonlinear basis



Model: $f(x) = w^{\mathrm{T}} \phi(x)$ where $w \in \mathbb{R}^M$

Similar least square solution: $oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{\Phi} \right)^{-1} oldsymbol{\Phi}^{\mathrm{T}} oldsymbol{y}$

Least square solution

$$egin{aligned} oldsymbol{w}^* &= \operatorname*{argmin}_{oldsymbol{w}} \operatorname{RSS}(oldsymbol{w}) \ &= \operatorname*{argmin}_{oldsymbol{w}} \|oldsymbol{X} oldsymbol{w} - oldsymbol{y}\|_2^2 \ &= oldsymbol{(X^{\mathrm{T}} X)}^{-1} oldsymbol{X^{\mathrm{T}}} oldsymbol{y} \end{aligned}$$

$$\begin{array}{c}
* = \underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(\boldsymbol{w}) \\
= \underset{\boldsymbol{w}}{\operatorname{argmin}} \|\boldsymbol{X}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} \\
= (\boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1} \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}
\end{array} \qquad \boldsymbol{X} = \begin{pmatrix} \boldsymbol{x}_{1}^{\mathrm{T}} \\ \boldsymbol{x}_{2}^{\mathrm{T}} \\ \vdots \\ \boldsymbol{x}_{N}^{\mathrm{T}} \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{N} \end{pmatrix}$$

Two approaches to find the minimum:

- find stationary points by setting gradient = 0
- "complete the square"

Review of Last Lecture

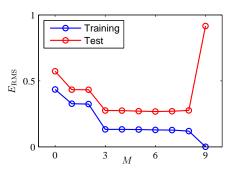
Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

M > 9 is overfitting the data

- small training error
- large test error



How to prevent overfitting? more data + regularization

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w}} \left(\mathrm{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 \right) = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

General idea to derive ML algorithms

Step 1. Pick a set of models \mathcal{F}

- ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$
- ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$

Step 2. Define **error/loss** L(y', y)

Step 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization

9 / 4

9 / 40

Linear Classifier and Surrogate Losses

Classification

Recall the setup:

- ullet input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [C] = \{1, 2, \dots, C\}$
- goal: learn a mapping $f: \mathbb{R}^{D} \to [C]$

This lecture: binary classification

- Number of classes: C=2
- Labels: $\{-1, +1\}$ (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:

- require carrying the training set
- more like a heuristic

Outline

- Review of Last Lecture
- 2 Linear Classifier and Surrogate Losses
- 3 Perceptron
- 4 Logistic regression

10 / 46

Linear Classifier and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:

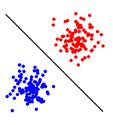
Step 1. Pick a set of models \mathcal{F} .

Again try linear models, but how to predict a label using $m{w}^{\mathrm{T}} m{x}$?

Sign of $w^{\mathrm{T}}x$ predicts the label:

$$\mathsf{sign}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) = \left\{ \begin{array}{ll} +1 & \mathsf{if} \ \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} > 0 \\ -1 & \mathsf{if} \ \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \leq 0 \end{array} \right.$$

(Sometimes use sgn for sign too.)



The models

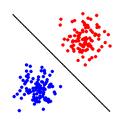
The set of (separating) hyperplanes:

$$\mathcal{F} = \{f(oldsymbol{x}) = \operatorname{sgn}(oldsymbol{w}^{\mathrm{T}}oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

Good choice for *linearly separable* data, i.e., $\exists w$ s.t.

$$\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n}) = y_{n} \quad \text{ or } \quad y_{n}\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{n} > 0$$

for all $n \in [N]$.

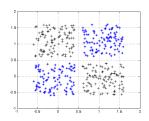


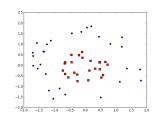
13 / 46

Linear Classifier and Surrogate Losses

The models

For clearly not linearly separable data,





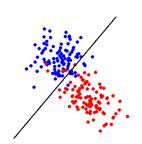
Again can apply a nonlinear mapping Φ :

$$\mathcal{F} = \{f(oldsymbol{x}) = \mathsf{sgn}(oldsymbol{w}^{\mathrm{T}}oldsymbol{\Phi}(oldsymbol{x})) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$$

More discussions in the next two lectures.

The models

Still makes sense for "almost" linearly separable data



14 / 46

Linear Classifier and Surrogate Losses

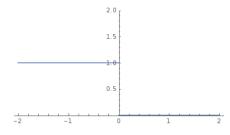
0-1 Loss

Step 2. Define error/loss L(y', y).

Most natural one for classification: **0-1 loss** $L(y',y) = \mathbb{I}[y' \neq y]$

For classification, more convenient to look at the loss as a function of yw^Tx . That is, with

$$\ell_{0-1}(z) = \mathbb{I}[z \le 0]$$

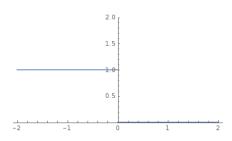


the loss for hyperplane ${m w}$ on example $({m x},y)$ is $\ell_{0\text{--}1}(y{m w}^{\mathrm{T}}{m x})$

Linear Classifier and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is *not convex*.



Even worse, minimizing 0-1 loss is NP-hard in general.

17 / 46

Linear Classifier and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n)$$

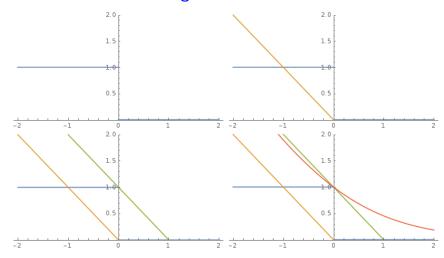
where $\ell(\cdot)$ can be perceptron/hinge/logistic loss

- no closed-form in general (unlike linear regression)
- can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w=0), but the algorithm derived from this perspective does.

Surrogate Losses

Solution: find a convex surrogate loss



- nercentron loss $\ell_{----}(z) = \max\{0, -z\}$ (used in Percentron)
- hinge loss $\ell_{\text{hinge}}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- Percentron

Outline

- Review of Last Lecture
- 2 Linear Classifier and Surrogate Losse
- 3 Perceptron
 - Numerical optimization
 - Applying (S)GD to perceptron loss
- 4 Logistic regression

The Perceptron Algorithm

In one sentence: Stochastic Gradient Descent applied to perceptron loss

i.e. find the minimizer of

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \ell_{\mathsf{perceptron}}(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n)$$
$$= \frac{1}{N} \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n\}$$

using SGD

21 / 46

Perceptron Numerical optimization

Gradient Descent (GD)

Goal: minimize F(w)

Algorithm: keep moving in the negative gradient direction

Start from some $w^{(0)}$. For t = 0, 1, 2, ...

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - n\nabla F(\boldsymbol{w}^{(t)})$$

where $\eta > 0$ is called step size or learning rate

- ullet in theory η should be set in terms of some parameters of F
- in practice we just try several small values

A detour of numerical optimization methods

We describe two simple yet extremely popular methods

- Gradient Descent (GD): simple and fundamental
- Stochastic Gradient Descent (SGD): faster, effective for large-scale problems

Gradient is sometimes referred to as *first-order* information of a function. Therefore, these methods are called *first-order methods*.

22 / 46

Perceptron

Numerical optimization

An example

Example: $F(\mathbf{w}) = 0.5(w_1^2 - w_2)^2 + 0.5(w_1 - 1)^2$. Gradient is

$$\frac{\partial F}{\partial w_1} = 2(w_1^2 - w_2)w_1 + w_1 - 1 \qquad \frac{\partial F}{\partial w_2} = -(w_1^2 - w_2)$$

GD:

- Initialize $w_1^{(0)}$ and $w_2^{(0)}$ (to be 0 or randomly), t=0
- do

$$w_1^{(t+1)} \leftarrow w_1^{(t)} - \eta \left[2(w_1^{(t)^2} - w_2^{(t)})w_1^{(t)} + w_1^{(t)} - 1 \right]$$

$$w_2^{(t+1)} \leftarrow w_2^{(t)} - \eta \left[-(w_1^{(t)^2} - w_2^{(t)}) \right]$$

$$t \leftarrow t + 1$$

ullet until $F(oldsymbol{w}^{(t)})$ does not change much

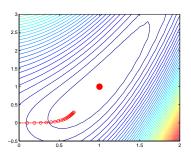
Why GD?

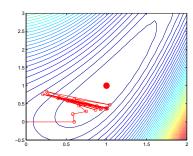
Intuition: by first-order **Taylor approximation**

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

GD ensures

$$F(\mathbf{w}^{(t+1)}) \approx F(\mathbf{w}^{(t)}) - \eta \|\nabla F(\mathbf{w}^{(t)})\|_{2}^{2} \le F(\mathbf{w}^{(t)})$$





reasonable η decreases function value

but large η is unstable

25 / 46

Perceptron

Numerical optimization

Convergence Guarantees

Many for both GD and SGD on convex objectives.

They tell you at most how many iterations you need to achieve

$$F(\boldsymbol{w}^{(t)}) - F(\boldsymbol{w}^*) < \epsilon$$

Even for *nonconvex objectives*, many recent works show effectiveness of GD/SGD.

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some *noisy* negative gradient direction

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \tilde{\nabla} F(\boldsymbol{w}^{(t)})$$

where $\tilde{\nabla} F(\boldsymbol{w}^{(t)})$ is a random variable (called **stochastic gradient**) s.t.

$$\mathbb{E}\left[ilde{
abla}F(oldsymbol{w}^{(t)})
ight] =
abla F(oldsymbol{w}^{(t)})$$
 (unbiasedness)

Key point: it could be *much faster to obtain a stochastic gradient*!

26 / 46

Perceptron

Applying (S)GD to perceptron loss

Applying GD to perceptron loss

Objective

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \max\{0, -y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n\}$$

Gradient (or really *sub-gradient*) is

$$abla F(oldsymbol{w}) = rac{1}{N} \sum_{n=1}^N - \mathbb{I}[y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

(only misclassified examples contribute to the gradient)

GD update

$$oldsymbol{w} \leftarrow oldsymbol{w} + rac{\eta}{N} \sum_{n=1}^N \mathbb{I}[y_n oldsymbol{w}^{ ext{T}} oldsymbol{x}_n \leq 0] y_n oldsymbol{x}_n$$

Slow: each update makes one pass of the entire training set!

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example $n \in [N]$ uniformly at random, let

$$\tilde{\nabla} F(\boldsymbol{w}^{(t)}) = -\mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

clearly unbiased (convince yourself).

SGD update:

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + \eta \mathbb{I}[y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n \leq 0] y_n \boldsymbol{x}_n$$

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a *finite sum* (over each training point) and the above trick applies!

Exercise: try SGD to minimize RSS for linear regression.

29 / 46

Perceptron

Applying (S)GD to perceptron loss

Why does it make sense?

If the current weight $oldsymbol{w}$ makes a mistake

$$u_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_n < 0$$

then after the update $oldsymbol{w}' = oldsymbol{w} + y_n oldsymbol{x}_n$ we have

$$y_n {oldsymbol{w}'}^{\mathrm{T}} {oldsymbol{x}}_n = y_n {oldsymbol{w}}^{\mathrm{T}} {oldsymbol{x}}_n + y_n^2 {oldsymbol{x}}_n^{\mathrm{T}} {oldsymbol{x}}_n \ge y_n {oldsymbol{w}}^{\mathrm{T}} {oldsymbol{x}}_n$$

Thus it is more likely to get it right after the update.

The Perceptron Algorithm

Perceptron algorithm is SGD with $\eta=1$ applied to perceptron loss:

Repeat:

- ullet Pick a data point $oldsymbol{x}_n$ uniformly at random
- If $\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n) \neq y_n$

$$\boldsymbol{w} \leftarrow \boldsymbol{w} + y_n \boldsymbol{x}_n$$

Note:

- $oldsymbol{w}$ is always a *linear combination* of the training examples
- why $\eta=1$? Does not really matter in terms of training error

30 / 46

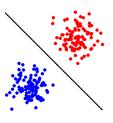
Perceptron

Applying (S)GD to perceptron loss

Any theory?

(HW 1) If training set is linearly separable

- Perceptron converges in a finite number of steps
- training error is 0



There are also guarantees when the data are not linearly separable.

Outline

- Review of Last Lecture
- 2 Linear Classifier and Surrogate Losses
- 3 Perceptron
- 4 Logistic regression
 - A Probabilistic View
 - Optimization

33 / 46

A Probabilistic View

Predicting probability

Instead of predicting a discrete label, can we *predict the probability of each label?* i.e. regress the probabilities

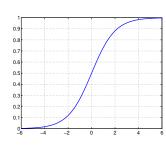
Logistic regression

One way: sigmoid function + linear model

$$\mathbb{P}(y = +1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x})$$

where σ is the sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$



A simple view

In one sentence: find the minimizer of

$$F(\boldsymbol{w}) = \frac{1}{N} \sum_{n=1}^{N} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\text{T}} \boldsymbol{x}_n)$$
$$= \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \boldsymbol{w}^{\text{T}} \boldsymbol{x}_n})$$

But why logistic loss? and why "regression"?

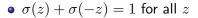
Logistic regression

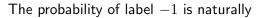
A Probabilistic View

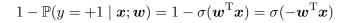
Properties

Properties of sigmoid $\sigma(z) = \frac{1}{1+e^{-z}}$

- between 0 and 1 (good as probability)
- $\sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \geq 0.5 \Leftrightarrow \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \geq 0$, consistent with predicting the label with $\operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x})$
- larger $m{w}^{\mathrm{T}}m{x} \Rightarrow \mathsf{larger} \ \sigma(m{w}^{\mathrm{T}}m{x}) \Rightarrow \mathsf{higher}$ confidence in label 1







and thus

$$\mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}$$

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view

- ullet assume data is generated in this way by some w
- perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y_1, \dots, y_n given x_1, \dots, x_n , as a function of some w?

$$P(\boldsymbol{w}) = \prod_{n=1}^{N} \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

MLE: find w^* that maximizes the probability P(w)

37 / 46

Logistic regression

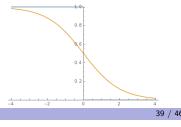
Optimization

Let's apply SGD again

$$\begin{split} & \boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w}) \\ &= \boldsymbol{w} - \eta \nabla_{\boldsymbol{w}} \ell_{\text{logistic}}(y_n \boldsymbol{w}^{\text{T}} \boldsymbol{x}_n) \qquad (n \in [N] \text{ is drawn u.a.r.}) \\ &= \boldsymbol{w} - \eta \left(\frac{\partial \ell_{\text{logistic}}(z)}{\partial z} \Big|_{z=y_n \boldsymbol{w}^{\text{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \\ &= \boldsymbol{w} - \eta \left(\frac{-e^{-z}}{1+e^{-z}} \Big|_{z=y_n \boldsymbol{w}^{\text{T}} \boldsymbol{x}_n} \right) y_n \boldsymbol{x}_n \\ &= \boldsymbol{w} + \eta \sigma (-y_n \boldsymbol{w}^{\text{T}} \boldsymbol{x}_n) y_n \boldsymbol{x}_n \\ &= \boldsymbol{w} + \eta \mathbb{P}(-y_n \mid \boldsymbol{x}_n; \boldsymbol{w}) y_n \boldsymbol{x}_n \end{split}$$

This is a soft version of Perceptron!

$$\mathbb{P}(-y_n|\boldsymbol{x}_n;\boldsymbol{w})$$
 versus $\mathbb{I}[y_n \neq \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_n)]$



The MLE solution

$$w^* = \underset{\boldsymbol{w}}{\operatorname{argmax}} P(\boldsymbol{w}) = \underset{\boldsymbol{w}}{\operatorname{argmax}} \prod_{n=1}^{N} \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

$$= \underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w}) = \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} - \ln \mathbb{P}(y_n \mid \boldsymbol{x_n}; \boldsymbol{w})$$

$$= \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \ln(1 + e^{-y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x_n}}) = \underset{\boldsymbol{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x_n})$$

$$= \underset{\boldsymbol{w}}{\operatorname{argmin}} F(\boldsymbol{w})$$

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

Logistic regression

Optimization

A second-order method: Newton method

Recall the intuition of GD: we look at first-order **Taylor approximation**

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

What if we look at *second-order* Taylor approximation?

$$F(\boldsymbol{w}) \approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

where $\boldsymbol{H}_t = \nabla^2 F(\boldsymbol{w}^{(t)}) \in \mathbb{R}^{\mathsf{D} \times \mathsf{D}}$ is the *Hessian* of F at $\boldsymbol{w}^{(t)}$, i.e.,

$$H_{t,ij} = \frac{\partial^2 F(\boldsymbol{w})}{\partial w_i \partial w_j} \Big|_{\boldsymbol{w} = \boldsymbol{w}^{(t)}}$$

(think "second derivative" when D=1)

Deriving Newton method

If we minimize the second-order approximation (via "complete the square")

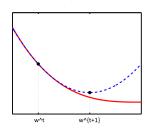
 $F(\boldsymbol{w})$

$$\approx F(\boldsymbol{w}^{(t)}) + \nabla F(\boldsymbol{w}^{(t)})^{\mathrm{T}}(\boldsymbol{w} - \boldsymbol{w}^{(t)}) + \frac{1}{2}(\boldsymbol{w} - \boldsymbol{w}^{(t)})^{\mathrm{T}}\boldsymbol{H}_{t}(\boldsymbol{w} - \boldsymbol{w}^{(t)})$$

$$= \frac{1}{2}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right)^{\mathrm{T}}\boldsymbol{H}_{t}\left(\boldsymbol{w} - \boldsymbol{w}^{(t)} + \boldsymbol{H}_{t}^{-1}\nabla F(\boldsymbol{w}^{(t)})\right) + \text{cnt.}$$

for convex F (so H_t is *positive semidefinite*) we obtain **Newton method**:

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$



41 / 46

Logistic regression

Optimization

Applying Newton to logistic loss

$$abla_{m{w}} \ell_{\mathsf{logistic}}(y_n m{w}^{\mathrm{T}} m{x}_n) = -\sigma(-y_n m{w}^{\mathrm{T}} m{x}_n) y_n m{x}_n$$

$$\begin{split} \nabla_{\boldsymbol{w}}^{2} \ell_{\mathsf{logistic}}(y_{n} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_{n}) &= \left(\frac{\partial \sigma(z)}{\partial z}\Big|_{z=-y_{n} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_{n}}\right) y_{n}^{2} \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathsf{T}} \\ &= \left(\frac{e^{-z}}{(1+e^{-z})^{2}}\Big|_{z=-y_{n} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_{n}}\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathsf{T}} \\ &= \sigma(y_{n} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_{n}) \left(1 - \sigma(y_{n} \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_{n})\right) \boldsymbol{x}_{n} \boldsymbol{x}_{n}^{\mathsf{T}} \end{split}$$

Exercises:

- why is the Hessian of logistic loss positive semidefinite?
- can we apply Newton method to perceptron/hinge loss?

Comparing GD and Newton

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \eta \nabla F(\boldsymbol{w}^{(t)}) \tag{GD}$$

$$\boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)} - \boldsymbol{H}_t^{-1} \nabla F(\boldsymbol{w}^{(t)})$$
 (Newton)

Both are iterative optimization procedures, but Newton method

- has no learning rate η (so no tuning needed!)
- converges *super fast* in terms of #iterations needed
 - e.g. how many iterations needed when applied to a quadratic?
- requires second-order information and is slow each iteration (there are many ways to improve it though)

42 / 46

Logistic regression

Optimization

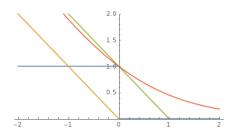
Summary

Linear models for classification:

Step 1. Model is the set of separating hyperplanes

$$\mathcal{F} = \{ f(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$$

Step 2. Pick the surrogate loss



- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{\text{hinge}}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- \bullet logistic loss $\ell_{\rm logistic}(z) = \log(1 + \exp(-z))$ (used in logistic regression)

Step 3. Find empirical risk minimizer (ERM):

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} rac{1}{N} \sum_{n=1}^N \ell(y_n oldsymbol{w}^{\mathsf{T}} oldsymbol{x}_n)$$

using GD/SGD/Newton.