CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Sep 10, 2020

s
I
Outline
@ Review of Last Lecture
@ Linear Classifier and Surrogate Losses

© Perceptron

@ Logistic regression

Administration

e HW 1 is due on Tue, 9/15.

@ Last week to enroll.

Review of Last Lecture

Outline

@ Review of Last Lecture

Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

o lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(w) = w'x

5 /46
Regression with nonlinear basis
il
Q O
. R0 2@0 od%ﬁooo
&®o
p: g OW o
0 OOZ Oo —>
o o
-05 %@@% Omg)m
i 97 2
06
4 05 0 05 1
Model: f(x) = w ¢(x) where w € RM
Similar least square solution: w* = (<I>T<I>)71 ®Ty
7/ 46

Least square solution

w™ = argmin RSS(w) x]
w xT
. 2 2
= argmin | Xw — y||5 X = . ;
w .
= (XTX)_IXTy wrlj\[;

Two approaches to find the minimum:
o find stationary points by setting gradient = 0

e “complete the square”

Underfitting and Overfitting

Y1
Y2

YN

6/ 46

M < 2 is underfitting the data ©— Training

—o— Test
@ large training error
@ large test error E 05
M > 9 is overfitting the data
@ small training error .
o large test error 0 S m 8 9

How to prevent overfitting? more data + regularization

w* = argmin (RSS(’w) +)\H'wH%) = (‘I)T‘I) +)‘I)_l (I)Ty
w

8 / 46

Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
o eg F={f(z) =wlz|weRP}
°oeg F={f(z)=wT®(x)|weRM}

Step 2. Define error/loss L(y',y)

Step 3. Find empirical risk minimizer (ERM):

N
f* = argmin Z L(f(xn),yn)

feF

n=1

or regularized empirical risk minimizer:

N
£ = argmin Y L(f(w,), ya) + AR(f)

fer

n=1

ML becomes optimization

9/ 46

Classification

Recall the setup:
e input (feature vector): « € RP
e output (label): y € [C] ={1,2,---,C}
@ goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2
@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ more like a heuristic

11/ 46

Linear Classifier and Surrogate Losses
Outline

@ Linear Classifier and Surrogate Losses

10 / 46

Linear Classifier and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTa?

Sign of wTa predicts the label:

. T —|—1 If ’l,UTCC > 0
sign(w) =3 1 it e <0

(Sometimes use sgn for sign too.)

12 / 46

The models The models

The set of (separating) hyperplanes:

_ _ T D
F=1{f(z)=sgn(w z) [w € R"} Still makes sense for “almost” linearly separable data

Good choice for linearly separable data, i.e., Jw s.t.

sgn(wTa:n) =y, Of yYpw x,>0

for all n € [N].

13 / 46 14 / 46

The models 0-1 Loss

Step 2. Define error/loss L(y/,y).

For clearly not linearly separable data, o
Most natural one for classification: 0-1 loss L(y/,y) = I[y # y]

A g o . For classification, more convenient to look at the loss as a function of
AR MR A S s Lt . .
LRI 1. . ywTax. That is, with
B d T EA DR T b ol st - . _
T g e SR loa(z) =1[z < 0]
TR R B Py S _.... ..
o Bapil BINE :
1 05 05 15 295 -15 -10 -05 0.0 05 10 15 20 15
Again can apply a nonlinear mapping ®: +o
_ _ T M 0.5
F={f(z) =sgn(w ®(x)) | w e R}
I2 Il [v] 1 2

More discussions in the next two lectures.

the loss for hyperplane w on example (x,y) is £o.1 (yw T x)
15 / 46 16 / 46

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

s
ML becomes convex optimization

Step 3. Find ERM:

N N
1
w* = argmin Z E(yana:n) = argmin — Z K(yana:n)
weRP wero NV

n=1
where /(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

Surrogate Losses

Solution: find a convex surrogate loss

2.0 2.0

1.5 1.5

0.5 0.5
T S S S R R S S L s I R S R T n L
-2 =1 0 1 2 =2 =1 1] 1 2

2.0 2.0

1.5 1.5

0.5 0.5
S S R R S S L P R R S S L
-2 -1 0 1 2 =2 -1 1] 1 2

it) o i

@ hinge l0ss lhinge(2) = max{0,1 — z}(used in SVM and many others)

L)
Perceptron

Outline

© Perceptron
@ Numerical optimization
@ Applying (S)GD to perceptron loss

The Perceptron Algorithm

In one sentence: Stochastic Gradient Descent applied to perceptron loss

i.e. find the minimizer of

ZH
Mz

F(w) = Lperceptron (yanxn)

n=1

N
N Z aX{Oa _yanmn}

using SGD

21/ 46

Gradient Descent (GD)

Goal: minimize F'(w)

Algorithm: keep moving in the negative gradient direction

Start from some w(®. For t = 0,1,2
w) — w® — yVF(w®)

where 1 > 0 is called step size or learning rate

@ in theory 7 should be set in terms of some parameters of F'

@ in practice we just try several small values

23 / 46

A detour of numerical optimization methods

We describe two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.

22 / 46

An example

Example: F(w) = 0.5(w? — w2)? + 0.5(w; — 1)2. Gradient is
OF oF
G—M:Q(w%—wg)wl—kwl—l a—w:—(wf—wg)

GD:

e Initialize w&o) and wéo) (to be 0 or randomly), t =0
e do
2
wgtﬂ) — w?) - {Q(wgt) (t))w(+ w(t) 1]
2
af ™ ol = |-l - off)]
tt+1

o until F(w®) does not change much

24 / 46

Why GD?

Intuition: by first-order Taylor approximation

F(w)

~ F(w®) + VE(w)T (w — w®)
GD ensures

©) =l VEw®)|3 < F(w)

but large 7 is unstable

reasonable 7 decreases function value
25 / 46

Convergence Guarantees

Many for both GD and SGD on convex objectives.

They tell you at most how many iterations you need to achieve

Fw®) - F(w*) < e

Even for nonconvex objectives, many recent works show effectiveness of

GD/SGD.

27 / 46

Numerica optimization
Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction

wt — w® — pVF(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

E [@F(w(t))} = VF(w®) (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!

AT B b
Applying GD to perceptron loss

Objective
N

1
N Z max{0, —y,w x,}

n=1

Flw) =

Gradient (or really sub-gradient) is

N
1
=~ Z [ynw' 2, < Olynzy,

(only misclassified examples contribute to the gradient)
GD update

N
w — w + % ZI[[yn'wT:L‘n < Olynzxn,

n=1

Slow: each update makes one pass of the entire training set!

26 / 46

28 / 46

Sl (G @ o o ARE ST @D i ez e s
Applying SGD to perceptron loss The Perceptron Algorithm

How to construct a stochastic gradient?

Perceptron algorithm is SGD with = 1 applied to perceptron loss:

One common trick: pick one example n € [N] uniformly at random, let

~ R t:
VF('w(t)) = —]I[yn'wT:cn < 0lynzn epea)

@ Pick a data point x,, uniformly at random
clearly unbiased (convince yourself). o If sgn(wTx,) # y,

W — W + Yp Ty,
SGD update: Y

w—w+ nﬂ[yanan < O]ynwn Note:

Fast: each update touches only one data point!)) o o
@ w is always a linear combination of the training examples

Conveniently, objective of most ML tasks is a finite sum (over each

training point) and the above trick applies! @ why 1 =17 Does not really matter in terms of training error

Exercise: try SGD to minimize RSS for linear regression.

29 / 46 30/ 46

Sl (G @ sy o ARE T @D i iz e
Why does it make sense? Any theory?

If the current weight w makes a mistake
. (HW 1) If training set is linearly separable
YnW Xy < 0
@ Perceptron converges in a finite number
then after the update w’ = w + y,,x,, we have of steps

T 9 T T @ training error is 0

/T
YpW' Ty = YW Ty + YT, Ty > YW Ty,

Thus it is more likely to get it right after the update.

There are also guarantees when the data are not linearly separable.

31/ 46 32/ 46

Logistic regression Logistic regression

Outline A simple view

In one sentence: find the minimizer of

1 N

F(w) = N Z flogistic(yanmn)

n=1

1 N
_ T

.. . n=1

e Logistic regression

@ A Probabilistic View

® ‘" . 1
Optimization But why logistic loss? and why “regression”?

33/ 46 34 /46
Predicting probability Properties
- . . _ 1
Instead of predicting a discrete label, can we predict the probability of Properties of sigmoid 0(2) = 1=
each label? i.e. regress the probabilities e between 0 and 1 (good as probability) .
One way: sigmoid function + linear model o o(wlxz) > 0.5 < whx > 0, consistent o
with predicting the label with sgn(w Tz o
Ply=+1|z;w) = o(w'x) () 0s
o larger wlx = larger o(w'x) = higher o
where o is the sigmoid function: confidence in label 1 o
‘ @ 0(z)+o0(—z)=1forall z
08 The probability of label —1 is naturally
1 .
o(z) = 1+ ez s , 1-Ply=+1|z;w)=1—-0(w'z) = o(—w'x)
03 ' and thus
. Py | &;w) = o(yw’e) = —
-6 4 2 [2 4 6 y ' N y N 1 + e_wam
35 / 46

36 / 46

How to regress with discrete labels?

What we observe are labels, not probabilities.

Take a probabilistic view
@ assume data is generated in this way by some w

@ perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,--- ,y, given

r1, -+, Ty, as a function of some w?

N
H yn | T, W

MLE: find w* that maximizes the probability P(w)

37 / 46

Ofimzstion
Let's apply SGD again

w — w — nVF(w)

=w - nvwelogistic<yn'men) ('I‘L € [N] is drawn u.a.r.)

6Elogistic(z)
=w-—-n (R YnTn

0z

= w — €T
n(1+e Zlz= yanmn) Ynin
=w+ 770(Ynw wn)ynxn
=w + nP(=yn | Tn; W)Yy
This is a soft version of Perceptron! 0
P(—yn|Tn;w) versus Iy, # sgn(w’'z,)] o

39 / 46

A Probabilistic View
The MLE solution

w”* = argmax P(w) = argmax H P(yn | @n;w)
w

w

n=1
N N
= argmalenP(yn | Xp;w) = argmmz —InP(y, | zn;w)
w n=1 n=1
N N
= argmin Z In(1 + eiyanmn) = argmin Z Elogistic(yanmn)
w n=1 w n=1
= argmin F(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

38 / 46

Logistic regression Optimization

A second-order method: Newton method

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F(w(t)) + VF('w(t))T('w - w(t))

What if we look at second-order Taylor approximation?

Flw) ~ Fw®) + VFw®) T (w — w?) + %(w — YT H, (w — w®)

where H; = V2F(w®) € RP*D is the Hessian of F at w®, i.e.,

92F (w)

8wi8wj w=w?)

Hii; =

(think “second derivative” when D = 1)

40 / 46

Gyl et Oyl et
Deriving Newton method Comparing GD and Newton

If we minimize the second-order approximation (via “complete the square”)
F
(w)) w) w® — pVF(w?) (GD)
~ T T
~ F(w") + VF(w™) (w - w®) + 5(’“’ —w!)THy(w — w®) w) — w® — H7 'V F(w®) (Newton)
1

T
=— (w —w® + I—It_1VF(w(t))> H; (w —w® + Ht_IVF(w(t))) + cnt.
2 Both are iterative optimization procedures, but Newton method

for convex F' (so H; is positive semidefinite) @ has no learning rate 1 (so no tuning needed!)
we obtain Newton method:

@ converges super fast in terms of #iterations needed

w) — w® — H'VF(w®)

o e.g. how many iterations needed when applied to a quadratic?

@ requires second-order information and is slow each iteration (there
are many ways to improve it though)

41/ 46 42/ 46

Bzt Biozzten
Applying Newton to logistic loss Summary

v'wglogistic(:‘]n'wTaf'n) = _U(_yanxn)ynmn

do(z Linear models for classification:
v'?l;glogistic(yn'wT:If'n) = (a(z) Zzyanmn> yimnmg
o2 Step 1. Model is the set of separating hyperplanes
T
= €T,T
<(1 + e7%)? z—yn’wT:Bn> " F={f(x) =sgn(w z) | w € RP}

Exercises:
@ why is the Hessian of logistic loss positive semidefinite?

@ can we apply Newton method to perceptron/hinge loss?

43 / 46 44 / 46

Logistic regression Logistic regression

Step 2. Pick the surrogate loss

2.0

Step 3. Find empirical risk minimizer (ERM):

0.5

weRDP

N
w” = argmin ,; ((ypwTe,)

using GD/SGD/Newton.
@ perceptron 10ss £perceptron(2) = max{0, —z} (used in Perceptron)
@ hinge loss lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss #egistic(2) = log(1 +exp(—z2)) (used in logistic regression)

	Review of Last Lecture
	Linear Classifier and Surrogate Losses
	Perceptron
	Logistic regression

