Administration

CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Sep 17, 2020

HW1 is being graded. Will discuss solutions today.

HW2 will be released after this lecture. Due on 9/29.

/ 49

Review of Last Lecture

Outline

- Review of Last Lecture
- 2 Multiclass Classification
- 3 Neural Nets

1 / 49

Outline

Review of Last Lecture

Multiclass Classification

Neural Nets

3 / 49

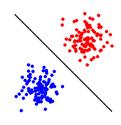
Review of Last Lecture

Summary

Linear models for binary classification:

Step 1. Model is the set of separating hyperplanes

$$\mathcal{F} = \{f(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$



5 / 49

Review of Last Lecture

Step 3. Find empirical risk minimizer (ERM):

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} F(\boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \frac{1}{N} \sum_{n=1}^N \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n)$$

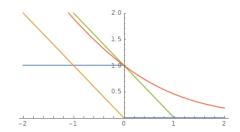
using

• GD: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \nabla F(\boldsymbol{w})$

• SGD: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w})$

• Newton: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \left(\nabla^2 F(\boldsymbol{w})\right)^{-1} \nabla F(\boldsymbol{w})$

Step 2. Pick the surrogate loss



- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{\text{hinge}}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z))$ (used in logistic regression)

6 / 49

Review of Last Lecture

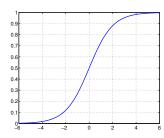
A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

$$oldsymbol{w}^* = \operatorname*{argmin}_{oldsymbol{w}} \sum_{n=1}^N \ell_{\mathsf{logistic}}(y_n oldsymbol{w}^{\mathrm{T}} oldsymbol{x}_n) = \operatorname*{argmax}_{oldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid oldsymbol{x}_n; oldsymbol{w})$$

where

$$\mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}$$



Outline

- Review of Last Lecture
- Multiclass Classification
 - Multinomial logistic regression
 - Reduction to binary classification
- Neural Nets

9 / 49

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from $\{-1,+1\}$ to $\{1,2\}$)

$$f(oldsymbol{x}) = egin{cases} 1 & ext{if } oldsymbol{w}^{ ext{T}} oldsymbol{x} \geq 0 \ 2 & ext{if } oldsymbol{w}^{ ext{T}} oldsymbol{x} < 0 \end{cases}$$

can be written as

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} \\ 2 & \text{if } \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} > \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \end{cases}$$
$$= \operatorname*{argmax}_{k \in \{1,2\}} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$$

for any $\boldsymbol{w}_1, \boldsymbol{w}_2$ s.t. $\boldsymbol{w} = \boldsymbol{w}_1 - \boldsymbol{w}_2$

Think of $\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$ as a score for class k.

Classification

Recall the setup:

- ullet input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [C] = \{1, 2, \dots, C\}$
- goal: learn a mapping $f: \mathbb{R}^{\mathsf{D}} \to [\mathsf{C}]$

Examples:

- recognizing digits (C = 10) or letters (C = 26 or 52)
- predicting weather: sunny, cloudy, rainy, etc
- predicting image category: ImageNet dataset (C $\approx 20K$)

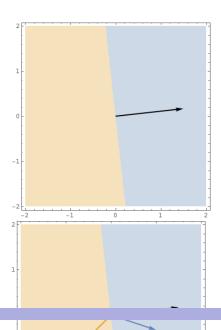
Nearest Neighbor Classifier naturally works for arbitrary C.

10 / 49

Multiclass Classification

Multinomial logistic regression

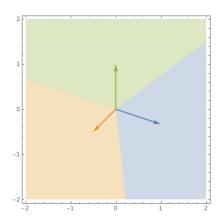
Linear models: from binary to multiclass



$$egin{aligned} m{w} &= (\frac{3}{2}, \frac{1}{6}) = m{w}_1 - m{w}_2 \ m{w}_1 &= (1, -\frac{1}{3}) \ m{w}_2 &= (-\frac{1}{2}, -\frac{1}{2}) \end{aligned}$$

Blue class:

Linear models: from binary to multiclass



$$\mathbf{w}_1 = (1, -\frac{1}{3})$$

 $\mathbf{w}_2 = (-\frac{1}{2}, -\frac{1}{2})$
 $\mathbf{w}_3 = (0, 1)$

• Blue class:

 $\{ \boldsymbol{x} : 1 = \operatorname{argmax}_{k} \boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x} \}$

Orange class:

 $\{ \boldsymbol{x} : 2 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$

Green class:

 $\{\boldsymbol{x}: 3 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}\}$

Linear models for multiclass classification

$$\mathcal{F} = \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ \boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x} \mid \boldsymbol{w}_1, \dots, \boldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}} \right\}$$
$$= \left\{ f(\boldsymbol{x}) = \underset{k \in [\mathsf{C}]}{\operatorname{argmax}} \ (\boldsymbol{W} \boldsymbol{x})_k \mid \boldsymbol{W} \in \mathbb{R}^{\mathsf{C} \times \mathsf{D}} \right\}$$

Step 2: How do we generalize perceptron/hinge/logistic loss?

Multiclass Classification

This lecture: focus on the more popular logistic loss

13 / 49

Multiclass Classification

Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w = w_1 - w_2$:

$$\mathbb{P}(y=1\mid \boldsymbol{x};\boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) = \frac{1}{1+e^{-\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}}\boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}}\boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}}\boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}}\boldsymbol{x}}$$

Naturally, for multiclass:

$$\mathbb{P}(y = k \mid \boldsymbol{x}; \boldsymbol{W}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k' \in [\mathsf{C}]} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$$

This is called the *softmax function*.

Multinomial logistic regression

Applying MLE again

Maximize probability of seeing labels y_1, \ldots, y_N given x_1, \ldots, x_N

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}$$

By taking **negative log**, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{N} \ln \left(\frac{\sum_{k \in [C]} e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}_n}}{e^{\boldsymbol{w}_{y_n}^{\mathrm{T}} \boldsymbol{x}_n}} \right) = \sum_{n=1}^{N} \ln \left(1 + \sum_{k \neq y_n} e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right)$$

This is the multiclass logistic loss, a.k.a cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

Step 3: Optimization

Apply SGD: what is the gradient of

$$g(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_k - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_n; \boldsymbol{W}) \boldsymbol{x}_n^{\mathrm{T}}$$

else:

$$\nabla_{\boldsymbol{w}_k} g(\boldsymbol{W}) = \frac{-\left(\sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}\right)}{1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n}} \boldsymbol{x}_n^{\mathrm{T}} = \left(\mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) - 1\right) \boldsymbol{x}_n^{\mathrm{T}}$$

17 / 49

Multiclass Classification

Multinomial logistic regression

A note on prediction

Having learned W, we can either

- ullet make a $extit{deterministic}$ prediction $rgmax_{k \in [\mathsf{C}]} oldsymbol{w}_k^{\mathrm{T}} oldsymbol{x}$
- ullet make a $extit{randomized}$ prediction according to $\mathbb{P}(k \mid m{x}; m{W}) \propto e^{m{w}_k^{\mathrm{T}} m{x}}$

In either case, (expected) mistake is bounded by logistic loss

deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log_2 \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

$$\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right] = 1 - \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W}) \leq -\ln \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W})$$

SGD for multinomial logistic regression

Initialize $oldsymbol{W} = oldsymbol{0}$ (or randomly). Repeat:

- $oldsymbol{0}$ pick $n \in [\mathbf{N}]$ uniformly at random
- update the parameters

$$oldsymbol{W} \leftarrow oldsymbol{W} - \eta \left(egin{array}{ccc} \mathbb{P}(y=1 \mid oldsymbol{x}_n; oldsymbol{W}) & dots \ \mathbb{P}(y=y_n \mid oldsymbol{x}_n; oldsymbol{W}) - 1 \ dots \ \mathbb{P}(y=\mathsf{C} \mid oldsymbol{x}_n; oldsymbol{W}) \end{array}
ight) oldsymbol{x}_n^{\mathrm{T}}$$

Think about why the algorithm makes sense intuitively.

Multiclass Classification

Reduction to binary classification

Reduce multiclass to binary

Is there an *even more general and simpler approach* to derive multiclass classification algorithms?

Given a binary classification algorithm (any one, not just linear methods), can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

- one-versus-all (one-versus-rest, one-against-all, etc)
- one-versus-one (all-versus-all, etc)
- Error-Correcting Output Codes (ECOC)
- tree-based reduction

19 / 49

One-versus-all (OvA)

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

Training: for each class $k \in [C]$,

- ullet relabel examples with class k as +1, and all others as -1
- ullet train a binary classifier h_k using this new dataset

<i>x</i> ₁		<i>x</i> ₁	_	<i>x</i> ₁	+	<i>x</i> ₁	_	<i>x</i> ₁	_
<i>X</i> ₂		<i>x</i> ₂	_	<i>x</i> ₂	_	<i>x</i> ₂	+	<i>x</i> ₂	_
<i>X</i> 3	\Rightarrow	<i>X</i> 3	_	<i>X</i> 3	_	<i>X</i> 3	_	<i>X</i> 3	+
<i>X</i> ₄		<i>X</i> ₄	_	<i>X</i> ₄	+	<i>X</i> ₄	_	<i>X</i> ₄	_
<i>X</i> 5		<i>X</i> 5	+	<i>X</i> 5	_	<i>X</i> 5	_	<i>X</i> 5	_
		↓		↓				1	}
		h_1		h_2		h_3		h ₄	

21 / 49

Multiclass Classification

Reduction to binary classification

One-versus-one (OvO)

(picture credit: link)

Idea: train $\binom{C}{2}$ binary classifiers to learn "is class k or k'?".

Training: for each pair (k, k'),

- ullet relabel examples with class k as +1 and examples with class k' as -1
- discard all other examples
- ullet train a binary classifier $h_{(k,k')}$ using this new dataset

		■ v	S. <mark> </mark>	■ v	s. =	■ v	s.	- v	s. <mark> </mark>	■ v	s.	■ v	s. <mark> </mark>
<i>x</i> ₁		<i>x</i> ₁	_					<i>x</i> ₁	_			<i>x</i> ₁	_
x_2				<i>x</i> ₂	_	<i>x</i> ₂	+					<i>x</i> ₂	+
<i>X</i> 3	\Rightarrow					<i>X</i> 3	_	<i>X</i> 3	+	<i>X</i> 3	_		
<i>X</i> ₄		<i>X</i> ₄	_					<i>X</i> ₄	_			<i>X</i> ₄	_
<i>X</i> 5		<i>X</i> 5	+	<i>X</i> ₅	+					<i>X</i> 5	+		
		1	Ų.	1	ļ	,	\Downarrow		\Downarrow		\downarrow		\downarrow
		$h_{(i)}$	$h_{(1,2)}$ $h_{(1,3)}$		1,3)	$h_{(3,4)}$ $h_{(3,4)}$		$h_{(4,2)} \qquad \qquad h_{(1)}$		1,4)	$h_{(i)}$	3,2)	

One-versus-all (OvA)

Prediction: for a new example $oldsymbol{x}$

• ask each h_k : does this belong to class k? (i.e. $h_k(x)$)

Multiclass Classification

• randomly pick among all k's s.t. $h_k(x) = +1$.

Issue: will (probably) make a mistake as long as one of h_k errs.

(0,0)

Multiclass Classification

Reduction to binary classification

Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example $oldsymbol{x}$

- ask each classifier $h_{(k,k')}$ to vote for either class k or k'
- predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but *slower* in prediction.

22 / 49

23 / 49

Error-correcting output codes (ECOC)

(picture credit: link)

Idea: based on a code $M \in \{-1, +1\}^{C \times L}$, train L binary classifiers to learn "is bit b on or off".

Training: for each bit $b \in [L]$

- relabel example x_n as $M_{y_n,b}$
- train a binary classifier h_b using this new dataset.

1				
+	_	+	_	+
_	_	+	+	+
	+	_	_	_
+	+	+	+	_

		1		2		3		4		5	
x_1		<i>x</i> ₁	_			<i>x</i> ₁				<i>x</i> ₁	+
<i>x</i> ₂		<i>x</i> ₂				<i>x</i> ₂					_
<i>X</i> 3	\Rightarrow	<i>X</i> 3				<i>X</i> 3				<i>X</i> 3	_
<i>X</i> ₄		<i>X</i> ₄				<i>X</i> ₄					+
<i>X</i> 5		<i>X</i> 5				<i>X</i> 5					+
		↓		↓		1	}	1	ļ	1	ļ
		h	1	h	2	h	3	h	4	h	5

25 / 49

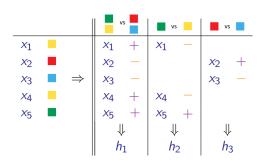
Multiclass Classification

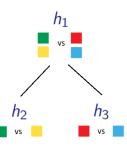
Reduction to binary classification

Tree based method

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures





Prediction is also natural, but is very fast! (think ImageNet where $C \approx 20K$

Error-correcting output codes (ECOC)

Prediction: for a new example x

- compute the **predicted code** $c = (h_1(x), \dots, h_L(x))^T$
- predict the class with the most similar code: $k = \operatorname{argmax}_k(Mc)_k$

How to design the code M?

- the more dissimilar the codes, the more robust
 - if any two codes are d bits away, then prediction can tolerate about d/2errors
- random code is often a good choice

26 / 49

Multiclass Classification

Reduction to binary classification

Comparisons

In big O notation,

Reduction	#training points	test time	remark
OvA	CN	С	not robust
OvO	CN	C^2	can achieve very small training error
ECOC	LN	L	need diversity when designing code
Tree	$(\log_2C)N$	\log_2C	good for "extreme classification"

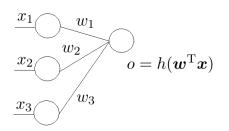
Outline

- Review of Last Lecture
- Multiclass Classification
- Neural Nets
 - Definition
 - Backpropagation
 - Preventing overfitting

29 / 49

Neural Nets Definition

Linear model as a one-layer neural net

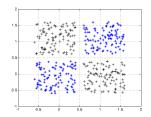


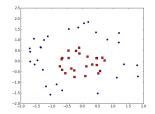
h(a) = a for linear model

To create non-linearity, can use

- Rectified Linear Unit (**ReLU**): $h(a) = \max\{0, a\}$
- sigmoid function: $h(a) = \frac{1}{1+e^{-a}}$
- TanH: $h(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
- many more

Linear models are not always adequate





We can use a nonlinear mapping as discussed:

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{\mathsf{D}}
ightarrowoldsymbol{z}\in\mathbb{R}^{\mathsf{M}}$$

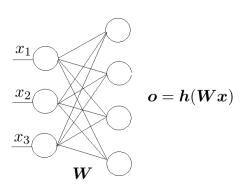
But what kind of nonlinear mapping ϕ should be used? Can we actually learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

30 / 49

Neural Nets Definition

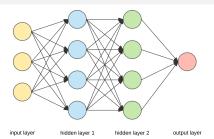
More output nodes



 $W \in \mathbb{R}^{4 \times 3}$, $h : \mathbb{R}^4 \to \mathbb{R}^4$ so $h(a) = (h_1(a_1), h_2(a_2), h_3(a_3), h_4(a_4))$

Can think of this as a nonlinear basis: $oldsymbol{\Phi}(oldsymbol{x}) = oldsymbol{h}(oldsymbol{W}oldsymbol{x})$

More layers



Becomes a network:

- each node is called a neuron
- h is called the activation function
 - can use h(a) = 1 for one neuron in each layer to *incorporate bias term*
 - output neuron can use h(a) = a
- #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
- **deep** neural nets can have many layers and *millions* of parameters
- this is a feedforward, fully connected neural net, there are many variants

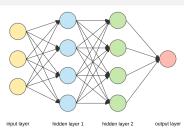
33 / 49

Neural Nets Definition

Math formulation

An L-layer neural net can be written as

$$\boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{h}_{\mathsf{L}} \left(\boldsymbol{W}_{L} \boldsymbol{h}_{\mathsf{L}-1} \left(\boldsymbol{W}_{L-1} \cdots \boldsymbol{h}_{1} \left(\boldsymbol{W}_{1} \boldsymbol{x} \right) \right) \right)$$



To ease notation, for a given input x, define recursively

$$o_0 = x, \qquad a_\ell = W_\ell o_{\ell-1}, \qquad o_\ell = h_\ell(a_\ell) \qquad \qquad (\ell = 1, \dots, L)$$

where

- $m{W}_\ell \in \mathbb{R}^{\mathsf{D}_\ell imes \mathsf{D}_{\ell-1}}$ is the weights between layer $\ell-1$ and ℓ
- $D_0 = D, D_1, \dots, D_L$ are numbers of neurons at each layer
- ullet $a_\ell \in \mathbb{R}^{\mathsf{D}_\ell}$ is input to layer ℓ
- $o_\ell \in \mathbb{R}^{\mathsf{D}_\ell}$ is output to layer ℓ
- $m{e}$ $m{h}_\ell:\mathbb{R}^{\mathsf{D}_\ell} o\mathbb{R}^{\mathsf{D}_\ell}$ is activation functions at layer ℓ

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

• for feedforward network, need to decide number of hidden layers, number of neurons at each layer, activation functions, etc.

34 / 49

Neural Nets

Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

$$\mathcal{E}(\mathbf{W}_1,\ldots,\mathbf{W}_{\mathsf{L}}) = \frac{1}{N} \sum_{n=1}^{\mathsf{N}} \mathcal{E}_n(\mathbf{W}_1,\ldots,\mathbf{W}_{\mathsf{L}})$$

where

$$\mathcal{E}_n(m{W}_1,\dots,m{W}_{\mathsf{L}}) = egin{cases} \|m{f}(m{x}_n) - m{y}_n\|_2^2 & \text{for regression} \ \ln\left(1 + \sum_{k
eq y_n} e^{f(m{x}_n)_k - f(m{x}_n)_{y_n}}
ight) & \text{for classification} \end{cases}$$

How to optimize such a complicated function?

Same thing: apply **SGD**! even if the model is *nonconvex*.

What is the gradient of this complicated function?

Chain rule is the only secret:

ullet for a composite function f(g(w))

$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$$

ullet for a composite function $f(g_1(w),\ldots,g_d(w))$

$$\frac{\partial f}{\partial w} = \sum_{i=1}^{d} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial w}$$

the simplest example $f(g_1(w), g_2(w)) = g_1(w)g_2(w)$

37 / 49

Neural Nets

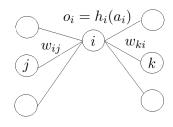
Backpropagation

Computing the derivative

Adding the subscript for layer:

$$\frac{\partial \mathcal{E}_n}{\partial w_{\ell,ij}} = \frac{\partial \mathcal{E}_n}{\partial a_{\ell,i}} o_{\ell-1,j}$$

$$\frac{\partial \mathcal{E}_n}{\partial a_{\ell,i}} = \left(\sum_k \frac{\partial \mathcal{E}_n}{\partial a_{\ell+1,k}} w_{\ell+1,ki}\right) h'_{\ell,i}(a_{\ell,i})$$



For the last layer, for square loss

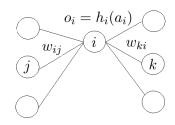
$$\frac{\partial \mathcal{E}_n}{\partial a_{\mathsf{L},i}} = \frac{\partial (h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})^2}{\partial a_{\mathsf{L},i}} = 2(h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})h'_{\mathsf{L},i}(a_{\mathsf{L},i})$$

Exercise: try to do it for logistic loss yourself.

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

Find the derivative of \mathcal{E}_n w.r.t. to w_{ij}



$$\frac{\partial \mathcal{E}_n}{\partial w_{ij}} = \frac{\partial \mathcal{E}_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} = \frac{\partial \mathcal{E}_n}{\partial a_i} \frac{\partial (w_{ij}o_j)}{\partial w_{ij}} = \frac{\partial \mathcal{E}_n}{\partial a_i} o_j$$

$$\frac{\partial \mathcal{E}_n}{\partial a_i} = \frac{\partial \mathcal{E}_n}{\partial o_i} \frac{\partial o_i}{\partial a_i} = \left(\sum_k \frac{\partial \mathcal{E}_n}{\partial a_k} \frac{\partial a_k}{\partial o_i} \right) h_i'(a_i) = \left(\sum_k \frac{\partial \mathcal{E}_n}{\partial a_k} w_{ki} \right) h_i'(a_i)$$

38 / 49

Neural Nets

Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

$$\frac{\partial \mathcal{E}_n}{\partial \boldsymbol{W}_{\ell}} = \frac{\partial \mathcal{E}_n}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}}$$

$$rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_\ell} = egin{cases} \left(oldsymbol{W}_{\ell+1}^{
m T} rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_{\ell+1}}
ight) \circ oldsymbol{h}_\ell'(oldsymbol{a}_\ell) & ext{if } \ell < \mathsf{L} \ 2(oldsymbol{h}_\mathsf{L}(oldsymbol{a}_\mathsf{L}) - oldsymbol{y}_n) \circ oldsymbol{h}_\mathsf{L}'(oldsymbol{a}_\mathsf{L}) & ext{else} \end{cases}$$

where $v_1 \circ v_2 = (v_{11}v_{21}, \cdots, v_{1D}v_{2D})$ is the element-wise product (a.k.a. Hadamard product).

Verify yourself!

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W_1, \ldots, W_L . Repeat:

- **1** randomly pick one data point $n \in [N]$
- **②** forward propagation: for each layer $\ell = 1, ..., L$

ullet compute $oldsymbol{a}_\ell = oldsymbol{W}_\ell oldsymbol{o}_{\ell-1}$ and $oldsymbol{o}_\ell = oldsymbol{h}_\ell (oldsymbol{a}_\ell)$

 $(\boldsymbol{o}_0 = \boldsymbol{x}_n)$

- **3** backward propagation: for each $\ell = L, \ldots, 1$
 - compute

$$rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_\ell} = egin{cases} \left(oldsymbol{W}_{\ell+1}^{\mathrm{T}} rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_{\ell+1}}
ight) \circ oldsymbol{h}'_\ell(oldsymbol{a}_\ell) & ext{ if } \ell < \mathsf{L} \ 2(oldsymbol{h}_\mathsf{L}(oldsymbol{a}_\mathsf{L}) - oldsymbol{y}_n) \circ oldsymbol{h}'_\mathsf{L}(oldsymbol{a}_\mathsf{L}) & ext{ else} \end{cases}$$

update weights

$$oldsymbol{W}_{\ell} \leftarrow oldsymbol{W}_{\ell} - \eta rac{\partial \mathcal{E}_n}{\partial oldsymbol{W}_{\ell}} = oldsymbol{W}_{\ell} - \eta rac{\partial \mathcal{E}_n}{\partial oldsymbol{a}_{\ell}} oldsymbol{o}_{\ell-1}^{ ext{T}}$$

Think about how to do the last two steps properly!

41 / 49

Backpropagation

SGD with momentum

Initialize $oldsymbol{w}_0$ and $oldsymbol{ ext{velocity}}\ oldsymbol{v}=oldsymbol{0}$

For t = 1, 2, ...

- ullet form a stochastic gradient $oldsymbol{g}_t$
- update velocity $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} \eta \boldsymbol{g}_t$ for some discount factor $\alpha \in (0,1)$

Neural Nets

ullet update weight $oldsymbol{w}_t \leftarrow oldsymbol{w}_{t-1} + oldsymbol{v}$

Updates for first few rounds:

- $w_1 = w_0 \eta g_1$
- $\bullet \ \boldsymbol{w}_2 = \boldsymbol{w}_1 \alpha \eta \boldsymbol{g}_1 \eta \boldsymbol{g}_2$
- $w_3 = w_2 \alpha^2 \eta g_1 \alpha \eta g_2 \eta g_3$
- ...

More tricks to optimize neural nets

Many variants based on backprop

- SGD with minibatch: randomly sample a batch of examples to form a stochastic gradient
- SGD with momentum
-

42 / 49

Neural Nets

Preventing overfitting

Overfitting

Overfitting is very likely since the models are too powerful.

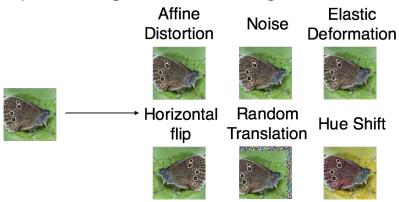
Methods to overcome overfitting:

- data augmentation
- regularization
- dropout
- early stopping
- . .

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data



45 / 49

Neural Nets

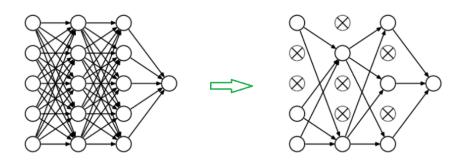
Preventing overfitting

Neural Nets

Preventing overfitting

Dropout

Randomly delete neurons during training



Very effective, makes training faster as well

Regularization

L2 regularization: minimize

$$\mathcal{E}'(oldsymbol{W}_1,\ldots,oldsymbol{W}_{\mathsf{L}}) = \mathcal{E}(oldsymbol{W}_1,\ldots,oldsymbol{W}_{\mathsf{L}}) + \lambda \sum_{\ell=1}^{\mathsf{L}} \|oldsymbol{W}_\ell\|_2^2$$

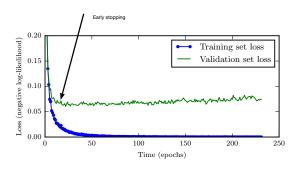
Simple change to the gradient:

$$\frac{\partial \mathcal{E}'}{\partial w_{ij}} = \frac{\partial \mathcal{E}}{\partial w_{ij}} + 2\lambda w_{ij}$$

Introduce weight decaying effect

Early stopping

Stop training when the performance on validation set stops improving



Conclusions for neural nets

Deep neural networks

- are hugely popular, achieving best performance on many problems
- do need a lot of data to work well
- take a lot of time to train (need GPUs for massive parallel computing)
- take some work to select architecture and hyperparameters
- are still not well understood in theory