CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Sep 17, 2020

s
I
Outline
@ Review of Last Lecture

© Multiclass Classification

© Neural Nets

Administration

HW1 is being graded. Will discuss solutions today.

HW?2 will be released after this lecture. Due on 9/29.

Review of Last Lecture

Outline

@ Review of Last Lecture

Review of Last Lecture

Summary

Linear models for binary classification:
Step 1. Model is the set of separating hyperplanes

F={f(x) = sgn(w"z) | w € R}

Review of Last Lecture

Step 3. Find empirical risk minimizer (ERM):

N
1
w”* = argmin F'(w) = argmin — Z ((ynwx,)
weRP werp IV n—1
using
e GD: w <+ w—nVF(w

)
e SGD: w++ w—nVF(w)
e Newton: w + w — (VZF(w))_1 VF(w)

5/ 49

7/ 49

Review of Last Lecture

Step 2. Pick the surrogate loss

@ perceptron 0ss lperceptron(2) = max{0, —z} (used in Perceptron)
o hinge l0ss fhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss {jogistic(2) = log(1 4 exp(—=z)) (used in logistic regression)

6/ 49

Review of Last Lecture

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

N N
w® = argmin Z &ogistic(yanwn) = argmax H P(yn | @n;w)
w n=1 n=1

where 1
. _ T\ — _
Ply | wiw) = o(yw's) =

0.9
0.8]
0.7]
0.6
0.5]
0.4]
0.3
0.2]

0.1

8 /49

Outline

© Multiclass Classification
@ Multinomial logistic regression
@ Reduction to binary classification

9 /49

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

flx) =

1 ifwlz>0
2 ifwle<0

can be written as

flx) =

1 if wlT:c > 'wgm
2 ifwix>wlx

= argmax wgcc
ke{1,2}

for any wy,ws s.t. w = w1 — wo
Think of w;f:c as a score for class k.

11/ 49

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,--- ,C}
@ goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
o predicting weather: sunny, cloudy, rainy, etc

e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

GOzl (R ezt
Linear models: from binary to multiclass

I
.
2, .
0 : - : . w:(%,%):wl—
wi = (1, —3)
.
_ @ Blue class:
~— | [C A
o

10 / 49

Multiclass Classification Multinomial logistic regression Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass Linear models for multiclass classification
: wy = (L _l;)
1] w3z = (0,1) F =< f(x) = argmax 'w,?zc|w1,...,chRD
ke(C]
@ Blue class: f() (W), | W e RCXD
= x) = argmax T
{x: 1 = argmax, w; z} kge[(:] k
° ;
T
. 1 T : 2 = argmax; w; &
{ & bW @) Step 2: How do we generalize perceptron/hinge/logistic loss?
@ Green class:
2k . - . d {x : 3 = argmax, w,?a:} This lecture: focus on the more popular logistic loss
13 / 49 14 / 49

(T EENE RS Multinomial logistic regression (T EENEEECHETHCI Multinomial logistic regression

Multinomial logistic regression: a probabilistic view Applying MLE again
Maximize probability of seeing labels y1,...,yn given x1,..., N
Observe: for binary logistic regression, with w = w; — wo:
N N wl x,
Ty P(W)—H]P’(y |:BW)—HL
1 et = n n» = T
Ply=1|zw) = o(w'e) = = g X eVi® ni 7t Skelc] €4

—wT T
1_|_er3 6w1m+ew2m

By taking negative log, this is equivalent to minimizing
Naturally, for multiclass:

T ZkG[C]e e (W —wy,,) Ty,
Ply—k |z W)= — o ewiw Zl (w — Zln 14+ 3 elwnmwy

wl e k#yn
Zk'e[C] e

. . is i multiclass logistic loss, a.k.a cross-entropy loss.
This is called the softmax function. This is the multi gist! ' Py

When C = 2, this is the same as binary logistic loss.

15 / 49 16 / 49

kgl ogtatc earesion
Step 3: Optimization

Apply SGD: what is the gradient of

gW)=In[1+ Y elww—wm)ten)7
k' #yn

It's a C x D matrix. Let’'s focus on the k-th row:

If & # yn:
(wk_wyn)Tm’n
e
W)= v =Pk |z W)z,
vwkg() 14+ Zk/#yn e(wk’_wyn)Tw'ﬂ Tn (’ Tn;)m"
else:
_ Zk’;é . e(wk’_wyn)Tm’ﬂ
Vu,g(W) = (! >w3 = (P(yn | ®p; W) — 1)z,

1+ Zk’;«éy e(Wy —wy,)Tz,

17 / 49
A note on prediction
Having learned W, we can either
© make a deterministic prediction argmaxycic) wiz
e make a randomized prediction according to P(k | z; W) o e®i ®
In either case, (expected) mistake is bounded by logistic loss
@ deterministic
If(z) # 4] < logy | 14y elwmne
k#y
@ randomized
El[f(x) #yll =1-P(y|z;W) < —InP(y | z; W)
19 / 49

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|x,; W)

sS4

WW-—-n| Py=yp |x,;W)—-1 |
Ply=C|x,; W)

Think about why the algorithm makes sense intuitively.

18 / 49

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
e one-versus-all (one-versus-rest, one-against-all, etc)
@ one-versus-one (all-versus-all, etc)

e Error-Correcting Output Codes (ECOC)

@ tree-based reduction

20 / 49

Reduction to binary classification
One-versus-all (OvA)

(picture credit: link)
Idea: train C binary classifiers to learn “is class k& or not?" for each k.

Training: for each class k € [C],
o relabel examples with class k as +1, and all others as —1

@ train a binary classifier hy using this new dataset

| [| [
X1 X1 X1 + | X1 X1
xo N X2 X X + | X2
x3 B = |x3 —|x3 —|Xx3 — |Xx3 -+
X4 X4 X4 + | Xa X4
X5 | X5 + | X5 X5 X5
Y Y Y \
hy ho h3 hy

21 / 49

Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),
o relabel examples with class k as +1 and examples with class k" as —1
@ discard all other examples

e train a binary classifier i, /) using this new dataset

M vs. HMyvs. B | Wvs. W | Wvs. Wvs. W | Wvs.
X1 X1 X1 X1
xo N X2 Xy + Xy +
x3 W = X3 x3 + | x3
X4 X4 X4 — X4 —
x; W X5 4+ | X5 + X5 +

4 3 \ U U U
h 2) h 3) h3,4) h2) h1.4) hs.9)

23 / 49

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example
@ ask each hy: does this belong to class k? (i.e. hi(x))

e randomly pick among all £'s s.t. hi(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

22 / 49

Reduction to binary classification
One-versus-one (OvO)

Prediction: for a new example
o ask each classifier iy 1) to vote for either class k or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

24 / 49

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf
http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
Error-correcting output codes (ECOC)

(picture credit: link)

|dea: based on a code M € {—1,+1}°*L, train L binary classifiers to
learn “is bit b on or off".

Training: for each bit b € [L]

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example
o compute the predicted code ¢ = (hi(x),..., A (x))T

@ predict the class with the most similar code: k = argmax;, (M c);

How to design the code M?

@ the more dissimilar the codes, the more robust

e if any two codes are d bits away, then prediction can tolerate about d/2
errors

@ random code is often a good choice

26 / 49

Multiclass Classification Reduction to binary classification

Comparisons

In big O notation,

M|1 2 3 4 5
o relabel example x,, as M, m |+ + +
+ + +
@ train a binary classifier hy using [I
this new dataset. m o+ + + +
1 2 3 4 5
X1 X1 X1 X1+ | X1 X1+
x W X0 X2 X2 X2 X2
x3 W = | x3 X3 X3 + | X3 X3
X4 Xa X4 X4 + X4 X4 +
x; W X5 X, x5 + | X5 X5 +
J) \ J \
hy ha hs ha hs
25 / 49
Tree based method
Idea: train = C binary classifiers to learn “belongs to which half?".
Training: see pictures
u VS: | S | B2 hl
X1 X1+ X | .
X2 X2 X2 + [|
X3 X3 X3 \
X4 X4 + | Xa
% X5 + | X5 +
5 gy y I ha hs
hl h2 h3 - 'S - 'S .
Prediction is also natural, but is very fast! (think ImageNet where
C ~ 20K)
27 / 49

Reduction #tra!ining test time remark
points
OvA CN C not robust
OvO CN C? can achieve very small training error
ECOC LN L need diversity when designing code
Tree (logy CON log, C good for “extreme classification”

28 / 49

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Outline Linear models are not always adequate

R

gyt
3
N

© Neural Nets
@ Definition We can use a nonlinear mapping as discussed:

@ Backpropagation

. D M
@ Preventing overfitting ox):xeR” - zeR

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

29 / 49 30 / 49

Linear model as a one-layer neural net More output nodes

h(a) = a for linear model I
T2 o=h(Wx)
T3
To create non-linearity, can use Q
@ Rectified Linear Unit (ReLU): h(a) = max{0,a} W
@ sigmoid function: h(a) = 1+é,a
o TanH: h(a) _ 22;2:3 W e R4X3, h: R4 — R4 SO h(a) = (hl(al), hg(ag), h3(a3), h4(a4))
@ many more Can think of this as a nonlinear basis: ®(x) = h(Wx)

31/ 49 32 /49

D<o
More layers

Becomes a network:

Y each node iS ca I Ied a neuron input layer hidden layer 1 hidden layer 2 output layer

@ h is called the activation function

e can use h(a) = 1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a

#layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

@ this is a feedforward, fully connected neural net, there are many
variants
33 /49

Definition
Math formulation

An L-layer neural net can be written as

f(x)=hL(WrhL1 (WL hi (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input @, define recursively

o) =, a; = Wyop_1, or = hy(ay)

where

o W, € RPxPe-1 js the weights between layer £ — 1 and ¢
Do =D,Dq,...,DL are numbers of neurons at each layer
a; € RP? is input to layer ¢
o, € RP¢ is output to layer £
hy : RP¢ — RDP¢ js activation functions at layer ¢

35 / 49

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

34 / 49

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
1
EWy,...,W) = Nan(Wl,...,WL)
n=1

where

| f(zn) — ynll3 for regression
5’n(W1)"'7WL): f(@n)p—f(@n) - .

In (143, ¢ @kl @nn for classification

36 / 49

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0f dg
ow 89 ow
e for a composite function f(g1(w), ..., gq(w))
Z of 3gz
dg; ow

the simplest example f(g1(w), g2(w)) = g1(w)ga(w)

37 / 49

Computing the derivative

Adding the subscript for layer:

0, 0&,
6wg7,-j - 8&@72'

i | hyi(ae;
8aez (Z Oapy1, kweﬂ’k) ¢i(aei)

For the last layer, for square loss

Op—1,5

0n _ O(hi(aLi) — Yn,i)?
8a|_,i 8CLL,i

=2(hi(aL;) —

Yn,i)hi i(aL:)

Exercise: try to do it for logistic loss yourself.

39 / 49

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of &, w.r.t. to w;;

agn _ 85n aCLi . 85n a(wijOj) . 85710'
8wij N 8ai 811)1']' - 8az~ 8wij - 8&2' J

0E, O, Do; < 0En
%, .
p Oay,

. n . 88 8ak
8az~ - aOi 3az (Z 8ak 301) al)

38 / 49

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

9E, %OT
oW, da, !

o0&y, (WE’E-I aifnl) o hy(ay)
8ag 2(hy (a) —

if ¢ <L
yn)oh{(aL) else

where v] 0 vy = (v11V21, - -

,U1pV2p) Is the element-wise product (a.k.a.
Hadamard product).

Verify yourself!

40 / 49

EncproRnastion
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, ..., W|. Repeat:
© randomly pick one data point n € [N]

@ forward propagation: for each layer / =1,... L

e compute ay = Wyoy_1 and oy = hy(ay) (00 = xy)
© backward propagation: foreach / =L,... 1
e compute
% _ (Wﬁl 8?1511) o hy(ae) if£<L
day 2(hi(aL) —yn)oh|(ar) else
o update weights
& &
W, «— W, — " — W, - n—o}
0 Wy 776Wg ’ naaeoz_1
Think about how to do the last two steps properly!
41/ 49

SGD with momentum

Initialize wy and velocity v =0
Fort=1,2,...
@ form a stochastic gradient gy
@ update velocity v < av — ng; for some discount factor a € (0,1)

@ update weight w; < wy_1 +v

Updates for first few rounds:
@ w1 = wo —Ng1
¢ w2 = w; — angy — 192

o w3 =wy — a’ng — angs — ngs

43 / 49

More tricks to optimize neural nets

Many variants based on backprop

@ SGD with minibatch: randomly sample a batch of examples to form
a stochastic gradient

e SGD with momentum

42 / 49

e i
Overfitting

Overfitting is very likely since the models are too powerful.

Methods to overcome overfitting:
@ data augmentation
@ regularization
@ dropout
o early stopping

44 / 49

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine

Distortion Noise

B

ontal Random

Translation

ey

WEMEIRVEES Preventing overfitting

Dropout

Randomly delete neurons during training

\,

Very effective, makes training faster as well

Elastic

Deformation

Hue Shift

Regularization

L2 regularization: minimize

L
Wy, , W) =EWr,..., W)+ A [Wi3
/=1

Simple change to the gradient:

o0&’ o€
a’wij - _awij + 2)\w¢j

Introduce weight decaying effect

46 / 49

e G
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

e—e Training set loss

0.15 — Validation set loss H

0.10

0.05

Loss (negative log-likelihood)

0.00

. " .
0 50 100 150 200 250
Time (epochs)

48 / 49

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a lot of data to work well

@ take a /ot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory

49 / 49

	Review of Last Lecture
	Multiclass Classification
	Neural Nets

