
CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Sep 24, 2020

1 / 50

Administration

HW 1 grade is released.

HW 2 is due on Tue, 9/29.

2 / 50

Outline

1 Review of last lecture

2 Convolutional neural networks (ConvNets/CNNs)

3 Kernel methods

3 / 50

Review of last lecture

Outline

1 Review of last lecture

2 Convolutional neural networks (ConvNets/CNNs)

3 Kernel methods

4 / 50

Review of last lecture

Linear models: from binary to multiclass

w1 = (1,−1
3)

w2 = (−1
2 ,−1

2)
w3 = (0, 1)

Blue class:
{x : 1 = argmaxkw

T
k x}

Orange class:
{x : 2 = argmaxkw

T
k x}

Green class:
{x : 3 = argmaxkw

T
k x}

F =

{
f(x) = argmax

k∈[C]
wT
k x | w1, . . . ,wC ∈ RD

}

5 / 50

Review of last lecture

Softmax + MLE = minimizing cross-entropy loss

Maximize probability of see labels y1, . . . , yN given x1, . . . ,xN

P (W) =

N∏
n=1

P(yn | xn;W) =

N∏
n=1

ew
T
ynxn∑

k∈[C] e
wT
k xn

By taking negative log, this is equivalent to minimizing

F (W) =
N∑
n=1

ln

(∑
k∈[C] e

wT
k xn

ew
T
yn

xn

)
=

N∑
n=1

ln

1 +
∑
k 6=yn

e(wk−wyn)
Txn

This is the multiclass logistic loss, a.k.a cross-entropy loss.

6 / 50

Review of last lecture

Comparisons of multiclass-to-binary reductions

In big O notation,

Reduction
#training

points
test time Idea

OvA CN C is class k or not?

OvO CN C2 is class k or class k′?

ECOC LN L is bit b on or off?

Tree (log2 C)N log2 C belong to which half of the label set?

7 / 50

Review of last lecture

Math formulation of neural nets

An L-layer neural net can be written as

f(x) = hL (WLhL−1 (WL−1 · · ·h1 (W1x)))

To ease notation, for a given input x, define recursively

o0 = x, a` =W`o`−1, o` = h`(a`) (` = 1, . . . , L)

where

W` ∈ RD`×D`−1 is the weights for layer `

D0 = D,D1, . . . ,DL are numbers of neurons at each layer

a` ∈ RD` is input to layer `

o` ∈ RD` is output to layer `

h : RD` → RD` is activation functions at layer `
8 / 50

Review of last lecture

Backprop = SGD for neural nets

The backpropagation algorithm (Backprop)

Initialize W1, . . . ,WL (all 0 or randomly). Repeat:

1 randomly pick one data point n ∈ [N]

2 forward propagation: for each layer ` = 1, . . . , L
compute a` =W`o`−1 and o` = h`(a`) (o0 = xn)

3 backward propagation: for each ` = L, . . . , 1
compute

∂En
∂a`

=

{(
WT

`+1
∂En

∂a`+1

)
◦ h′`(a`) if ` < L

2(hL(aL)− yn) ◦ h′L(aL) else

update weights

W` ←W` − η
∂En
∂W`

=W` − η
∂En
∂a`

oT`−1

Think about how to do the last two steps properly!
9 / 50

Convolutional neural networks (ConvNets/CNNs)

Outline

1 Review of last lecture

2 Convolutional neural networks (ConvNets/CNNs)
Motivation
Architecture

3 Kernel methods

10 / 50

Convolutional neural networks (ConvNets/CNNs)

Acknowledgements

Not much math, a lot of empirical intuitions

The materials borrow heavily from the following sources:

Stanford Course Cs231n: http://cs231n.stanford.edu/

Dr. Ian Goodfellow’s lectures on deep learning:
http://deeplearningbook.org

Both website provides tons of useful resources: notes, demos, videos, etc.

11 / 50

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Image Classification: A core task in Computer Vision

6

cat

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

This image by Nikita is
licensed under CC-BY 2.0

http://cs231n.stanford.edu/
http://deeplearningbook.org

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

This image by Nikita is
licensed under CC-BY 2.0

The Problem: Semantic Gap

7

What the computer sees

An image is just a big grid of
numbers between [0, 255]:

e.g. 800 x 600 x 3
(3 channels RGB)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Viewpoint variation

8

All pixels change when
the camera moves!

This image by Nikita is
licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Illumination

9

This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Deformation

10

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

This image by Tom Thai is
licensed under CC-BY 2.0

This image by sare bear is
licensed under CC-BY 2.0

This image by Umberto Salvagnin
is licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Occlusion

11

This image is CC0 1.0 public domain This image by jonsson is licensed
under CC-BY 2.0This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 201712

This image is CC0 1.0 public domain

Challenges: Background Clutter

This image is CC0 1.0 public domain

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - April 6, 2017

Challenges: Intraclass variation

13

This image is CC0 1.0 public domain

Convolutional neural networks (ConvNets/CNNs) Motivation

Fundamental problems in vision

The key challenge
How to train a model that can tolerate all those variations?

Main ideas

need a lot of data that exhibits those variations

need more specialized models to capture the invariance

12 / 50

Convolutional neural networks (ConvNets/CNNs) Motivation

Issues of standard NN for image inputs

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201727

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Spatial structure is lost!

13 / 50

Convolutional neural networks (ConvNets/CNNs) Motivation

Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets

usually consist of convolution layers, ReLU layers, pooling layers,
and regular fully connected layers

key idea: learning from low-level to high-level features

14 / 50

Convolutional neural networks (ConvNets/CNNs) Architecture

Convolution layer

Arrange neurons as a 3D volume naturally

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201728

32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

15 / 50

Convolutional neural networks (ConvNets/CNNs) Architecture

Convolution

(Goodfellow 2016)

2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS

a b c d

e f g h

i j k l

w x

y z

aw + bx +
ey + fz
aw + bx +
ey + fz

bw + cx +
fy + gz
bw + cx +
fy + gz

cw + dx +
gy + hz
cw + dx +
gy + hz

ew + fx +
iy + jz
ew + fx +
iy + jz

fw + gx +
jy + kz
fw + gx +
jy + kz

gw + hx +
ky + lz
gw + hx +
ky + lz

Input
Kernel

Output

Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.

334

(filter/receptive field)

16 / 50

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201729

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201730

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201731

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201732

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201733

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201734

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201735

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201736

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Convolutional neural networks (ConvNets/CNNs) Architecture

Why convolution makes sense?

Main idea: if a filter is useful at one location, it should be useful at
other locations.

(Goodfellow 2016)

A simple example why
filtering is useful

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320⇥ 280⇥ 319⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

CHAPTER 9. CONVOLUTIONAL NETWORKS

Figure 9.6: Efficiency of edge detection. The image on the right was formed by taking
each pixel in the original image and subtracting the value of its neighboring pixel on the
left. This shows the strength of all of the vertically oriented edges in the input image,
which can be a useful operation for object detection. Both images are 280 pixels tall.
The input image is 320 pixels wide while the output image is 319 pixels wide. This
transformation can be described by a convolution kernel containing two elements, and
requires 319 ⇥ 280 ⇥ 3 = 267, 960 floating point operations (two multiplications and
one addition per output pixel) to compute using convolution. To describe the same
transformation with a matrix multiplication would take 320⇥ 280⇥ 319⇥ 280, or over
eight billion, entries in the matrix, making convolution four billion times more efficient for
representing this transformation. The straightforward matrix multiplication algorithm
performs over sixteen billion floating point operations, making convolution roughly 60,000
times more efficient computationally. Of course, most of the entries of the matrix would be
zero. If we stored only the nonzero entries of the matrix, then both matrix multiplication
and convolution would require the same number of floating point operations to compute.
The matrix would still need to contain 2 ⇥ 319 ⇥ 280 = 178, 640 entries. Convolution
is an extremely efficient way of describing transformations that apply the same linear
transformation of a small, local region across the entire input. (Photo credit: Paula
Goodfellow)

340

-1 -1

Input

Kernel
Output

17 / 50

Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection

18 / 50

(Goodfellow 2016)

Local Receptive Field Leads to
Sparse Connectivity (affects less)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.2: Sparse connectivity, viewed from below: We highlight one input unit, x3,
and also highlight the output units in s that are affected by this unit. (Top)When s is
formed by convolution with a kernel of width 3, only three outputs are affected by x.
(Bottom)When s is formed by matrix multiplication, connectivity is no longer sparse, so
all of the outputs are affected by x3.

336

Sparse
connections
due to small
convolution

kernel

Dense
connections

(Goodfellow 2016)

CHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above: We highlight one output unit, s3,
and also highlight the input units in x that affect this unit. These units are known
as the receptive field of s3. (Top)When s is formed by convolution with a kernel of
width 3, only three inputs affect s3. (Bottom)When s is formed by matrix multiplication,
connectivity is no longer sparse, so all of the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

337

Sparse connectivity: being
affected by less

Sparse
connections
due to small
convolution

kernel

Dense
connections

Figure 9.3

Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection

parameters sharing

19 / 50
(Goodfellow 2016)

Parameter SharingCHAPTER 9. CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing: Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Due to parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing so the parameter is used only once.

for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude less than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

In the case of convolution, the particular form of parameter sharing causes the
layer to have a property called equivariance to translation. To say a function is
equivariant means that if the input changes, the output changes in the same way.
Specifically, a function f(x) is equivariant to a function g if f(g(x)) = g(f(x)).
In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example, let I
be a function giving image brightness at integer coordinates. Let g be a function

338

Convolution
shares the same

parameters
across all spatial

locations

Traditional
matrix

multiplication
does not share
any parameters

Figure 9.5

Convolutional neural networks (ConvNets/CNNs) Architecture

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:

filter = weights with sparse connection

parameters sharing

Much less parameters! Example (ignore bias terms):

FC: (32× 32× 3)× (28× 28) ≈ 2.4M

CNN: 5× 5× 3 = 75

20 / 50

Convolutional neural networks (ConvNets/CNNs) Architecture

Spatial arrangement: stride and padding

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201742

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

21 / 50

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201743

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201744

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201745

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201746

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201747

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201748

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201749

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201750

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201751

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201752

N

NF

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201753

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201754

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201755

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201756

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Convolutional neural networks (ConvNets/CNNs) Architecture

Summary for convolution layer

Input: a volume of size W1 ×H1 ×D1

Hyperparameters:

K filters of size F × F
stride S

amount of zero padding P (for one side)

Output: a volume of size W2 ×H2 ×D2 where

W2 = (W1 + 2P − F)/S + 1

H2 = (H1 + 2P − F)/S + 1

D2 = K

#parameters: (F × F ×D1 + 1)×K weights

Common setting: F = 3, S = P = 1
22 / 50

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201757

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201758

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201759

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201760

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = 760

Convolutional neural networks (ConvNets/CNNs) Architecture

Another element: pooling

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201772

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

23 / 50

Convolutional neural networks (ConvNets/CNNs) Architecture

Pooling

Similar to a filter, except

depth is always 1
different operations: average, L2-norm, max
no parameters to be learned

Max pooling with 2× 2 filter and stride 2 is very common

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201773

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

24 / 50

Convolutional neural networks (ConvNets/CNNs) Architecture

Putting everything together

Typical architecture for CNNs:

Input → [[Conv → ReLU]*N → Pool?]*M → [FC → ReLU]*Q → FC

Common choices: N ≤ 5, Q ≤ 2, M is large

Well-known CNNs: LeNet, AlexNet, ZF Net, GoogLeNet, VGGNet, etc.

All achieve excellent performance on image classification tasks.

25 / 50

Convolutional neural networks (ConvNets/CNNs) Architecture

How to train a CNN?

How do we learn the filters/weights?

Essentially the same as FC NNs: apply SGD/backpropagation

26 / 50

Kernel methods

Outline

1 Review of last lecture

2 Convolutional neural networks (ConvNets/CNNs)

3 Kernel methods
Motivation
Dual formulation of linear regression
Kernel Trick

27 / 50

Kernel methods Motivation

Motivation

Recall the question: how to choose nonlinear basis φ : RD → RM?

wTφ(x)

neural network is one approach: learn φ from data

kernel method is another one: sidestep the issue of choosing φ by
using kernel functions

28 / 50

Kernel methods Motivation

Case study: regularized linear regression

Kernel methods work for many problems and we take regularized linear
regression as an example.

Recall the regularized least square solution:

w∗ = argmin
w

F (w)

= argmin
w

(
‖Φw − y‖22 + λ‖w‖22

)
=
(
ΦTΦ + λI

)−1
ΦTy

Φ =

φ(x1)

T

φ(x2)
T

...
φ(xN)

T

 , y =

y1
y2
...
yN

Issue: operate in space RM and M could be huge or even infinity!

29 / 50

Kernel methods Motivation

A closer look at the least square solution

By setting the gradient of F (w) = ‖Φw − y‖22 + λ‖w‖22 to be 0:

ΦT(Φw∗ − y) + λw∗ = 0

we know

w∗ =
1

λ
ΦT(y −Φw∗) = ΦTα =

N∑
n=1

αnφ(xn)

Thus the least square solution is a linear combination of features!

Note this is true for perceptron and many other problems.

Of course, the above calculation does not show what α is.

30 / 50

Kernel methods Motivation

Why is this helpful?

Assuming we know α, the prediction of w∗ on a new example x is

w∗Tφ(x) =

N∑
n=1

αnφ(xn)
Tφ(x)

Therefore we do not really need to know w∗. Only inner products in the
new feature space matter!

Kernel methods are exactly about computing inner products without
knowing φ.

But we need to figure out what α is first!

31 / 50

Kernel methods Dual formulation of linear regression

How to find α?

Plugging in w = ΦTα into F (w) gives

G(α) = F (ΦTα)

= ‖ΦΦTα− y‖22 + λ‖ΦTα‖22
= ‖Kα− y‖22 + λαTKα (K = ΦΦT)

= αTKTKα− 2yTKα+ λαTKα+ cnt.

= αT(K2 + λK)α− 2yTKα+ cnt. (KT =K)

This is sometime called the dual formulation of linear regression.

K = ΦΦT ∈ RN×N is called Gram matrix or kernel matrix where the
(i, j) entry is

φ(xi)
Tφ(xj)

32 / 50

Kernel methods Dual formulation of linear regression

Examples of kernel matrix

3 data points in R
x1 = −1, x2 = 0, x3 = 1

φ is polynomial basis with degree 4:

φ(x) =

1
x
x2

x3

φ(x1) =

1
−1
1
−1

 φ(x2) =

1
0
0
0

 φ(x3) =

1
1
1
1

33 / 50

Kernel methods Dual formulation of linear regression

Calculation of the Gram matrix

φ(x1) =

1
−1
1
−1

 φ(x2) =

1
0
0
0

 φ(x3) =

1
1
1
1

Gram/Kernel matrix

K =

 φ(x1)
Tφ(x1) φ(x1)

Tφ(x2) φ(x1)
Tφ(x3)

φ(x2)
Tφ(x1) φ(x2)

Tφ(x2) φ(x2)
Tφ(x3)

φ(x3)
Tφ(x1) φ(x3)

Tφ(x2) φ(x3)
Tφ(x3)

=

 4 1 0
1 1 1
0 1 4

34 / 50

Kernel methods Dual formulation of linear regression

Gram matrix vs covariance matrix

dimensions entry (i, j) property

ΦΦT N× N φ(xi)
Tφ(xj) both are symmetric and

positive semidefiniteΦTΦ M×M
∑N

n=1 φ(xn)iφ(xn)j

35 / 50

Kernel methods Dual formulation of linear regression

How to find α?

Minimize the dual formulation

G(α) = αT(K2 + λK)α− 2yTKα+ cnt.

Setting the derivative to 0 we have

0 = (K2 + λK)α−Ky =K ((K + λI)α− y)

Thus α = (K + λI)−1y is a minimizer and we obtain

w∗ = ΦTα = ΦT(K + λI)−1y

Exercise: are there other minimizers? and are there other w∗’s?

36 / 50

Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F (w) gives w∗ = (ΦTΦ + λI)−1ΦTy

Minimizing G(α) gives w∗ = ΦT(ΦΦT + λI)−1y

Note I has different dimensions in these two formulas.

Natural question: are they the same or different?

They have to be the same because F (w) has a unique minimizer!

And they are:

(ΦTΦ + λI)−1ΦTy

= (ΦTΦ + λI)−1ΦT(ΦΦT + λI)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦΦT + λΦT)(ΦΦT + λI)−1y

= (ΦTΦ + λI)−1(ΦTΦ + λI)ΦT(ΦΦT + λI)−1y

= ΦT(ΦΦT + λI)−1y

37 / 50

Kernel methods Dual formulation of linear regression

Then what is the difference?

First, computing (ΦΦT + λI)−1 can be more efficient than computing
(ΦTΦ + λI)−1 when N ≤ M.

More importantly, computing α = (K + λI)−1y also only requires
computing inner products in the new feature space!

Now we can conclude that the exact form of φ(·) is not essential; all we
need is computing inner products φ(x)Tφ(x′).

For some φ it is indeed possible to compute φ(x)Tφ(x′) without
computing/knowing φ. This is the kernel trick.

38 / 50

Kernel methods Kernel Trick

Example

Consider the following polynomial basis φ : R2 → R3:

φ(x) =

 x21√
2x1x2
x22

What is the inner product between φ(x) and φ(x′)?

φ(x)Tφ(x′) = x1
2x′1

2
+ 2x1x2x

′
1x
′
2 + x2

2x′2
2

= (x1x
′
1 + x2x

′
2)

2 = (xTx′)2

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

39 / 50

Kernel methods Kernel Trick

Another example

φ : RD → R2D is parameterized by θ:

φθ(x) =

cos(θx1)
sin(θx1)

...
cos(θxD)
sin(θxD)

What is the inner product between φθ(x) and φθ(x

′)?

φθ(x)
Tφθ(x

′) =
D∑
d=1

cos(θxd) cos(θx
′
d) + sin(θxd) sin(θx

′
d)

=

D∑
d=1

cos(θ(xd − x′d))

Once again, the inner product in the new space is a simple function of the
features in the original space.

40 / 50

Kernel methods Kernel Trick

More complicated example

Based on φθ, define φL : RD → R2D(L+1) for some integer L:

φL(x) =

φ0(x)
φ 2π

L
(x)

φ2 2π
L
(x)

...
φL 2π

L
(x)

What is the inner product between φL(x) and φL(x

′)?

φL(x)
TφL(x

′) =

L∑
`=0

φ 2π`
L
(x)Tφ 2π`

L
(x′)

=

L∑
`=0

D∑
d=1

cos

(
2π`

L
(xd − x′d)

)
41 / 50

Kernel methods Kernel Trick

Infinite dimensional mapping

When L→∞, even if we cannot compute φ(x), a vector of infinite
dimension, we can still compute inner product:

φ∞(x)Tφ∞(x′) =

∫ 2π

0

D∑
d=1

cos(θ(xd − x′d)) dθ

=

D∑
d=1

sin(2π(xd − x′d))
xd − x′d

Again, a simple function of the original features.

Note that using this mapping in linear regression, we are learning a weight
w∗ with infinite dimension!

42 / 50

Kernel methods Kernel Trick

Kernel functions

Definition: a function k : RD ×RD → R is called a (positive semidefinite)
kernel function if there exists a function φ : RD → RM so that for any
x,x′ ∈ RD,

k(x,x′) = φ(x)Tφ(x′)

Examples we have seen

k(x,x′) = (xTx′)2

k(x,x′) =

D∑
d=1

sin(2π(xd − x′d))
xd − x′d

43 / 50

Kernel methods Kernel Trick

Using kernel functions

Choosing a nonlinear basis φ becomes choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply
the kernel trick.

Gram/kernel matrix becomes:

K = ΦΦT =

k(x1,x1) k(x1,x2) · · · k(x1,xN)
k(x2,x1) k(x2,x2) · · · k(x2,xN)

...
...

...
...

k(xN ,x1) k(xN ,x2) · · · k(xN ,xN)

In fact, k is a kernel if and only if K is positive semidefinite for any N and
any x1, x2, . . ., xN (Mercer theorem).

useful for proving that a function is not a kernel

44 / 50

Kernel methods Kernel Trick

Examples that are not kernels

Function
k(x,x′) = ‖x− x′‖22

is not a kernel, why?

If it is a kernel, the kernel matrix for two data points x1 and x2:

K =

(
0 ‖x1 − x2‖22

‖x1 − x2‖22 0

)
must be positive semidefinite, but is it?

45 / 50

Kernel methods Kernel Trick

Predicting with a kernel function

As long as w∗ =
∑N

n=1 αnφ(xn), prediction on a new example x becomes

w∗Tφ(x) =
N∑
n=1

αnφ(xn)
Tφ(x) =

N∑
n=1

αnk(xn,x)

This is a non-parametric method!

46 / 50

Kernel methods Kernel Trick

More examples of kernel functions

Two most commonly used kernel functions in practice:

Polynomial kernel
k(x,x′) = (xTx′ + c)d

for c ≥ 0 and d is a positive integer.

Gaussian kernel or Radial basis function (RBF) kernel

k(x,x′) = e−
‖x−x′‖22

2σ2

for some σ > 0.

Think about what the corresponding φ is for each kernel.

47 / 50

Kernel methods Kernel Trick

Composing kernels

Creating more kernel functions using the following rules:

If k1(·, ·) and k2(·, ·) are kernels, the followings are kernels too

conical combination: αk1(·, ·) + βk2(·, ·) if α, β ≥ 0

product: k1(·, ·)k2(·, ·)

exponential: ek(·,·)

· · ·

Verify using the definition of kernel!

48 / 50

Kernel methods Kernel Trick

Kernelizing other ML algorithms

Kernel trick is applicable to many ML algorithms:

nearest neighbor classifier

perceptron

logistic regression

SVM

· · ·

49 / 50

Kernel methods Kernel Trick

Example: Kernelized NNC

For NNC with L2 distance, the key is to compute for any two points x, x′

d(x,x′) = ‖x− x′‖22 = xTx+ x′
T
x′ − 2xTx′

With a kernel function k, we simply compute

dkernel(x,x′) = k(x,x) + k(x′,x′)− 2k(x,x′)

which by definition is the L2 distance in a new feature space

dkernel(x,x′) = ‖φ(x)− φ(x′)‖22

50 / 50

	Review of last lecture
	Convolutional neural networks (ConvNets/CNNs)
	Kernel methods

