CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Sep 24, 2020

e
I
Outline
@ Review of last lecture

© Convolutional neural networks (ConvNets/CNNs)

© Kernel methods

Administration

HW 1 grade is released.

HW 2 is due on Tue, 9/29.

Review of last lecture

Outline

@ Review of last lecture

Review of last lecture

Linear models: from binary to multiclass

Review of last lecture

L
1

-l

= argmax ’LUEQJ‘ wi, ..

ke[C]

@ Blue class:
{x: 1 = argmax, w; z}
° :
{x:2=ar T
: 2 = argmax; w; T}
@ Green class:
{x: 3 = argmax, wi z}

., W¢C ERD}

5 / 50

Comparisons of multiclass-to-binary reductions

In big O notation,

Ftraining

Reduction points test time Idea
OvA CN C is class k or not?
OvO CN C? is class k or class k'?
ECOC LN L is bit b on or off?
Tree (logy O)N log, C belong to which half of the label set?

7/ 50

Review of last lecture

Softmax + MLE = minimizing cross-entropy loss

Maximize probability of see labels y1,...,yn given 1,..., TN
N N oW @
P(W) = H]P(yn | zn; W) = H

wlax
n=1 n=1 ZkE[C] ek

By taking negative log, this is equivalent to minimizing

N wle N
ek
n=1 n=1

Y
e k#yn

This is the multiclass logistic loss, a.k.a cross-entropy loss.

Review of last lecture

Math formulation of neural nets

An L-layer neural net can be written as

f(x)=hL(WrhL 1 (WL_1---hi (Wiz)))

input layer

To ease notation, for a given input @, define recursively

o) =, a; = Wjyo,_1,

where
o W, € RPrxPe-1 s the weights for layer £
Do =D,Dq,...,DL are numbers of neurons at each layer
ay € RP? is input to layer ¢
o, € RP¢ is output to layer £
h : RP¢ — RPr is activation functions at layer ¢

Oy = hg(ag) (f =

3 elwnwn) e

6 / 50

8 / 50

Backprop = SGD for neural nets

The backpropagation algorithm (Backprop)

Initialize W1, ..., W (all 0 or randomly). Repeat:

© randomly pick one data point n € [N]
@ forward propagation: for each layer / =1,... L

e compute ay = Wyoy_1 and oy = hy(ay) (00 = xy)
© backward propagation: foreach /= L,... 1
e compute
08, _ [(Whiis)ohifa) U<l
day 2(hi(aL) —yn)oh|(ar) else
o update weights
O€. O€.
— " W, —n—"0F
Wi W, 5w, £ N 5g, %1
Think about how to do the last two steps properly!
9 / 50

Convolutional neural networks (ConvNets/CNNs)

Acknowledgements

Not much math, a lot of empirical intuitions

The materials borrow heavily from the following sources:
e Stanford Course Cs231n: http://cs231n.stanford.edu/

@ Dr. lan Goodfellow’s lectures on deep learning:
http://deeplearningbook.org

Both website provides tons of useful resources: notes, demos, videos, etc.

11 / 50

Convolutional neural networks (ConvNets/CNNs)

Outline

© Convolutional neural networks (ConvNets/CNNs)
@ Motivation

@ Architecture

10 / 50

Image Classification: A core task in Computer Vision

(assume given set of discrete labels)
{dog, cat, truck, plane, ...}

- cat

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture2- 6

April 6, 2017

http://cs231n.stanford.edu/
http://deeplearningbook.org

The Problem: Semantic Gap TR T IR RS Challenges: Viewpoint variation

1
5 104 79 98 103 99 105 123 136 110 105 94 85
76 85 90 105 128 105 87 96 95 99 115 112 106 103 99 85,
99 81 81 93120 131 127 100 95 98 102 99 96 93 101 94
91 61 64 69 91 88 85 101107 109 98 75 B4
114 108 85 55 55 69 64 54 6 7
133137 147 103 65 B1 80 65 52 54 74 84102 93 85 62
— 128 137 144 140 109 95 85 70 62 65 63 63 60 73 86 101
125 133 148 137 119 121 117 94 65 79 80 65 54 64

127 125 131 147 133 127 126 131 111 96 89 75 61 64
115 114 109 123 150 148 131 116 113 109 100 3 65 72 78,
89 93 90 97 108 147 131 118 113 114 113 109 106 95 77 80
8 81 77 79 102 123 117 115 117 125 125 130 115 87
82 89 78 71 80 101 124 126 119 101 107 114 131 119

63 65 75 88 89 71 62 61120 138 135 105 81 08 1
87 65 71 87 106 95 63 45 76 130 126 107 52 94 105 112
8 117 123 116 66 41 51 95 03 89 95 102 107

[

4 87 112 120 98

122 164 148 103 71 56 78 83 03 103 119 139 102 61 69 8411

What the computer sees

An image is just a big grid of
numbers between [0, 255]: All pixels change when
the camera moves!
e.g. 800 x 600 x 3

Insinaus b kia s (3 channels RGB)

This image by Nikita is
licensed under CC-BY 2.0

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 7 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 8 April 6, 2017

Challenges: lllumination Challenges: Deformation

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture2- 9 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 10 April 6, 2017

Challenges: Occlusion

Challenges: Background Clutter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2 - 11 April 6, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 12 April 6, 2017

Convolutional neural networks (ConvNets/CNNs) BRVISVET)

Fundamental problems in vision
Challenges: Intraclass variation

The key challenge
How to train a model that can tolerate all those variations?

Main ideas

@ need a lot of data that exhibits those variations

@ need more specialized models to capture the invariance

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 2- 13 April 6, 2017

12 / 50

Convolutional neural networks (ConvNets/CNNs) SRVITEVELEL]

Issues of standard NN for image inputs

Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation
Wz
1 R T o I (ch—
3072 X /4 10
weights
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5-27 April 18, 2017

Spatial structure is lost!

13/ 50

Convolutional neural networks (ConvNets/CNNs) Bz TS

Convolution layer

Arrange neurons as a 3D volume naturally

Convolution Layer

32x32x3 image -> preserve spatial structure

7

32 height

3 depth

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5-28 April 18, 2017

15 / 50

Convolutional neural networks (ConvNets/CNNs) SRVITEVELEL]

Solution: Convolutional Neural Net (ConvNet/CNN)

A special case of fully connected neural nets

@ usually consist of convolution layers, ReLU layers, pooling layers,
and regular fully connected layers

@ key idea: learning from low-level to high-level features

RELU RELU RELU RELU RELU RELU

CONV [CONV CONV [CONV CONV [CONV
by }

} }

frlick
airplane
ship

!Porse

14 / 50

Convolutional neural networks (ConvNets/CNNs) Bz TS

Convolution

2D Convolution

Input

Kernel
! ' ‘
e f g —1—
Y
' ’ ' -

— (filter/receptive field)

f Output
aw + br + bw 4+ e + cw + dr +
ey + fz fy + gz 9y + hz

ew + fxr + fw + gz + gw + hxr +
iy o+ jz jy o+ k2 ky + Iz

16 / 50

Convolution Layer Convolution Layer Filters always extend the ful

. depth of the input volume
32x32x3 image 32x32x3 image /
/ 5x5x3 filter / 5x5x3 filter
32 7 32 74
Il Convolve the filter with the image Il Convolve the filter with the image
i.e. “slide over the image spatially, i.e. “slide over the image spatially,
computing dot products” computing dot products”
3 3
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-29 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-30 April 18, 2017

Convolution Layer Convolution Layer

___— 32x32x3 image ___— 32x32x3 image

/ 5x5x3 filter w / 5x5x3 filter
32 32

">~ 1 number:

activation map

28

convolve (slide) over all

the result of taking a dot product between the spatial locations
filter and a small 5x5x3 chunk of the image 28
32 (i.e. 5*5*3 = 75-dimensional dot product + bias) L 32 |
3 1

3 wlz+b

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - 31 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-32 April 18, 2017

Convolution Layer consider a second, green filter

activation maps

___— 32x32x3 image

/ 5x5x3 filter
32

convolve (slide) over all
spatial locations

32 28

28

|
-_—

Fei-Fei Li & Justin Johnson & Serena Yeung

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5-33 April 18, 2017

For example, if we had 6 5x5 filters, we’'ll get 6 separate activation maps:

ya

activation maps

Convolution Layer

32 28
3 6

We stack these up to get a “new image” of size 28x28x6!

Lecture 5 - 34 April 18, 2017

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

A A

CONV,
RelLU
eg.6
5x5x3
filters

32 28

w|
o)}

Fei-Fei Li & Justin Johnson & Serena Yeung

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

A A A

CONV, CONV, CONV,
RelLU RelLU RelLU

Lecture 5-35 April 18, 2017

eg.6 e.g. 10
5x5x3 5x5x6
32 filters L | 28 filters L | 24

Lecture 5-36 April 18, 2017

|
o)}
-—
IS}

Fei-Fei Li & Justin Johnson & Serena Yeung

onvolutional neural networks (ConvNets/CNNs) BV TIESHTE onvolutional neural networks (ConvNets/CNNs) BV TIEISHTE

Why convolution makes sense? Connection to fully connected NNs

Main idea: if a filter is useful at one location, it should be useful at
other locations.

A simple example why
filtering is useful

A convolution layer is a special case of a fully connected layer:

o filter = weights with sparse connection

Kernel

17 / 50 18 / 50

Sparse connectivity: being
affected by less

Local Receptive Field Leads to
Sparse Connectivity (affects less)

Sparse Sparse ° e e e @
connections ° G ° connections
due to small due to small '
convolution convolution

kernel kernel

Dense Dense
connections connections

Figure 9.3

Convolutional neural networks (ConvNets/CNNs) BVAZe TS

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:
o filter = weights with sparse connection

@ parameters sharing

Convolutional neural networks (ConvNets/CNNs) Bz TS

Connection to fully connected NNs

A convolution layer is a special case of a fully connected layer:
o filter = weights with sparse connection
@ parameters sharing
Much less parameters! Example (ignore bias terms):
o FC: (32 x32x 3) x (28 x 28) ~ 2.4M
@ CNN: 5 x5 x3="T5

__— 32x32x3 image

5x5x3 filter
32

28

convolve (slide) over all
spatial locations

32 28

19 / 50

20 / 50

Parameter Sharing

Convolution @ e @ @
shares the same
parameters
across all spatial ° °
locations
Traditional @ @ @ @
matrix

multiplication
s O O ©
any parameters

Fig U re 9 . 5 (Goodfellow 2016)

Convolutional neural networks (ConvNets/CNNs) Bz TS

Spatial arrangement: stride and padding

A closer look at spatial dimensions:

7

7X7 input (spatially)
assume 3x3 filter

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-42 April 18, 2017

21 /50

A closer look at spatial dimensions: A closer look at spatial dimensions:

7 7
7X7 input (spatially) 7X7 input (spatially)
assume 3x3 filter assume 3x3 filter
7 7
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-43 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-44 April 18, 2017
A closer look at spatial dimensions: A closer look at spatial dimensions:
7 7
7X7 input (spatially) 7X7 input (spatially)
assume 3x3 filter assume 3x3 filter
=> 5x5 output
7 7

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-45 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-46 April 18, 2017

A closer look at spatial dimensions: A closer look at spatial dimensions:

7 7
7X7 input (spatially) 7X7 input (spatially)
assume 3x3 filter assume 3x3 filter
applied with stride 2 applied with stride 2
7 7

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-47 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-48 April 18, 2017

A closer look at spatial dimensions: A closer look at spatial dimensions:
7 . . 7 : .
7X7 input (spatially) 7X7 input (spatially)
assume 3x3 filter assume 3x3 filter
applied with stride 2 applied with stride 3?
=> 3x3 output!
7 7

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-49 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-50 April 18, 2017

A closer look at spatial dimensions: N

. Output size:
7x7 input (spatially) = (N - F) / stride +1
assume 3x3 filter _ e
applied with stride 3? N eg.N=7,F=3
F stride 1=>(7-3)1+1=5
e stride2=>(7-3)/2+1=3
7 doesn’t fit! _ stride 3=>(7-3)/3+1=2.33:\
cannot apply 3x3 filter on
7X7 input with stride 3.
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-51 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-52 April 18, 2017
In practice: Common to zero pad the border In practice: Common to zero pad the border
010]9]0/0 e.g. input 7x7 010]9]0/0 e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

oO|o|o|o| o
oO|o|o|o| o

(recall:)
(N -F)/ stride + 1

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-53 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-54 April 18, 2017

In practice: Common to zero pad the border

010]9]0/0 e.g. input 7x7

3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

oO|o|o|o| oo

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1

F =5 => zero pad with 2

F =7 => zero pad with 3

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-55 April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Bz TS

Summary for convolution layer
Input: a volume of size W7 x Hy x Dq

Hyperparameters:
o K filters of size FF x F
@ stride S

@ amount of zero padding P (for one side)

Output: a volume of size Wy x Hy x Dy where
o Wo= (W1 +2P—-F)/S+1
e Hy=(H1+2P—-F)/S+1
e Dy=K

#parameters: (F' x F' x D; + 1) x K weights

Common setting: FF =3, 5=P =1

22 /50

Remember back to...
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

A A A

CONV, CONV, CONV,
RelLU RelLU RelLU

eg.6 e.g. 10
5x5x3 5x5x6
32 fiers |) 28 filters 24

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5-56 April 18, 2017

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 5 - 57 April 18, 2017

Examples time: Examples time:

Input volume: 32x32x3 Input volume: 32x32x3

10 5x5 filters with stride 1, pad 2 10 5x5 filters with stride 1, pad 2
Output volume size: Number of parameters in this layer?
(32+2*2-5)/1+1 = 32 spatially, so

32x32x10

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-58 April 18, 2017 Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-59 April 18, 2017

Convolutional neural networks (ConvNets/CNNs) Bz TS

Another element: pooling

Examples time:
Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

Input volume: 32x32x

224x224x64

10 5x5 filters with stride 1, pad 2 | ez
Number of parameters in this layer?

each filter has 5*5*3 + 1 = 76 params (+1 for bias) !

=>76*10 = 760 224 gr— L

224

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-72 April 18, 2017

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5-60 April 18, 2017

23 / 50

Convolutional neural networks (ConvNets/CNNs) BVAZe TS

Pooling

Similar to a filter, except

@ depth is always 1
o different operations: average, L2-norm, max
@ no parameters to be learned

Max pooling with 2 x 2 filter and stride 2 is very common

MAX POOLING
Single depth slice
X 17112 4
max pool with 2x2 filters
5(6 |7 |8 and stride 2 6 | 8
32110 3|4
112|3 |4
y

Convolutional neural networks (ConvNets/CNNs) Bz TS

How to train a CNN?

How do we learn the filters/weights?

Essentially the same as FC NNs: apply SGD /backpropagation

24 / 50

26 / 50

Convolutional neural networks (ConvNets/CNNs) Bz TS

Putting everything together

Typical architecture for CNNs:

Input — [[Conv — ReLU]*N — Pool?]*M — [FC — ReLU]*Q — FC J

Common choices: N <5,Q <2, M is large

Well-known CNNs: LeNet, AlexNet, ZF Net, GoogleNet, VGGNet, etc.

All achieve excellent performance on image classification tasks.

25 / 50

Outline

© Kernel methods
@ Motivation
@ Dual formulation of linear regression
o Kernel Trick

27 / 50

Kernel methods Motivation Kernel methods Motivation

Motivation Case study: regularized linear regression

Kernel methods work for many problems and we take regularized linear

: . . regression as an example.
Recall the question: how to choose nonlinear basis ¢ : R° — RM? g P

Recall the regularized least square solution:

w' ¢(x)
w* = argmin F(w) (1)t Y1
@ neural network is one approach: learn ¢ from data w o (x2)T Yo
: . . . = argmin (||®w — y|5 + A|wlf3) | & = . . Y=
@ kernel method is another one: sidestep the issue of choosing ¢ by w : :
using kernel functions = (<I>T<I> +)\I)_1 <I>Ty ¢(33N)T YN

Issue: operate in space RM and M could be huge or even infinity!

28 / 50 29 / 50

(0 (0
A closer look at the least square solution Why is this helpful?

By setting the gradient of F(w) = ||®w — y||3 + \||w||3 to be O: Assuming we know «, the prediction of w* on a new example x is

T (dw* —y)+ \w* =0 . N
w* ¢(w) = Z and)(mn)Td)(w)
n=1

we know

Therefore we do not really need to know w*. Only inner products in the

N
1
=8l (y - dw)=d"a=
w \ (y w’) @ 7; and(z) new feature space matter!

Kernel methods are exactly about computing inner products without

Thus the least square solution is a linear combination of features! K .
nowing ¢.

Note this is true for perceptron and many other problems.

Of course, the above calculation does not show what o is. But we need to figure out what a is first!

30 / 50 31/ 50

LEGERGELEEER Dual formulation of linear regression LEGERGELEEER Dual formulation of linear regression

How to find o? Examples of kernel matrix
p

Plugging i =®Ta into F i
ugging in w a into F(w) gives 3 data points in R

G(a)=F(®Ta) r1=—1,290=0,23 =1
=22 a —y[3 + A|@ el . o
9 T T ¢ is polynomial basis with degree 4:
=|Ka—-y|;+ 2 \a Ka (K =9®%")
—a"K"Ka - 2y"Ka + \a’ Ka + cnt. 1
=a'(K* + \K)a — 2y Ka + cnt. (KT = K) o(z) = ;2
23
This is sometime called the dual formulation of linear regression. 1 1 1
_ T NxN : ; ; -1 0 1
K = PP € R is called Gram matrix or kernel matrix where the B(z1) = . B(22) = 0 B(z3) = .
(i,7) entry is
o(xi) " p(x;) -1 0 1
32 /50 33 /50
Dual formulation of linear regression Dual formulation of linear regression
Calculation of the Gram matrix Gram matrix vs covariance matrix
1 1 1
-1 0 1
d(z1) =] | dla2) = | d(z3) = |
-1 0 1
dimensions entry (i,7) property
Gram/Kernel matrix
/ PPt N x N ¢($i)T¢($J‘) both are symmetric and
T T T .rs . . .
¢(I1)T¢($1) ¢(1‘1)T¢($2) ¢(I1)T¢($3) TP M x M SN b(@n)id(a,); | POStvVe semidefinite
K= | ¢(z2) ¢(x1) ¢(x2) @(z2) ¢(22)” ¢p(w3)
d(z3) (z1) Plas) d(z2) @(w3)" Plas)

34 / 50 35 / 50

Dual formulation of linear regression
How to find o?

Minimize the dual formulation
G(a)=a " (K? + \K)a - 2y" Ka + cnt.
Setting the derivative to 0 we have

0= (K’+)\K)a -~ Ky =K (K +M)a —y)

Thus o = (K + M)~y is a minimizer and we obtain

w* =®Ta=8" (K +)y

Exercise: are there other minimizers? and are there other w*'s?

36 / 50

Dual formulation of linear regression
Then what is the difference?

First, computing (@®* + AI)~! can be more efficient than computing
(®T® + AI)~! when N < M.

More importantly, computing o = (K + M)~y also only requires
computing inner products in the new feature space!

Now we can conclude that the exact form of ¢(-) is not essential; all we
need is computing inner products ¢(x) ¢ (x').

For some ¢ it is indeed possible to compute ¢ ()T ¢p(x’) without
computing/knowing ¢. This is the kernel trick.

38 / 50

Kernel methods Dual formulation of linear regression

Comparing two solutions

Minimizing F(w) gives w* = (®T® + \I)1®Ty
Minimizing G(a) gives w* = ®T(®dT + A1)~y

Note I has different dimensions in these two formulas.
Natural question: are they the same or different?
They have to be the same because F'(w) has a unique minimizer!

And they are:
(@T® + A teTy
= (®T® +) 'eT (@ + AI)(®RT + M)y
(@T® + A1) (@ T@dT + NT)(®@DT + ATy
= (@"® +)" (@T® + A)®T (DT + A D) "y
=31(®d" + A1)y

37 / 50

Kernel methods Kernel Trick

Example

Consider the following polynomial basis ¢ : R? — R3:

What is the inner product between ¢(x) and ¢(x')?

2 2
d(x) p(x)) = 2122} + 2z 0wy 2y + 2020

= (212 +a21h)” = (z'a')?

Therefore, the inner product in the new space is simply a function of the
inner product in the original space.

39 / 50

G T
Another example

¢ : RP — R?P is parameterized by 6:

cos(0z1)
sin(0x1)
by () = :
cos(fzp)
sin(fzp)
What is the inner product between ¢y (x) and ¢g(x’)?
D
o) T y(z) = Z cos(0z4) cos(0x;) + sin(fz4) sin(0z))
d=1

D
= Z cos(0(zq —)
d=1
Once again, the inner product in the new space is a simple function of the

features in the original space.
40 / 50

Kernel methods Kernel Trick

Infinite dimensional mapping

When L — oo, even if we cannot compute ¢(z), a vector of infinite
dimension, we can still compute inner product:

Boo ()T oo () = /27r XD: cos(0(zq —) do
0 d4=1

D sin(2m(xzq — 1))

rq—)

0
n

Again, a simple function of the original features.

Note that using this mapping in linear regression, we are learning a weight
w™ with infinite dimension!

42 /50

Kernel methods Kernel Trick

More complicated example

Based on ¢y, define ¢z, : RP — R2P(LAD) for some integer L:

41 /50

Kernel methods Kernel Trick

Kernel functions

Definition: a function k : RP x RP — R is called a (positive semidefinite)
kernel function if there exists a function ¢ : R® — RM so that for any
x,x' € RP,

k(z,2') = ¢(z) " p(z')

Examples we have seen
k(xz, ') = (xTa')?

sin(2m(zq — 7))

W

k(x,x') =
’ = rq—)

43 / 50

Kernel methods Kernel Trick

Using kernel functions
Choosing a nonlinear basis ¢ becomes choosing a kernel function.

As long as computing the kernel function is more efficient, we should apply
the kernel trick.

Gram/kernel matrix becomes:

k(w1,@1) k(w1 o2) k(z1, xy)
K = @@T . k(il)g,ml) k(w27m2) k?(il)g,mN)
k(ey, 1) k(zy,z2) k(xn,xzN)

In fact, k is a kernel if and only if K is positive semidefinite for any N and
any x1, xs, ..., xy (Mercer theorem).

@ useful for proving that a function is not a kernel

44 / 50

Kernel methods Kernel Trick

Predicting with a kernel function

As long as w* = ny:l an@(xy,), prediction on a new example & becomes
N N
w*T(b(:B) = Z and)(mn)T(b(w) = Z ank(mnvm)
n=1 n=1

This is a non-parametric method!

46 / 50

Kernel methods Kernel Trick

Examples that are not kernels

Function
k(z,z') = ||z — 2'||3

is not a kernel, why?

If it is a kernel, the kernel matrix for two data points &1 and xs:

0 |z1 — 223)
K —
(lz1 — x2|3 0

must be positive semidefinite, but is it?

45 / 50

Kernel methods Kernel Trick

More examples of kernel functions

Two most commonly used kernel functions in practice:

Polynomial kernel
k(z,x') = (T2’ + ¢)?
for ¢ > 0 and d is a positive integer.

Gaussian kernel or Radial basis function (RBF) kernel

, _lz—='113
k(z,x') =e 202

for some o > 0.

Think about what the corresponding ¢ is for each kernel.

47 / 50

CEREGRE
Composing kernels

Creating more kernel functions using the following rules:

If k1(+,-) and ka(-,-) are kernels, the followings are kernels too
e conical combination: ak;(-,-) + Bka(-,-) if a, 5 >0
e product: kq(-,)ka(-,-)
e exponential: ()

Verify using the definition of kernel!

48 / 50

(SR
Example: Kernelized NNC

For NNC with L2 distance, the key is to compute for any two points x, x’

dz,2) = ||z —2|2 =2z +a' 2 — 227

With a kernel function k, we simply compute

A" (g 2!y = k(@) + k(2 2') — 2k(z, 2')

which by definition is the L2 distance in a new feature space

dNPRNEL (g 22!) = || p(x) — 4)(33,)”%

50 / 50

Kemel Trick
Kernelizing other ML algorithms

Kernel trick is applicable to many ML algorithms:

@ nearest neighbor classifier

perceptron
logistic regression

SVM

49 / 50

	Review of last lecture
	Convolutional neural networks (ConvNets/CNNs)
	Kernel methods

