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Administration

HW 2 grade will be released by 10/06. Solutions will be discussed today.

Quiz 1 on 10/08:

Coverage: mostly Lec 1-5, 1-2 multiple choice questions from Lec 6.

Join the usual zoom meeting 5-10 mins earlier; will be assigned to a
breakout room, proctored by a TA/CP with your camera on.

At 4:55pm, Crowdmark will send you the quiz automatically.

Open-book/note, but no collaboration or consultation.

For multiple choice, select one and only one answer.

Upload answers for each question, just like HW.

Duration is 2.5 hours, which includes the time for scanning/uploading.
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Review of last lecture

Convolutional Neural Nets

Typical architecture for CNNs:

Input → [[Conv → ReLU]*N → Pool?]*M → [FC → ReLU]*Q → FC

(Goodfellow 2016)

2D Convolution

CHAPTER 9. CONVOLUTIONAL NETWORKS
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Figure 9.1: An example of 2-D convolution without kernel-flipping. In this case we restrict
the output to only positions where the kernel lies entirely within the image, called “valid”
convolution in some contexts. We draw boxes with arrows to indicate how the upper-left
element of the output tensor is formed by applying the kernel to the corresponding
upper-left region of the input tensor.
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Review of last lecture

Kernel functions

Definition: a function k : RD ×RD → R is called a (positive semidefinite)
kernel function if there exists a function φ : RD → RM so that for any
x,x′ ∈ RD,

k(x,x′) = φ(x)Tφ(x′)

Examples we have seen

k(x,x′) = (xTx′)2

k(x,x′) =

D∑
d=1

sin(2π(xd − x′d))
xd − x′d

k(x,x′) = (xTx′ + c)d (polynomial kernel)

k(x,x′) = e−
‖x−x′‖22

2σ2 (Gaussian/RBF kernel)
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Review of last lecture

Kernelizing ML algorithms

Feasible as long as only inner products are required:

regularized linear regression (dual formulation)

φ(x)Tw∗ = φ(x)TΦT(K + λI)−1y (K = ΦΦT is kernel matrix)

nearest neighbor classifier with L2 distance

‖φ(x)− φ(x′)‖22 = k(x,x) + k(x′,x′)− 2k(x,x′)

perceptron, logistic regression, SVM, . . .
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Support vector machines (primal formulation)

Support vector machines (SVM)

One of the most commonly used classification algorithms

Works well with the kernel trick

Strong theoretical guarantees

We focus on binary classification here.
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Support vector machines (primal formulation)

Primal formulation

In one sentence: linear model with L2 regularized hinge loss. Recall

perceptron loss `perceptron(z) = max{0,−z} → Perceptron

logistic loss `logistic(z) = log(1 + exp(−z)) → logistic regression

hinge loss `hinge(z) = max{0, 1− z} → SVM
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Support vector machines (primal formulation)

Primal formulation

For a linear model (w, b), this means

min
w,b

∑
n

max
{
0, 1− yn(wTφ(xn) + b)

}
+
λ

2
‖w‖22

recall yn ∈ {−1,+1}

a nonlinear mapping φ is applied

the bias/intercept term b is used explicitly (think about why after this
lecture)

So why L2 regularized hinge loss?
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Support vector machines (primal formulation)

Geometric motivation: separable case

When data is linearly separable, there are infinitely many hyperplanes
with zero training error:

HH�

H��

So which one should we choose?
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Support vector machines (primal formulation)

Intuition

The further away from data points the better.

How to formalize this intuition?
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Support vector machines (primal formulation)

Distance to hyperplane

What is the distance from a point x to a hyperplane {x : wTx+ b = 0}?

Assume the projection is x− ` w
‖w‖2 , then

0 = wT

(
x− ` w

‖w‖2

)
+ b = wTx− `‖w‖+ b

and thus ` = wTx+b
‖w‖2 .

Therefore the distance is
|wTx+ b|
‖w‖2

For a hyperplane that correctly classifies (x, y), the distance becomes

y(wTx+ b)

‖w‖2
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Support vector machines (primal formulation)

Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

margin of (w, b) = min
n

yn(w
Tφ(xn) + b)

‖w‖2

H : wTφ(x) + b = 0

|wTφ(x) + b|
�w�2

The intuition “the further away the better” translates to solving

max
w,b

min
n

yn(w
Tφ(xn) + b)

‖w‖2
= max

w,b

1

‖w‖2
min
n
yn(w

Tφ(xn) + b)
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Support vector machines (primal formulation)

Rescaling

Note: rescaling (w, b) does not change the hyperplane at all.

We can thus always scale (w, b) s.t. minn yn(w
Tφ(xn) + b) = 1

The margin then becomes

margin of (w, b)

=
1

‖w‖2
min
n
yn(w

Tφ(xn) + b)

=
1

‖w‖2

H : wTφ(x) + b = 0

1

�w�2

wTφ(x) + b = 1

wTφ(x) + b = −1
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Support vector machines (primal formulation)

Summary for separable data

For a separable training set, we aim to solve

max
w,b

1

‖w‖2
s.t. min

n
yn(w

Tφ(xn) + b) = 1

This is equivalent to

min
w,b

1

2
‖w‖22

s.t. yn(w
Tφ(xn) + b) ≥ 1, ∀ n

SVM is thus also called max-margin classifier. The constraints above are
called hard-margin constraints.
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Support vector machines (primal formulation)

General non-separable case

If data is not linearly separable, the previous constraint

yn(w
Tφ(xn) + b) ≥ 1, ∀ n

is obviously not feasible.

To deal with this issue, we relax them to soft-margin constraints:

yn(w
Tφ(xn) + b) ≥ 1− ξn, ∀ n

where we introduce slack variables ξn ≥ 0.
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Support vector machines (primal formulation)

SVM Primal formulation

We want ξn to be as small as possible too. The objective becomes

min
w,b,{ξn}

1

2
‖w‖22 + C

∑
n

ξn

s.t. yn(w
Tφ(xn) + b) ≥ 1− ξn, ∀ n

ξn ≥ 0, ∀ n

where C is a hyperparameter to balance the two goals.
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Support vector machines (primal formulation)

Equivalent form

Formulation

min
w,b,{ξn}

C
∑
n

ξn +
1

2
‖w‖22

s.t. 1− yn(wTφ(xn) + b) ≤ ξn, ∀ n
ξn ≥ 0, ∀ n

is equivalent to

min
w,b,{ξn}

C
∑
n

ξn +
1

2
‖w‖22

s.t. max
{
0, 1− yn(wTφ(xn) + b)

}
= ξn, ∀ n
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Support vector machines (primal formulation)

Equivalent form

min
w,b,{ξn}

C
∑
n

ξn +
1

2
‖w‖22

s.t. max
{
0, 1− yn(wTφ(xn) + b)

}
= ξn, ∀ n

is equivalent to

min
w,b

C
∑
n

max
{
0, 1− yn(wTφ(xn) + b)

}
+

1

2
‖w‖22

and

min
w,b

∑
n

max
{
0, 1− yn(wTφ(xn) + b)

}
+
λ

2
‖w‖22

with λ = 1/C. This is exactly minimizing L2 regularized hinge loss!
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Support vector machines (primal formulation)

Optimization

min
w,b,{ξn}

C
∑
n

ξn +
1

2
‖w‖22

s.t. 1− yn(wTφ(xn) + b) ≤ ξn, ∀ n
ξn ≥ 0, ∀ n

It is a convex (quadratic in fact) problem

thus can apply any convex optimization algorithms, e.g. SGD

there are more specialized and efficient algorithms

but usually we apply kernel trick, which requires solving the dual
problem
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A detour of Lagrangian duality
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A detour of Lagrangian duality

Lagrangian duality

Extremely important and powerful tool in analyzing optimizations

We will introduce basic concepts and derive the KKT conditions

Applying it to SVM reveals an important aspect of the algorithm
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A detour of Lagrangian duality

Primal problem

Suppose we want to solve

min
w

F (w) s.t. hj(w) ≤ 0 ∀ j ∈ [J]

where functions h1, . . . , hJ define J constraints.

SVM primal formulation is clearly of this form with J = 2N constraints:

F (w, b, {ξn}) = C
∑
n

ξn +
1

2
‖w‖22

hn(w, b, {ξn}) = 1− yn(wTφ(xn) + b)− ξn ∀ n ∈ [N]

hN+n(w, b, {ξn}) = −ξn ∀ n ∈ [N]
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A detour of Lagrangian duality

Lagrangian

The Lagrangian of the previous problem is defined as:

L (w, {λj}) = F (w) +

J∑
j=1

λjhj(w)

where λ1, . . . , λJ ≥ 0 are called Lagrangian multipliers.

Note that

max
{λj}≥0

L(w, {λj}) =
{
F (w) if hj(w) ≤ 0 ∀ j ∈ [J]

+∞ else

and thus,

min
w

max
{λj}≥0

L (w, {λj}) ⇐⇒ min
w

F (w) s.t. hj(w) ≤ 0 ∀ j ∈ [J]
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A detour of Lagrangian duality

Duality

We define the dual problem by swapping the min and max:

max
{λj}≥0

min
w

L (w, {λj})

How are the primal and dual connected? Let w∗ and {λ∗j} be the primal
and dual solutions respectively, then

max
{λj}≥0

min
w

L (w, {λj}) = min
w

L
(
w, {λ∗j}

)
≤ L

(
w∗, {λ∗j}

)
≤ max
{λj}≥0

L (w∗, {λj}) = min
w

max
{λj}≥0

L (w, {λj})

This is called “weak duality”.
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A detour of Lagrangian duality

Strong duality

When F, h1, . . . , hm are convex, under some mild conditions:

min
w

max
{λj}≥0

L (w, {λj}) = max
{λj}≥0

min
w

L (w, {λj})

This is called “strong duality”.
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A detour of Lagrangian duality

Deriving the Karush-Kuhn-Tucker (KKT) conditions

Observe that if strong duality holds:

F (w∗) = min
w

max
{λj}≥0

L (w, {λj}) = max
{λj}≥0

min
w

L (w, {λj})

= min
w

L
(
w, {λ∗j}

)
≤ L

(
w∗, {λ∗j}

)
= F (w∗) +

J∑
j=1

λ∗jhj(w
∗) ≤ F (w∗)

Implications:

all inequalities above have to be equalities!

last equality implies λ∗jhj(w
∗) = 0 for all j ∈ [J]

equality minw L(w, {λ∗j}) = L(w∗, {λ∗j}) implies w∗ is a minimizer
of L(w, {λ∗j}) and thus has zero gradient:

∇w L(w∗, {λ∗j}) = ∇F (w∗) +
J∑
j=1

λ∗j∇hj(w∗) = 0
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A detour of Lagrangian duality

The Karush-Kuhn-Tucker (KKT) conditions

If w∗ and {λ∗j} are the primal and dual solution respectively, then:

Stationarity:

∇w L
(
w∗, {λ∗j}

)
= ∇F (w∗) +

J∑
j=1

λ∗j∇hj(w∗) = 0

Complementary slackness:

λ∗jhj(w
∗) = 0 for all j ∈ [J]

Feasibility:

hj(w
∗) ≤ 0 and λ∗j ≥ 0 for all j ∈ [J]

These are necessary conditions. They are also sufficient when F is convex
and h1, . . . , hJ are continuously differentiable convex functions.
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Support vector machines (dual formulation)
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Support vector machines (dual formulation)

Writing down the Lagrangian

Recall the primal formulation

min
w,b,{ξn}

C
∑
n

ξn +
1

2
‖w‖22

s.t. 1− yn(wTφ(xn) + b) ≤ ξn, ∀ n
ξn ≥ 0, ∀ n

Lagrangian is

L (w, b, {ξn}, {αn}, {λn}) = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn

+
∑
n

αn
(
1− yn(wTφ(xn) + b)− ξn

)
where α1, . . . , αN ≥ 0 and λ1, . . . , λN ≥ 0 are Lagrangian multipliers.
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Support vector machines (dual formulation)

Applying the stationarity condition

L = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn +
∑
n

αn
(
1− yn(wTφ(xn) + b)− ξn

)
∃ primal and dual variables w, b, {ξn}, {αn}, {λn} s.t. ∇w,b,{ξn} L = 0,
which means

∂L

∂w
= w −

∑
n

ynαnφ(xn) = 0 =⇒ w =
∑
n

ynαnφ(xn)

∂L

∂b
= −

∑
n

αnyn = 0 and
∂L

∂ξn
= C − λn − αn = 0, ∀ n
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Support vector machines (dual formulation)

Rewrite the Lagrangian in terms of dual variables

Replacing w by
∑

n ynαnφ(xn) in the Lagrangian gives

L = C
∑
n

ξn +
1

2
‖w‖22 −

∑
n

λnξn +
∑
n

αn
(
1− yn(wTφ(xn) + b)− ξn

)
= C

∑
n

ξn +
1

2
‖
∑
n

ynαnφ(xn)‖22 −
∑
n

λnξn+

∑
n

αn

1− yn

(∑
m

ymαmφ(xm)

)T

φ(xn) + b

− ξn


=
∑
n

αn +
1

2
‖
∑
n

ynαnφ(xn)‖22 −
∑
m,n

αnαmymynφ(xm)
Tφ(xn)

(
∑

n αnyn = 0 and C = λn + αn)

=
∑
n

αn −
1

2

∑
m,n

αnαmymynφ(xm)
Tφ(xn)
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Support vector machines (dual formulation)

The dual formulation

To find the dual solutions, it amounts to solving

max
{αn},{λn}

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)
Tφ(xn)

s.t.
∑
n

αnyn = 0

C − λn − αn = 0, αn ≥ 0, λn ≥ 0, ∀ n

Note the last three constraints can be written as 0 ≤ αn ≤ C for all n. So
the final dual formulation of SVM is:

max
{αn}

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)
Tφ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n
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Support vector machines (dual formulation)

Kernelizing SVM

Now it is clear that with a kernel function k for the mapping φ, we can
kernelize SVM as:

max
{αn}

∑
n

αn −
1

2

∑
m,n

ymynαmαnk(xm,xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n

Again, no need to compute φ(x). It is a quadratic program and many
efficient optimization algorithms exist.
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Support vector machines (dual formulation)

Recover the primal solution

But how do we predict given the dual solution {α∗n}? Need to figure out
the primal solution w∗ and b∗.

Based on previous observation,

w∗ =
∑
n

α∗nynφ(xn) =
∑

n:αn>0

α∗nynφ(xn)

A point with α∗n > 0 is called a “support vector”. Hence the name SVM.

To identify b, we need to apply complementary slackness.
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Support vector machines (dual formulation)

Applying complementary slackness

For all n we should have

λ∗nξ
∗
n = 0, α∗n

(
1− ξ∗n − yn(w∗Tφ(xn) + b∗)

)
= 0

For any support vector φ(xn) with 0 < α∗n < C, λ∗n = C − α∗n > 0 holds.

first condition implies ξ∗n = 0.

second condition implies 1 = yn(w
∗Tφ(xn) + b∗) and thus

b∗ = yn −w∗Tφ(xn) = yn −
∑
m

ymα
∗
mk(xm,xn)

Usually average over all n with 0 < α∗n < C to stabilize computation.

The prediction on a new point x is therefore

sgn
(
w∗Tφ(x) + b∗

)
= sgn

(∑
m

ymα
∗
mk(xm,x) + b∗

)
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Support vector machines (dual formulation)

Geometric interpretation of support vectors

A support vector satisfies α∗n 6= 0 and

1− ξ∗n − yn(w∗Tφ(xn) + b∗) = 0

When

ξ∗n = 0, yn(w
∗Tφ(xn) + b∗) = 1

and thus the point is 1/‖w∗‖2
away from the hyperplane.

ξ∗n < 1, the point is classified
correctly but does not satisfy
the large margin constraint.

ξ∗n > 1, the point is
misclassified.

H : wT�(x) + b = 0

wT�(x) + b = 1

wT�(x) + b = �1

⇠n = 0

⇠n < 1
⇠n > 1

Support vectors (circled with the
orange line) are the only points that
matter!
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Support vector machines (dual formulation)

An example

One drawback of kernel method: non-parametric, need to keep all
training points potentially

For SVM, very often #support vectors� N
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Support vector machines (dual formulation)

Summary

SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

min
w,b,{ξn}

C
∑
n

ξn +
1

2
‖w‖22

s.t. 1− yn(wTφ(xn) + b) ≤ ξn, ∀ n
ξn ≥ 0, ∀ n

Dual (kernelizable, reveals what training points are support vectors):

max
{αn}

∑
n

αn −
1

2

∑
m,n

ymynαmαnφ(xm)
Tφ(xn)

s.t.
∑
n

αnyn = 0 and 0 ≤ αn ≤ C, ∀ n
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Support vector machines (dual formulation)

Summary

Typical steps of applying Lagrangian duality

start with a primal problem

write down the Lagrangian (one dual variable per constraint)

apply KKT conditions to find the connections between primal and
dual solutions

eliminate primal variables and arrive at the dual formulation

maximize the Lagrangian with respect to dual variables

recover the primal solutions from the dual solutions
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