
CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Oct 22, 2020

1 / 46

Administration

Quiz 1: 20% of total grade, everyone gets it

HW3: discuss solutions today

HW4: to be released, due on Sat, 10/31 (note the shorter time)

2 / 46

Outline

1 Clustering

2 Gaussian mixture models

3 / 46

Clustering

Outline

1 Clustering
Problem setup
K-means algorithm
Initialization and Convergence

2 Gaussian mixture models

4 / 46

Clustering

Supervised learning v.s unsupervised learning

Recall there are different types of machine learning problems

supervised learning (what we have discussed so far)
Aim to predict, e.g. classification and regression

unsupervised learning (main focus from now on)
Aim to discover hidden/latent patterns and explore data

Today’s focus: clustering, an important unsupervised learning problem

5 / 46

Clustering Problem setup

Clustering: informal definition

Given: a set of data points (feature vectors), without labels

Output: group the data into some clusters, which means

assign each point to a specific cluster

find the center (representative/prototype/...) of each cluster

6 / 46

Clustering Problem setup

Clustering: formal definition

Given: data points x1, . . . ,xN ∈ RD and #clusters K we want

Output: group the data into K clusters, which means

find assignment γnk ∈ {0, 1} for each data point n ∈ [N] and k ∈ [K]
s.t.

∑
k∈[K] γnk = 1 for any fixed n

find the cluster centers µ1, . . . ,µK ∈ RD

7 / 46

Clustering Problem setup

Many applications

One example: image compression (vector quantization)

each pixel is a point

perform clustering over these points

replace each point by the center of the cluster it belongs to

Original image Large K −→ Small K

8 / 46

Clustering Problem setup

Formal Objective

Key difference from supervised learning problems: no labels given, which
means no ground-truth to even measure the quality of your answer!

Still, we can turn it into an optimization problem, e.g. through the
popular “K-means” objective: find γnk and µk to minimize

F ({γnk}, {µk}) =
N∑
n=1

K∑
k=1

γnk‖xn − µk‖22

i.e. the sum of squared distances of each point to its center.

Unfortunately, finding the exact minimizer is NP-hard!

9 / 46

Clustering K-means algorithm

Alternating minimization

Instead, use a heuristic that alternatingly minimizes over {γnk} and {µk}:

Initialize {µ(1)
k }

For t = 1, 2, . . .

find
{γ(t+1)

nk } = argmin
{γnk}

F
(
{γnk}, {µ

(t)
k }
)

find
{µ(t+1)

k } = argmin
{µk}

F
(
{γ(t+1)

nk }, {µk}
)

10 / 46

Clustering K-means algorithm

A closer look

The first step

min
{γnk}

F ({γnk}, {µk}) = min
{γnk}

∑
n

∑
k

γnk‖xn − µk‖22

=
∑
n

min
{γnk}

∑
k

γnk‖xn − µk‖22

is simply to assign each xn to the closest µk, i.e.

γnk = I
[
k == argmin

c
‖xn − µc‖22

]
for all k ∈ [K] and n ∈ [N].

11 / 46

Clustering K-means algorithm

A closer look

The second step

min
{µk}

F ({γnk}, {µk}) = min
{µk}

∑
n

∑
k

γnk‖xn − µk‖22

=
∑
k

min
µk

∑
n:γnk=1

‖xn − µk‖22

is simply to average the points of each cluster (hence the name)

µk =

∑
n:γnk=1 xn

|{n : γnk = 1}|
=

∑
n γnkxn∑
n γnk

for each k ∈ [K].

12 / 46

Clustering K-means algorithm

The K-means algorithm

Step 0 Initialize µ1, . . . ,µK

Step 1 Fix the centers µ1, . . . ,µK , assign each point to the closest center:

γnk = I
[
k == argmin

c
‖xn − µc‖22

]

Step 2 Fix the assignment {γnk}, update the centers

µk =

∑
n γnkxn∑
n γnk

Step 3 Return to Step 1 if not converged

13 / 46

Clustering K-means algorithm

An example

(a)

−2 0 2

−2

0

2 (b)

−2 0 2

−2

0

2 (c)

−2 0 2

−2

0

2

(d)

−2 0 2

−2

0

2 (e)

−2 0 2

−2

0

2 (f)

−2 0 2

−2

0

2

(g)

−2 0 2

−2

0

2 (h)

−2 0 2

−2

0

2 (i)

−2 0 2

−2

0

2

14 / 46

Clustering Initialization and Convergence

How to initialize?

There are different ways to initialize:

randomly pick K points as initial centers

or randomly assign each point to a cluster, then average

or more sophisticated approaches (e.g. K-means++)

Initialization matters for convergence.

15 / 46

Clustering Initialization and Convergence

Convergence

K-means will converge in a finite number of iterations, why?

objective decreases at each step

objective is lower bounded by 0

#possible assignments is finite (KN , exponentially large though)

However

it could take exponentially many iterations to converge

and it might not converge to the global minimum of the K-means
objective

16 / 46

Clustering Initialization and Convergence

Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations

•

•

•

•

W

L = 2W

versus

•

•

•

•

K-means converges immediately in both cases, but

left has K-means objective L2 = 4W 2

right has K-means objective W 2, 4 times better than left!

in fact, left is local minimum, and right is global minimum.

17 / 46

Clustering Initialization and Convergence

Local minimum v.s global minimum

•

•

•

•

W

L � W

moreover, local minimum can be arbitrarily worse if we increase L

so initialization matters a lot for K-means

18 / 46

Clustering Initialization and Convergence

How common initialization methods perform?

•

•

•

•

W

L � W

randomly pick K points as initial centers: fails with 1/3 probability

or randomly assign each point to a cluster, then average: similarly fail
with a constant probability

or more sophisticated approaches: K-means++ guarantees to find a
solution that in expectation is at most O(logK) times of the optimal

19 / 46

Clustering Initialization and Convergence

K-means++

K-means++ is K-means with a better initialization procedure:

Start with a random data point as the first center µ1

For k = 2, . . . ,K

randomly pick the k-th center µk such that

Pr[µk = xn] ∝ min
j=1,...,k−1

‖xn − µj‖22

Intuitively this spreads out the initial centers.

20 / 46

Clustering Initialization and Convergence

K-means++ on the same example

•

•

•

•

W

L � W
Suppose we pick top left as µ1, then

Pr[µ2 = bottom left] ∝W 2, Pr[µ2 = top right] ∝ L2

Pr[µ2 = bottom right] ∝W 2 + L2

So the expected K-means objective is

W 2

2(W 2 + L2)
· L2 +

(
L2

2(W 2 + L2)
+

1

2

)
·W 2 ≤ 3

2
W 2,

that is, at most 1.5 times of the optimal.
21 / 46

Clustering Initialization and Convergence

Summary for K-means

K-means is alternating minimization for the K-means objective.

The initialization matters a lot for the convergence.

K-means++ uses a theoretically (and often empirically) better
initialization.

22 / 46

Gaussian mixture models

Outline

1 Clustering

2 Gaussian mixture models
Motivation and Model
EM algorithm
EM applied to GMMs

23 / 46

Gaussian mixture models Motivation and Model

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

more explanatory than minimizing the K-means objective

can be seen as a soft version of K-means

To solve GMM, we will introduce a powerful method for learning
probabilistic model: Expectation–Maximization (EM) algorithm

24 / 46

Gaussian mixture models Motivation and Model

A generative model

For classification, we discussed the sigmoid model to “explain” how the
labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p
to “explain” how the data is generated.

That is, each point is an
independent sample of x ∼ p.

What probabilistic model
generates data like this?

25 / 46

Gaussian mixture models Motivation and Model

GMM: intuition

GMM is a natural model to explain such data

Assume there are 3 ground-truth
Gaussian models. To generate a
point, we

first randomly pick one of
the Gaussian models,

then draw a point
according this Gaussian.

Hence the name “Gaussian mixture model”.

26 / 46

Gaussian mixture models Motivation and Model

GMM: formal definition

A GMM has the following density function:

p(x) =

K∑
k=1

ωkN(x | µk,Σk)

where

K: the number of Gaussian components (same as #clusters we want)

ω1, . . . , ωK : mixture weights, a distribution over K components

µk and Σk: mean and covariance matrix of the k-th Gaussian

N : the density function for a Gaussian

27 / 46

Gaussian mixture models Motivation and Model

Another view

By introducing a latent variable z ∈ [K], which indicates cluster
membership, we can see p as a marginal distribution

p(x) =
K∑
k=1

p(x, z = k) =
K∑
k=1

p(z = k)p(x|z = k) =
K∑
k=1

ωkN(x | µk,Σk)

x and z are both random variables drawn from the model

x is observed

z is unobserved/latent

28 / 46

Gaussian mixture models Motivation and Model

An example

The conditional distributions are

p(x | z = red) = N(x | µ1,Σ1)

p(x | z = blue) = N(x | µ2,Σ2)

p(x | z = green) = N(x | µ3,Σ3)

The marginal distribution is

p(x) = p(red)N(x | µ1,Σ1) + p(blue)N(x | µ2,Σ2)

+ p(green)N(x | µ3,Σ3)

29 / 46

Gaussian mixture models Motivation and Model

Learning GMMs

Learning a GMM means finding all the parameters θ = {ωk,µk,Σk}Kk=1.

In the process, we will learn the latent variable zn as well:

p(zn = k | xn) , γnk ∈ [0, 1]

i.e. “soft assignment” of each point to each cluster, as opposed to “hard
assignment” by K-means.

GMM is more explanatory than K-means

both learn the cluster centers µk’s

in addition, GMM learns cluster weight ωk and covariance Σk, thus

we can predict probability of seeing a new point
we can generate synthetic data

30 / 46

Gaussian mixture models Motivation and Model

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

argmax
θ

ln
N∏
n=1

p(xn ;θ) = argmax
θ

N∑
n=1

ln p(xn ;θ) , argmax
θ

P (θ)

This is called incomplete log-likelihood (since zn’s are unobserved), and is
intractable in general (non-concave problem).

One solution is to still apply GD/SGD, but a much more effective
approach is the Expectation–Maximization (EM) algorithm.

31 / 46

Gaussian mixture models Motivation and Model

Preview of EM for learning GMMs

Step 0 Initialize ωk,µk,Σk for each k ∈ [K]

Step 1 (E-Step) update the “soft assignment” (fixing parameters)

γnk = p(zn = k | xn) ∝ ωkN (xn | µk,Σk)

Step 2 (M-Step) update the model parameter (fixing assignments)

ωk =

∑
n γnk
N

µk =

∑
n γnkxn∑
n γnk

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)T

Step 3 return to Step 1 if not converged

We will see how this is a special case of EM.
32 / 46

Gaussian mixture models Motivation and Model

Demo

Generate 50 data points from a mixture of 2 Gaussians with

ω1 = 0.3, µ1 = −0.8,Σ1 = 0.52

ω2 = 0.7, µ2 = 1.2,Σ2 = 0.35

histogram represents the data

red curve represents the
ground-truth density
p(x) =

∑K
k=1 ωkN(x | µk,Σk)

blue curve represents the learned
density for a specific round

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

EM demo.pdf shows how the blue curve moves towards red curve quickly
via EM

33 / 46

Gaussian mixture models EM algorithm

EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not
just GMM), i.e. find the maximizer of

P (θ) =
N∑
n=1

ln p(xn ;θ) =
N∑
n=1

ln

∫
zn

p(xn, zn ;θ)dzn

θ is the parameters for a general probabilistic model

xn’s are observed random variables

zn’s are latent variables

Again, directly solving the objective is intractable.

34 / 46

Gaussian mixture models EM algorithm

High level idea

Keep maximizing a lower bound of P that is more manageable

35 / 46

Gaussian mixture models EM algorithm

Derivation of EM

Finding the lower bound of P :

ln p(x ;θ) = ln
p(x, z ;θ)

p(z|x ;θ)
(true for any z)

= Ez∼q
[
ln
p(x, z ;θ)

p(z|x ;θ)

]
(true for any dist. q)

= Ez∼q [ln p(x, z ;θ)]− Ez∼q [ln q(z)]− Ez∼q
[
ln
p(z|x ;θ)

q(z)

]
= Ez∼q [ln p(x, z ;θ)] +H(q)− Ez∼q

[
ln
p(z|x ;θ)

q(z)

]
(H is entropy)

≥ Ez∼q [ln p(x, z ;θ)] +H(q)− lnEz∼q
[
p(z|x ;θ)

q(z)

]
(Jensen’s inequality)

= Ez∼q [ln p(x, z ;θ)] +H(q)

36 / 46

https://haipeng-luo.net/courses/CSCI567/2020_fall/EM_demo.pdf

Gaussian mixture models EM algorithm

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

P (θ) =

N∑
n=1

ln p(xn ;θ)

≥
N∑
n=1

(Ezn∼qn [ln p(xn, zn ;θ)] +H(qn)) = F (θ, {qn})

This holds for any {qn}, so how do we choose? Naturally, the one that
maximizes the lower bound (i.e. the tightest lower bound)!

Equivalently, this is the same as alternatingly maximizing F over {qn} and
θ (similar to K-means).

37 / 46

Gaussian mixture models EM algorithm

Maximizing over {qn}

Fix θ(t), the solution to

argmax
qn

Ezn∼qn
[
ln p(xn, zn ;θ(t))

]
+H(qn)

is q
(t)
n s.t.

q(t)n (zn) = p(zn | xn ;θ(t)) ∝ p(xn, zn ;θ(t))

i.e., the posterior distribution of zn given xn and θ(t). (Verified in HW4)

So at θ(t), we found the tightest lower bound F
(
θ, {q(t)n }

)
:

F
(
θ, {q(t)n }

)
≤ P (θ) for all θ.

F
(
θ(t), {q(t)n }

)
= P (θ(t)) (verify yourself by going through Slide 36)

38 / 46

Gaussian mixture models EM algorithm

Maximizing over θ

Fix {q(t)n }, maximize over θ:

argmax
θ

F
(
θ, {q(t)n }

)
= argmax

θ

N∑
n=1

E
zn∼q(t)n

[ln p(xn, zn ;θ)] (H(q
(t)
n) is independent of θ)

, argmax
θ

Q(θ ;θ(t)) ({q(t)n } are computed via θ(t))

Q is the (expected) complete likelihood and is usually more tractable.

39 / 46

Gaussian mixture models EM algorithm

General EM algorithm

Step 0 Initialize θ(1), t = 1

Step 1 (E-Step) update the posterior of latent variables

q(t)n (·) = p(· | xn ;θ(t))

and obtain Expectation of complete likelihood

Q(θ ;θ(t)) =

N∑
n=1

E
zn∼q(t)n

[ln p(xn, zn ;θ)]

Step 2 (M-Step) update the model parameter via Maximization

θ(t+1) ← argmax
θ

Q(θ ;θ(t))

Step 3 t← t+ 1 and return to Step 1 if not converged
40 / 46

Gaussian mixture models EM algorithm

Pictorial explanation

P (θ) is non-concave, but Q(θ;θ(t))
often is concave and easy to
maximize.

P (θ(t+1)) ≥ F
(
θ(t+1) ; {q(t)n }

)
≥ F

(
θ(t) ; {q(t)n }

)
= P (θ(t))

So EM always increases the objective
value and will converge to some local
maximum (similar to K-means).

41 / 46

Gaussian mixture models EM applied to GMMs

Apply EM to learn GMMs

E-Step:

q(t)n (zn = k) = p
(
zn = k | xn ;θ(t)

)
∝ p

(
xn, zn = k ;θ(t)

)
= p

(
zn = k ;θ(t)) p(xn | zn = k ;θ(t)

)
= ω

(t)
k N

(
xn | µ(t)

k ,Σ
(t)
k

)
This computes the “soft assignment” γnk = q

(t)
n (zn = k), i.e. conditional

probability of xn belonging to cluster k.

42 / 46

Gaussian mixture models EM applied to GMMs

Apply EM to learn GMMs

M-Step:

argmax
θ

Q(θ,θ(t)) = argmax
θ

N∑
n=1

E
zn∼q(t)n

[ln p(xn, zn ;θ)]

= argmax
θ

N∑
n=1

E
zn∼q(t)n

[ln p(zn ;θ) + ln p(xn|zn ;θ)]

= argmax
{ωk,µk,Σk}

N∑
n=1

K∑
k=1

γnk (lnωk + lnN(xn | µk,Σk))

To find ω1, . . . , ωK , solve

argmax
ω

N∑
n=1

K∑
k=1

γnk lnωk

To find each µk,Σk, solve

argmax
µk,Σk

N∑
n=1

γnk lnN(xn | µk,Σk)

43 / 46

Gaussian mixture models EM applied to GMMs

M-Step (continued)

Solutions to previous two problems are very natural, for each k

ωk =

∑
n γnk
N

i.e. (weighted) fraction of examples belonging to cluster k

µk =

∑
n γnkxn∑
n γnk

i.e. (weighted) average of examples belonging to cluster k

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)T

i.e (weighted) covariance of examples belonging to cluster k

You will verify some of these in HW4.
44 / 46

Gaussian mixture models EM applied to GMMs

Putting it together

EM for learning GMMs:

Step 0 Initialize ωk,µk,Σk for each k ∈ [K]

Step 1 (E-Step) update the “soft assignment” (fixing parameters)

γnk = p(zn = k | xn) ∝ ωkN (xn | µk,Σk)

Step 2 (M-Step) update the model parameter (fixing assignments)

ωk =

∑
n γnk
N

µk =

∑
n γnkxn∑
n γnk

Σk =
1∑
n γnk

∑
n

γnk(xn − µk)(xn − µk)T

Step 3 return to Step 1 if not converged
45 / 46

Gaussian mixture models EM applied to GMMs

Connection to K-means

K-means is in fact a special case of EM for (a simplified) GMM:

assume Σk = σ2I for some fixed σ so only ωk and µk are parameters

when σ → 0, EM becomes K-means

GMM is a soft version of K-means and it provides a probabilistic
interpretation of the data, which means we can predict and generate data
after learning.

46 / 46

	Clustering
	Gaussian mixture models

