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@ Clustering

© Gaussian mixture models

Administration

Quiz 1: 20% of total grade, everyone gets it
HWa3: discuss solutions today

HW4: to be released, due on Sat, 10/31 (note the shorter time)
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@ Clustering
@ Problem setup

@ K-means algorithm
@ Initialization and Convergence



Clustering

Supervised learning v.s unsupervised learning

Recall there are different types of machine learning problems

e supervised learning (what we have discussed so far)
Aim to predict, e.g. classification and regression

e unsupervised learning (main focus from now on)
Aim to discover hidden/latent patterns and explore data

Today's focus: clustering, an important unsupervised learning problem
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Clustering: formal definition

Given: data points x1,...,xy € RP and #clusters K we want

Output: group the data into K clusters, which means

e find assignment v, € {0, 1} for each data point n € [N] and k € [K]
s.t. Zke[K} Yok = 1 for any fixed n

o find the cluster centers w1, ..., px € RP
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Clustering: informal definition

Given: a set of data points (feature vectors), without labels
Output: group the data into some clusters, which means
@ assign each point to a specific cluster

e find the center (representative/prototype/...) of each cluster
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@SS Problem setup
Many applications
One example: image compression (vector quantization)
@ each pixel is a point
@ perform clustering over these points
@ replace each point by the center of the cluster it belongs to
Original image Large K — Small K
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Formal Objective

Key difference from supervised learning problems: no labels given, which
means no ground-truth to even measure the quality of your answer!

Still, we can turn it into an optimization problem, e.g. through the
popular “K-means” objective: find ~,; and g to minimize

N K
F ({vrds () = DD vnnllaen — pall3

n=1k=1

i.e. the sum of squared distances of each point to its center.

Unfortunately, finding the exact minimizer is NP-hard!
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A closer look

The first step
min F ({yur}, {ttx}) = min > Y "yl — pell3
{¥nr} (e} S

= min Y yuullzn — i3
n {’Ynk} k

is simply to assign each x, to the closest pu;, i.e.
Yk =1 {k == argmin ||z,, — MCH%:|
C

for all k € [K] and n € [N].
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Alternating minimization

Instead, use a heuristic that alternatingly minimizes over {~,x} and {p}:

Initialize {ulgl)}

Fort = 1727“'
o find
t+1 3 K
{77(#:_ )} = argmin F' ({’Ynk:}a {/'l’l(e)})
{’Y’nk}
o find

{pty = ar{gm}inF (hfﬂl) b {Hk}>
1223
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A closer look
The second step
min F ({var}, {pr}) = min > > " yorll@n — pll3
{px} b} 7
=) min Y g — il
i
k N Ynk=1
is simply to average the points of each cluster (hence the name)
’{TZ Yk = 1}’ En,)/nk
for each k € [K].
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Clustering K-means algorithm

The K-means algorithm

Step 0 Initialize py,..., pux

Step 1 Fix the centers w1, ..., (i, assign each point to the closest center:

Yo = 1 |k == argmin ||z, — p[|3
C

Step 2 Fix the assignment {7, }, update the centers

_ Zn ’Ynkwn
pp = S2——
Zn ’Ynk

Step 3 Return to Step 1 if not converged
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@IEE A Initialization and Convergence

How to initialize?

There are different ways to initialize:
@ randomly pick K points as initial centers
@ or randomly assign each point to a cluster, then average

@ or more sophisticated approaches (e.g. K-means++)

Initialization matters for convergence.
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Clustering K-means algorithm

An example

@IEE A Initialization and Convergence

Convergence

K-means will converge in a finite number of iterations, why?
@ objective decreases at each step
@ objective is lower bounded by 0

o #possible_assignments is finite (K'Y, exponentially large though)

However
@ it could take exponentially many iterations to converge

e and it might not converge to the global minimum of the K-means
objective
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Clustering Initialization and Convergence Clustering Initialization and Convergence

Local minimum v.s global minimum Local minimum v.s global minimum

Simple example: 4 data points, 2 clusters, 2 different initializations
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L>»W
L=2W
K-means converges immediately in both cases, but @ moreover, local minimum can be arbitrarily worse if we increase L

o left has K-means objective L? = 4112 e
@ so initialization matters a lot for K-means
e right has K-means objective W?2, 4 times better than left!

@ in fact, left is local minimum, and right is global minimum.
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Clustering Initialization and Convergence Clustering Initialization and Convergence

How common initialization methods perform? K-means++

K-means++ is K-means with a better initialization procedure:

w
. . Start with a random data point as the first center p;
Fork=2,....K
L>W .
@ randomly pick the k-th center w such that
e randomly pick K points as initial centers: fails with 1/3 probability Pr{py = x,] j_lmilllcil |2 — Nj”%

@ or randomly assign each point to a cluster, then average: similarly fail

with a constant probability
Intuitively this spreads out the initial centers.

@ or more sophisticated approaches: K-means++ guarantees to find a
solution that in expectation is at most O(log K') times of the optimal
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@SS Initialization and Convergence

K-means++ on the same example

[ ] [ ]
w
[ ] [
L>»>W
Suppose we pick top left as pq, then
o Prps = bottom left] o< 1177, Pr[ps = top right] o< L?
o Pr[uy = bottom right] oc 1177 + L”
So the expected K-means objective is
w2 L? 1 3
) R (2(W2 P 2) =27

that is, at most 1.5 times of the optimal.

Outline

© Gaussian mixture models
@ Motivation and Model
e EM algorithm
o EM applied to GMMs
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@SS Initialization and Convergence

Summary for K-means

K-means is alternating minimization for the K-means objective.
The initialization matters a lot for the convergence.

K-means++ uses a theoretically (and often empirically) better
initialization.
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(CENESEL NN DTN SE  Motivation and Model

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering
@ more explanatory than minimizing the K-means objective

@ can be seen as a soft version of K-means

To solve GMM, we will introduce a powerful method for learning
probabilistic model: Expectation—Maximization (EM) algorithm
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Gaussian mixture models Motivation and Model Gaussian mixture models Motivation and Model

A generative model GMM: intuition

For classification, we discussed the sigmoid model to “explain” how the

labels are generated. GMM is a natural model to explain such data

Similarly, for clustering, we want to come up with a probabilistic model p

Assume there are 3 ground-truth
to “explain” how the data is generated.

Gaussian models. To generate a !
point, we

e first randomly pick one of 05
the Gaussian models,

That is, each point is an
independent sample of x ~ p.

0.5 @ then draw a point 0

What probabilistic model according this Gaussian.

generates data like this?

0 0.5 1
0 [ . L "
Hence the name “Gaussian mixture model".
0 0.5 1
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GMM: formal definition Another view
A GMM has the following density function: By introducing a latent variable z € [K], which indicates cluster
K membership, we can see p as a marginal distribution
plx) = wiN (@ | p, Ti) K K K
k=1
p(x) = Zp(m,z =k)= Zp(z =k)p(x|z=k) = ZwkN(:c | i, k)
where k=1 k=1 k=1
e K: the number of Gaussian components (same as #clusters we want)
) ] o x and z are both random variables drawn from the model
® wi,...,wx: mixture weights, a distribution over K components

. . . @ x is observed
@ uy; and Xg: mean and covariance matrix of the k-th Gaussian

_ _ _ @ z is unobserved/latent
@ N: the density function for a Gaussian
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ezt ex k)
An example

| The conditional distributions are

p(x | z=red) = N(x | p1, %)
W p(x | z = blue) = N(x | po, X5)
| ' pla | = = green) = (x| s 1)

0.5

0 0.5 1

The marginal distribution is

0.5

p(x) = p(red)N(x | p1,%1) + p(blue) N(x | pa, Xo)
+ p(green) V(x| p15.335)

0 0.5 1
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How to learn these parameters?
An obvious attempt is maximum-likelihood estimation (MLE): find
N N
argmax In H p(xy, ;0) = argmaxz Inp(x,, ;0) = argmax P(0)
0 n=1 0 n=1 0

This is called incomplete log-likelihood (since z,'s are unobserved), and is
intractable in general (non-concave problem).

One solution is to still apply GD/SGD, but a much more effective
approach is the Expectation—Maximization (EM) algorithm.
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Metivation and Mode
Learning GMMs

Learning a GMM means finding all the parameters 8 = {wg, pr, g},
In the process, we will learn the latent variable z,, as well:
p(zn =k | wn) £ Ynk € [0, 1]

i.e. “soft assignment” of each point to each cluster, as opposed to “hard
assignment” by K-means.

GMM is more explanatory than K-means
@ both learn the cluster centers py's

@ in addition, GMM learns cluster weight wy and covariance X, thus

e we can predict probability of seeing a new point
e we can generate synthetic data
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(CENESEL NN DTN SE  Motivation and Model

Preview of EM for learning GMMs
Step 0 Initialize wy, py, X, for each k € [K]
Step 1 (E-Step) update the “soft assignment” (fixing parameters)

Tk = P(2n =k | @) X wiN (x4, | pi, 2ic)

Step 2 (M-Step) update the model parameter (fixing assignments)

— Zn ’Ynk
N

— Zn ’Ynkxn
Zn 'Vnk

Wk i

1
k\Ln — U ) Ln — Kk
Zn%k;%( n— 1) (T — p

Y= )T

Step 3 return to Step 1 if not converged

We will see how this is a special case of EM.
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Demo
Generate 50 data points from a mixture of 2 Gaussians with

@ W1 = ().3,,u1 = —0.8, 21 =0.52
@ Wy = 07, Ho = 12, 22 =0.35

histogram represents the data

0.8 A

[

red curve represents the 06 /\\
ground-truth density ' | \
K [

p(x) =3 1 weN (2 | px, i) 04 I
\
blue curve represents the learned 02 ,/ \\
density for a specific round ‘

EM_demo.pdf shows how the blue curve moves towards red curve quickly
via EM
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[ G i (O
High level idea
Keep maximizing a lower bound of P that is more manageable
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I
EM algorithm

In general EM is a heuristic to solve MLE with latent variables (not
just GMM), i.e. find the maximizer of

N N
PO) = Zlnp(ar:n ;0) = Zln/ (T, 2y ;0)dz,
n=1 n=1 Zn

@ 0 is the parameters for a general probabilistic model
@ x,'s are observed random variables

@ z,'s are latent variables

Again, directly solving the objective is intractable.
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EM algorithm
Derivation of EM

Finding the lower bound of P:

p(x,z;0)
Inp(x;0)=In——=
pl@:0)=In o)

~Een 5

:Emdmﬂazﬂﬂ—Emﬁm«@LJ&wanﬂmeq

q(2)
=E.qInp(z,2;0)] + H(q) — E.nyg [m W} (H is entropy)

(true for any z)

(true for any dist. q)

> Bong [Inp(@, 2 :0)] + H(g) —InEry [W}

(Jensen's inequality)
= Ezng [Inp(, 2 ;0)] + H(q)
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https://haipeng-luo.net/courses/CSCI567/2020_fall/EM_demo.pdf

Gaussian mixture models SSVEEIEC AT

Alternatively maximize the lower bound

Therefore, we obtain a lower bound for the log-likelihood function

Zlnp T, ;0
N

z Zn~qn lnp L,y Zn ’0)] + H(qn)) = F(O, {Qn})
=1

This holds for any {gy}, so how do we choose? Naturally, the one that
maximizes the lower bound (i.e. the tightest lower bound)!

Equivalently, this is the same as alternatingly maximizing F' over {¢,,} and
0 (similar to K-means).
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[CENESEL NN DRATCN G S EM algorithm

Maximizing over 6

Fix {qg)}, maximize over 0:

argznaxF (9, {q,(f)})

g Inp(xn, 2z, ;0)] (H( 7(1)) is independent of 0)

2 argmax Q(6 ;0Y) ({¢\"} are computed via 8®))
)

@ is the (expected) complete likelihood and is usually more tractable.
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[CENESEL NG BRATCN G S EM algorithm

Maximizing over {g,}
Fix %) the solution to

argmaxE, g, [lnp(wn, Zn ;e(t))] + H(qn)
dn

is qff) s.t.
qv(zt)(zn) = p(zn | Tn 79(t)) X p(wna Zn ’e(t))

i.e., the posterior distribution of z, given x, and 8"). (Verified in HW4)

So at ), we found the tightest lower bound F ( {q(t)}):
o F (0, {q,(f)}) < P(8) for all 6.

(9 {q(t)}> = P(0")) (verify yourself by going through Slide 36)
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[CENESEL NG DRATCN G S EM algorithm

General EM algorithm

Step 0 Initialize o) +=1
Step 1 (E-Step) update the posterior of latent variables

dP() =p(- |z, ;0Y)

and obtain Expectation of complete likelihood

Qo ;01 = Z]E

MO lnp Ln,y Zn ag)]

Step 2 (M-Step) update the model parameter via Maximization

6+ « argmax Q(6 ;0
0

Step 3t < t+ 1 and return to Step 1 if not converged
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Gaussian mixture models SSVEEIEC AT

Pictorial explanation

P(8) is non-concave, but Q(0;0"))
often is concave and easy to
maximize.

P(6%) > F (84D ; {¢(0})

>F (0“) : {qq(f)})
= P(6W)

So EM always increases the objective
value and will converge to some local
maximum (similar to K-means).

F (97 (qif)})
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0 D o EH:
Apply EM to learn GMMs

M-Step:

N
argmax Q(6,0) = argmaxz E lnp(x,, 2, ;0)]
] 6

N
— argmax > E_ o [p(zy :0) + np(as |2, :0)
n=1

e

0
N K

= argmax Z Z’ynk (Inwg + In N(x, | px, X))
{wrmr, B} 21—

To find wy,...,wk, solve To find each g, 3, solve
N K N
argmax Z Z Yk 1N Wi argmax Z Yok In N (20, | por, Xi)
“ n=lk=1 (72—
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0 D o
Apply EM to learn GMMs

E-Step:
0o = k) =p (20 =k | 2, :00)
xp (wn,zn =k ;O(t)>
=P (Zn =k ;0U) p(a, | 20 =k ;0<t))

— w](:)N (ar;n | ,u,,(f)7 Z,@)

This computes the “soft assignment” 7, = qﬁf)(zn = k), i.e. conditional
probability of @, belonging to cluster k.
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G e G
M-Step (continued)

Solutions to previous two problems are very natural, for each k

Wk N

i.e. (weighted) fraction of examples belonging to cluster k

_ Zn ’Vnkwn
By = —<—=_—

i.e. (weighted) average of examples belonging to cluster k

3y =

1
s > Yok (@n — ) (@0 — pi)”
n MK,

i.e (weighted) covariance of examples belonging to cluster k

You will verify some of these in HW4.
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Putting it together Connection to K-means

EM for learning GMMs:

Step 0 Initialize wy, g, X for each k € [K]

. . K-means is in fact a special case of EM for (a simplified) GMM:
Step 1 (E-Step) update the “soft assignment” (fixing parameters)

@ assume X, = 021 for some fixed o so only wy, and py, are parameters
Yok = DP(2n = k | ®n) X wpN (T | pir, )

@ when ¢ — 0, EM becomes K-means
Step 2 (M-Step) update the model parameter (fixing assignments)

> ¥ - GMM is a soft version of K-means and it provides a probabilistic
Wi = % i = Zon InkTn interpretation of the data, which means we can predict and generate data
2 on Yok after learning.
1

= Ynk\Ln — Rk )(T _NkT
Zn/ynk; (n )(n )

Step 3 return to Step 1 if not converged
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