CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Nov 05, 2020

Administration

HW5 is due on Tue, Nov 10.

Administration

HW5 is due on Tue, Nov 10.

Today's plan:

- one new topic (HMMs)
- HW4 review
- more exercises

Administration

HW5 is due on Tue, Nov 10.

Today's plan:

- one new topic (HMMs)
- HW4 review
- more exercises

Next week's plan:

- final topics: multi-armed bandits and reinforcement learning
- only multiple-choice questions in Quiz 2

Outline

- (Hidden) Markov models
 - Markov chain
 - Hidden Markov Model
 - Inferring HMMs
 - Learning HMMs

Markov Models

Markov models are powerful probabilistic tools to analyze sequential data:

- text or speech data
- stock market data
- gene data
- <u>. . . .</u>

A Markov chain is a stochastic process with Markov property:

A Markov chain is a stochastic process with Markov property: a sequence of random variables Z_1, Z_2, \cdots s.t.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t)$$
 (Markov property)

i.e. the current state only depends on the most recent state (notation $Z_{1:t}$ denotes the sequence Z_1, \ldots, Z_t).

A Markov chain is a stochastic process with Markov property: a sequence of random variables Z_1, Z_2, \cdots s.t.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t)$$
 (Markov property)

i.e. the current state only depends on the most recent state (notation $Z_{1:t}$ denotes the sequence Z_1, \ldots, Z_t).

We only consider the following case:

• All Z_t 's take value from the same discrete set $\{1,\ldots,S\}$

A Markov chain is a stochastic process with Markov property: a sequence of random variables Z_1, Z_2, \cdots s.t.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t)$$
 (Markov property)

i.e. the current state only depends on the most recent state (notation $Z_{1:t}$ denotes the sequence Z_1, \ldots, Z_t).

We only consider the following case:

- All Z_t 's take value from the same discrete set $\{1,\ldots,S\}$
- $P(Z_{t+1} = s' \mid Z_t = s) = a_{s,s'}$, known as transition probability

A Markov chain is a stochastic process with Markov property: a sequence of random variables Z_1, Z_2, \cdots s.t.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t)$$
 (Markov property)

i.e. the current state only depends on the most recent state (notation $Z_{1:t}$ denotes the sequence Z_1, \ldots, Z_t).

We only consider the following case:

- All Z_t 's take value from the same discrete set $\{1,\ldots,S\}$
- $P(Z_{t+1} = s' \mid Z_t = s) = a_{s,s'}$, known as transition probability
- $P(Z_1 = s) = \pi_s$

A Markov chain is a stochastic process with Markov property: a sequence of random variables Z_1, Z_2, \cdots s.t.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t)$$
 (Markov property)

i.e. the current state only depends on the most recent state (notation $Z_{1:t}$ denotes the sequence Z_1, \ldots, Z_t).

We only consider the following case:

- All Z_t 's take value from the same discrete set $\{1,\ldots,S\}$
- $P(Z_{t+1} = s' \mid Z_t = s) = a_{s,s'}$, known as transition probability
- $P(Z_1 = s) = \pi_s$
- ullet $(\{\pi_s\},\{a_{s,s'}\})=(oldsymbol{\pi},oldsymbol{A})$ are parameters of the model

Examples

• Example 1 (Language model)

States [S] represent a dictionary of words,

$$a_{ice,cream} = P(Z_{t+1} = cream \mid Z_t = ice)$$

is an example of the transition probability.

Examples

• Example 1 (Language model)

States [S] represent a dictionary of words,

$$a_{ice.cream} = P(Z_{t+1} = cream \mid Z_t = ice)$$

is an example of the transition probability.

• Example 2 (Weather)

States [S] represent weather at each day

$$a_{\text{sunnv.rainv}} = P(Z_{t+1} = \text{rainy} \mid Z_t = \text{sunny})$$

Is the Markov assumption reasonable?

Is the Markov assumption reasonable? Not completely for the language model for example.

Is the Markov assumption reasonable? Not completely for the language model for example.

Higher order Markov chains make it more reasonable, e.g.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t, Z_{t-1})$$
 (second-order Markov)

i.e. the current word only depends on the last two words.

Is the Markov assumption reasonable? Not completely for the language model for example.

Higher order Markov chains make it more reasonable, e.g.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t, Z_{t-1})$$
 (second-order Markov)

i.e. the current word only depends on the last two words.

Learning higher order Markov chains is similar, but more expensive.

Is the Markov assumption reasonable? Not completely for the language model for example.

Higher order Markov chains make it more reasonable, e.g.

$$P(Z_{t+1} \mid Z_{1:t}) = P(Z_{t+1} \mid Z_t, Z_{t-1})$$
 (second-order Markov)

i.e. the current word only depends on the last two words.

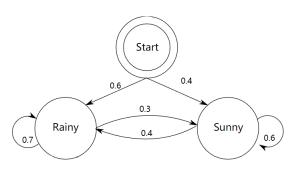
Learning higher order Markov chains is similar, but more expensive.

We only consider standard Markov chains.

Graph Representation

picture from Wikipedia

It is intuitive to represent a Markov model as a graph



Now suppose we have observed N sequences of examples:

- $z_{1,1},\ldots,z_{1,T}$
- ...
- \bullet $z_{n,1},\ldots,z_{n,T}$
-
- \bullet $z_{N.1},\ldots,z_{N.T}$

Now suppose we have observed N sequences of examples:

- $z_{1,1},\ldots,z_{1,T}$
- ...
- \bullet $z_{n,1},\ldots,z_{n,T}$
- ...
- \bullet $z_{N.1},\ldots,z_{N.T}$

where

ullet for simplicity we assume each sequence has the same length T

Now suppose we have observed N sequences of examples:

- $z_{1,1}, \ldots, z_{1,T}$
-
- \bullet $z_{n,1},\ldots,z_{n,T}$
- ...
- \bullet $z_{N.1},\ldots,z_{N.T}$

where

- ullet for simplicity we assume each sequence has the same length T
- ullet lower case $z_{n,t}$ represents the value of the random variable $Z_{n,t}$

Now suppose we have observed N sequences of examples:

- $z_{1,1}, \ldots, z_{1,T}$
-
- \bullet $z_{n,1},\ldots,z_{n,T}$
- . . .
- $z_{N,1}, \ldots, z_{N,T}$

where

- ullet for simplicity we assume each sequence has the same length T
- ullet lower case $z_{n,t}$ represents the value of the random variable $Z_{n,t}$

From these observations how do we *learn the model parameters* (π, A) ?

Same story, find the MLE.

Same story, find the MLE. The log-likelihood of a sequence z_1,\dots,z_T is

$$ln P(Z_{1:T} = z_{1:T})$$

Same story, find the MLE. The log-likelihood of a sequence z_1, \ldots, z_T is

$$\ln P(Z_{1:T} = z_{1:T})$$

$$= \sum_{t=1}^{T} \ln P(Z_t = z_t \mid Z_{1:t-1} = z_{1:t-1})$$
 (always true)

Same story, find the MLE. The log-likelihood of a sequence z_1,\ldots,z_T is

$$\ln P(Z_{1:T}=z_{1:T})$$

$$=\sum_{t=1}^T \ln P(Z_t=z_t\mid Z_{1:t-1}=z_{1:t-1})$$
 (always true)
$$=\sum_{t=1}^T \ln P(Z_t=z_t\mid Z_{t-1}=z_{t-1})$$
 (Markov property)

Same story, find the MLE. The log-likelihood of a sequence z_1,\ldots,z_T is

$$\ln P(Z_{1:T} = z_{1:T})$$

$$= \sum_{t=1}^{T} \ln P(Z_t = z_t \mid Z_{1:t-1} = z_{1:t-1})$$
(always true)
$$= \sum_{t=1}^{T} \ln P(Z_t = z_t \mid Z_{t-1} = z_{t-1})$$
(Markov property)
$$= \ln \pi_{z_1} + \sum_{t=2}^{T} \ln a_{z_{t-1}, z_t}$$

Same story, find the MLE. The log-likelihood of a sequence z_1,\ldots,z_T is

$$\begin{split} & \ln P(Z_{1:T} = z_{1:T}) \\ & = \sum_{t=1}^{T} \ln P(Z_t = z_t \mid Z_{1:t-1} = z_{1:t-1}) \\ & = \sum_{t=1}^{T} \ln P(Z_t = z_t \mid Z_{t-1} = z_{t-1}) \\ & = \sum_{t=1}^{T} \ln P(Z_t = z_t \mid Z_{t-1} = z_{t-1}) \\ & = \ln \pi_{z_1} + \sum_{t=2}^{T} \ln a_{z_{t-1}, z_t} \\ & = \sum_{s} \mathbb{I}[z_1 = s] \ln \pi_s + \sum_{s, s'} \left(\sum_{t=2}^{T} \mathbb{I}[z_{t-1} = s, z_t = s'] \right) \ln a_{s, s'} \end{split}$$

So MLE is

$$\begin{split} \operatorname*{argmax}_{\pmb{\pi},\pmb{A}} \sum_s (\textit{\#initial states with value } s) \ln \pi_s \\ + \sum_{s,s'} (\textit{\#transitions from } s \text{ to } s') \ln a_{s,s'} \end{split}$$

So MLE is

$$\begin{split} \operatorname*{argmax}_{\pmb{\pi},\pmb{A}} \sum_s (\textit{\#initial states with value } s) \ln \pi_s \\ + \sum_{s,s'} (\textit{\#transitions from } s \text{ to } s') \ln a_{s,s'} \end{split}$$

We have seen this many times. The solution is:

$$\pi_s \propto \# \text{initial states with value } s$$
 $a_{s,s'} \propto \# \text{transitions from } s \text{ to } s'$

Example

Suppose we observed the following 2 sequences of length 5

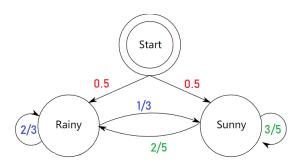
- sunny, sunny, rainy, rainy, rainy
- rainy, sunny, sunny, rainy

Example

Suppose we observed the following 2 sequences of length 5

- sunny, sunny, rainy, rainy, rainy
- rainy, sunny, sunny, rainy

MLE is the following model



Markov Model with outcomes

Now suppose each state Z_t also "emits" some **outcome** $X_t \in [O]$ based on the following model

$$P(X_t = o \mid Z_t = s) = b_{s,o}$$
 (emission probability)

independent of anything else.

Markov Model with outcomes

Now suppose each state Z_t also "emits" some **outcome** $X_t \in [O]$ based on the following model

$$P(X_t = o \mid Z_t = s) = b_{s,o}$$
 (emission probability)

independent of anything else.

For example, in the language model, X_t is the speech signal for the underlying word Z_t (very useful for speech recognition).

Markov Model with outcomes

Now suppose each state Z_t also "emits" some **outcome** $X_t \in [O]$ based on the following model

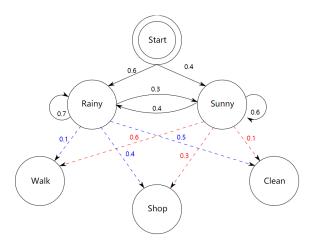
$$P(X_t = o \mid Z_t = s) = b_{s,o}$$
 (emission probability)

independent of anything else.

For example, in the language model, X_t is the speech signal for the underlying word Z_t (very useful for speech recognition).

Now the model parameters are $(\{\pi_s\}, \{a_{s,s'}\}, \{b_{s,o}\}) = (\pi, A, B)$.

On each day, we also observe **Bob's activity: walk, shop, or clean**, which only depends on the weather of that day.



$$\ln P(Z_{1:T} = z_{1:T}, X_{1:T} = x_{1:T})$$

$$\begin{split} & \ln P(Z_{1:T}=z_{1:T},X_{1:T}=x_{1:T})\\ & = \ln P(Z_{1:T}=z_{1:T}) + \ln P(X_{1:T}=x_{1:T}\mid Z_{1:T}=z_{1:T}) \quad \text{(always true)} \end{split}$$

$$\begin{split} & \ln P(Z_{1:T} = z_{1:T}, X_{1:T} = x_{1:T}) \\ & = \ln P(Z_{1:T} = z_{1:T}) + \ln P(X_{1:T} = x_{1:T} \mid Z_{1:T} = z_{1:T}) \quad \text{(always true)} \\ & = \sum_{t=1}^T \ln P(Z_t = z_t \mid Z_{t-1} = z_{t-1}) + \sum_{t=1}^T \ln P(X_t = x_t \mid Z_t = z_t) \\ & \qquad \qquad \text{(due to all the independence)} \end{split}$$

$$\begin{split} \ln P(Z_{1:T} &= z_{1:T}, X_{1:T} = x_{1:T}) \\ &= \ln P(Z_{1:T} = z_{1:T}) + \ln P(X_{1:T} = x_{1:T} \mid Z_{1:T} = z_{1:T}) \quad \text{(always true)} \\ &= \sum_{t=1}^T \ln P(Z_t = z_t \mid Z_{t-1} = z_{t-1}) + \sum_{t=1}^T \ln P(X_t = x_t \mid Z_t = z_t) \\ &\qquad \qquad \qquad \text{(due to all the independence)} \\ &= \ln \pi_{z_1} + \sum_{t=2}^T \ln a_{z_{t-1}, z_t} + \sum_{t=1}^T \ln b_{z_t, x_t} \end{split}$$

If we observe N state-outcome sequences: $z_{n,1}, x_{n,1}, \ldots, z_{n,T}, x_{n,T}$ for $n=1,\ldots,N$, the MLE is again very simple (verify yourself):

```
\pi_s \propto #initial states with value s a_{s,s'} \propto #transitions from s to s' b_{s,o} \propto #state-outcome pairs (s,o)
```

However, most often we do not observe the states!

However, *most often we do not observe the states!* Think about the speech recognition example.

However, *most often we do not observe the states!* Think about the speech recognition example.

This is called Hidden Markov Model (HMM), widely used in practice

However, *most often we do not observe the states!* Think about the speech recognition example.

This is called Hidden Markov Model (HMM), widely used in practice

How to learn HMMs?

However, *most often we do not observe the states!* Think about the speech recognition example.

This is called Hidden Markov Model (HMM), widely used in practice

How to learn HMMs? Roadmap:

first discuss how to infer when the model is known (key: dynamic programming)

However, *most often we do not observe the states!* Think about the speech recognition example.

This is called Hidden Markov Model (HMM), widely used in practice

How to learn HMMs? Roadmap:

- first discuss how to infer when the model is known (key: dynamic programming)
- then discuss how to **learn** the model (key: EM)

What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

the probability of observing some sequence

$$P(X_{1:T} = x_{1:T})$$

e.g. prob. of observing Bob's activities "walk, walk, shop, clean, walk, shop, shop" for one week

What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

the probability of observing some sequence

$$P(X_{1:T} = x_{1:T})$$

e.g. prob. of observing Bob's activities "walk, walk, shop, clean, walk, shop, shop" for one week

• the state at some point, given an observation sequence

$$P(Z_t = s \mid X_{1:T} = x_{1:T})$$

e.g. given Bob's activities for one week, how was the weather like on Wed?

What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer

• the transition at some point, given an observation sequence

$$P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

e.g. given Bob's activities for one week, how was the weather like on Wed and Thu?

What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer

• the transition at some point, given an observation sequence

$$P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

e.g. given Bob's activities for one week, how was the weather like on Wed and Thu?

most likely hidden states path, given an observation sequence

$$\operatorname*{argmax}_{z_{1:T}} P(Z_{1:T} = z_{1:T} \mid X_{1:T} = x_{1:T})$$

e.g. given Bob's activities for one week, what's the most likely weather for this week?

Forward and backward messages

The key to infer all these is to compute two things:

Forward and backward messages

The key to infer all these is to compute two things:

ullet forward messages: for each s and t

$$\alpha_s(t) = P(Z_t = s, X_{1:t} = x_{1:t})$$

Forward and backward messages

The key to infer all these is to compute two things:

ullet forward messages: for each s and t

$$\alpha_s(t) = P(Z_t = s, X_{1:t} = x_{1:t})$$

ullet backward messages: for each s and t

$$\beta_s(t) = P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s)$$

$$\alpha_s(t)$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})$$

$$\alpha_s(t)$$
= $P(Z_t = s, X_{1:t} = x_{1:t})$
= $P(X_t = x_t \mid Z_t = s, X_{1:t-1} = x_{1:t-1})P(Z_t = s, X_{1:t-1} = x_{1:t-1})$

$$\begin{split} &\alpha_s(t)\\ &=P(Z_t=s,X_{1:t}=x_{1:t})\\ &=P(X_t=x_t\mid Z_t=s,X_{1:t-1}=x_{1:t-1})P(Z_t=s,X_{1:t-1}=x_{1:t-1})\\ &=b_{s,x_t}\sum_{s'}P(Z_t=s,Z_{t-1}=s',X_{1:t-1}=x_{1:t-1}) \end{split} \tag{marginalizing}$$

$$\begin{split} &\alpha_s(t)\\ &=P(Z_t=s,X_{1:t}=x_{1:t})\\ &=P(X_t=x_t\mid Z_t=s,X_{1:t-1}=x_{1:t-1})P(Z_t=s,X_{1:t-1}=x_{1:t-1})\\ &=b_{s,x_t}\sum_{s'}P(Z_t=s,Z_{t-1}=s',X_{1:t-1}=x_{1:t-1}) \qquad \qquad \text{(marginalizing)}\\ &=b_{s,x_t}\sum_{s'}P(Z_t=s|Z_{t-1}=s',X_{1:t-1}=x_{1:t-1})P(Z_{t-1}=s',X_{1:t-1}=x_{1:t-1})\end{split}$$

Key: establish a recursive formula

 $\alpha_s(t)$

$$= P(Z_t = s, X_{1:t} = x_{1:t})$$

$$= P(X_t = x_t \mid Z_t = s, X_{1:t-1} = x_{1:t-1}) P(Z_t = s, X_{1:t-1} = x_{1:t-1})$$

$$= b_{s,x_t} \sum_{s'} P(Z_t = s, Z_{t-1} = s', X_{1:t-1} = x_{1:t-1})$$

$$= b_{s,x_t} \sum_{s'} P(Z_t = s \mid Z_{t-1} = s', X_{1:t-1} = x_{1:t-1}) P(Z_{t-1} = s', X_{1:t-1} = x_{1:t-1})$$

$$= b_{s,x_t} \sum_{s'} a_{s',s} \alpha_{s'}(t-1)$$

$$(recursive form!)$$

Key: establish a recursive formula

 $= P(Z_t = s, X_{1:t} = x_{1:t})$

 $=b_{s,x_t}\sum_{s}a_{s',s}\alpha_{s'}(t-1)$

 $\alpha_s(t)$

$$\begin{split} &=P(X_t=x_t\mid Z_t=s,X_{1:t-1}=x_{1:t-1})P(Z_t=s,X_{1:t-1}=x_{1:t-1})\\ &=b_{s,x_t}\sum_{s'}P(Z_t=s,Z_{t-1}=s',X_{1:t-1}=x_{1:t-1}) \qquad \qquad \text{(marginalizing)}\\ &=b_{s,x_t}\sum_{s'}P(Z_t=s|Z_{t-1}=s',X_{1:t-1}=x_{1:t-1})P(Z_{t-1}=s',X_{1:t-1}=x_{1:t-1})\end{split}$$

Base case: $\alpha_s(1) = P(Z_1 = s, X_1 = x_1) = \pi_s b_{s,x_1}$

(recursive form!)

Forward procedure

Forward procedure

For all $s \in [S]$, compute $\alpha_s(1) = \pi_s b_{s,x_1}$.

For
$$t = 2, \ldots, T$$

• for each $s \in [S]$, compute

$$\alpha_s(t) = b_{s,x_t} \sum_{s'} a_{s',s} \alpha_{s'}(t-1)$$

Forward procedure

Forward procedure

For all $s \in [S]$, compute $\alpha_s(1) = \pi_s b_{s,x_1}$.

For
$$t = 2, \ldots, T$$

• for each $s \in [S]$, compute

$$\alpha_s(t) = b_{s,x_t} \sum_{s'} a_{s',s} \alpha_{s'}(t-1)$$

It takes $O(S^2T)$ time and O(ST) space.

$$\beta_s(t)$$

= $P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s)$

$$\begin{split} &\beta_{s}(t) \\ &= P(X_{t+1:T} = x_{t+1:T} \mid Z_{t} = s) \\ &= \sum_{t} P(X_{t+1:T} = x_{t+1:T}, Z_{t+1} = s' \mid Z_{t} = s) \end{split} \tag{marginalizing)}$$

$$\begin{split} &\beta_s(t) \\ &= P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s) \\ &= \sum_{s'} P(X_{t+1:T} = x_{t+1:T}, Z_{t+1} = s' \mid Z_t = s) \\ &= \sum_{s'} P(Z_{t+1} = s' \mid Z_t = s) P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s', Z_t = s) \end{split}$$
 (marginalizing)

$$\begin{split} &\beta_s(t) \\ &= P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s) \\ &= \sum_{s'} P(X_{t+1:T} = x_{t+1:T}, Z_{t+1} = s' \mid Z_t = s) \\ &= \sum_{s'} P(Z_{t+1} = s' \mid Z_t = s) P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s', Z_t = s) \\ &= \sum_{s'} a_{s,s'} P(X_{t+1} = x_{t+1} \mid Z_{t+1} = s') P(X_{t+2:T} = x_{t+2:T} \mid Z_{t+1} = s') \end{split}$$

$$\begin{split} &\beta_{s}(t) \\ &= P(X_{t+1:T} = x_{t+1:T} \mid Z_{t} = s) \\ &= \sum_{s'} P(X_{t+1:T} = x_{t+1:T}, Z_{t+1} = s' \mid Z_{t} = s) \qquad \text{(marginalizing)} \\ &= \sum_{s'} P(Z_{t+1} = s' \mid Z_{t} = s) P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s', Z_{t} = s) \\ &= \sum_{s'} a_{s,s'} P(X_{t+1} = x_{t+1} \mid Z_{t+1} = s') P(X_{t+2:T} = x_{t+2:T} \mid Z_{t+1} = s') \\ &= \sum_{s'} a_{s,s'} b_{s',x_{t+1}} \beta_{s'}(t+1) \qquad \qquad \text{(recursive form!)} \end{split}$$

Again establish a recursive formula

$$\begin{split} &\beta_{s}(t) \\ &= P(X_{t+1:T} = x_{t+1:T} \mid Z_{t} = s) \\ &= \sum_{s'} P(X_{t+1:T} = x_{t+1:T}, Z_{t+1} = s' \mid Z_{t} = s) \qquad \text{(marginalizing)} \\ &= \sum_{s'} P(Z_{t+1} = s' \mid Z_{t} = s) P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s', Z_{t} = s) \\ &= \sum_{s'} a_{s,s'} P(X_{t+1} = x_{t+1} \mid Z_{t+1} = s') P(X_{t+2:T} = x_{t+2:T} \mid Z_{t+1} = s') \\ &= \sum_{s'} a_{s,s'} b_{s',x_{t+1}} \beta_{s'}(t+1) \qquad \qquad \text{(recursive form!)} \end{split}$$

Base case: $\beta_s(T) = 1$

Backward procedure

Backward procedure

For all
$$s \in [S]$$
, set $\beta_s(T) = 1$.

For
$$t = T - 1, ..., 1$$

• for each $s \in [S]$, compute

$$\beta_s(t) = \sum_{s'} a_{s,s'} b_{s',x_{t+1}} \beta_{s'}(t+1)$$

Backward procedure

Backward procedure

For all
$$s \in [S]$$
, set $\beta_s(T) = 1$.

For
$$t = T - 1, ..., 1$$

• for each $s \in [S]$, compute

$$\beta_s(t) = \sum_{s'} a_{s,s'} b_{s',x_{t+1}} \beta_{s'}(t+1)$$

Again it takes $O(S^2T)$ time and O(ST) space.

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

 $\propto P(Z_t = s, X_{1:T} = x_{1:T})$

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$= \alpha_s(t)\beta_s(t)$$

With forward and backward messages, we can easily infer many things, e.g.

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$= \alpha_s(t)\beta_s(t)$$

What constant are we omitting in " \propto "?

With forward and backward messages, we can easily infer many things, e.g.

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$= \alpha_s(t)\beta_s(t)$$

What constant are we omitting in " \propto "? It is exactly

$$P(X_{1:T} = x_{1:T}) = \sum_{s} \alpha_s(t)\beta_s(t),$$

the probability of observing the sequence $x_{1:T}$.

With forward and backward messages, we can easily infer many things, e.g.

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})
\propto P(Z_t = s, X_{1:T} = x_{1:T})
= P(Z_t = s, X_{1:t} = x_{1:t}) P(X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})
= \alpha_s(t)\beta_s(t)$$

What constant are we omitting in " \propto "? It is exactly

$$P(X_{1:T} = x_{1:T}) = \sum_{s} \alpha_s(t)\beta_s(t),$$

the probability of observing the sequence $x_{1:T}$.

This is true for any t; a good way to check correctness of your code.

Another example: the conditional probability of transition \boldsymbol{s} to \boldsymbol{s}' at time t

$$\xi_{s,s'}(t)$$

= $P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$

Another example: the conditional probability of transition \boldsymbol{s} to \boldsymbol{s}' at time t

$$\xi_{s,s'}(t) = P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, Z_{t+1} = s', X_{1:T} = x_{1:T})$$

 $\xi_{s,s'}(t)$

$$= P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, Z_{t+1} = s', X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(Z_{t+1} = s', X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$\xi_{s,s'}(t) = P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, Z_{t+1} = s', X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(Z_{t+1} = s', X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$= \alpha_s(t)P(Z_{t+1} = s' \mid Z_t = s)P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s')$$

$$\xi_{s,s'}(t) = P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

$$\propto P(Z_t = s, Z_{t+1} = s', X_{1:T} = x_{1:T})$$

$$= P(Z_t = s, X_{1:t} = x_{1:t})P(Z_{t+1} = s', X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})$$

$$= \alpha_s(t)P(Z_{t+1} = s' \mid Z_t = s)P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s')$$

$$= \alpha_s(t)a_{s,s'}P(X_{t+1} = x_{t+1} \mid Z_{t+1} = s')P(X_{t+2:T} = x_{t+2:T} \mid Z_{t+1} = s')$$

$$\xi_{s,s'}(t)
= P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})
\propto P(Z_t = s, Z_{t+1} = s', X_{1:T} = x_{1:T})
= P(Z_t = s, X_{1:t} = x_{1:t}) P(Z_{t+1} = s', X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})
= \alpha_s(t) P(Z_{t+1} = s' \mid Z_t = s) P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s')
= \alpha_s(t) a_{s,s'} P(X_{t+1} = x_{t+1} \mid Z_{t+1} = s') P(X_{t+2:T} = x_{t+2:T} \mid Z_{t+1} = s')
= \alpha_s(t) a_{s,s'} b_{s',x_{t+1}} \beta_{s'}(t+1)$$

Another example: the conditional probability of transition s to s^\prime at time t

$$\xi_{s,s'}(t)
= P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})
\propto P(Z_t = s, Z_{t+1} = s', X_{1:T} = x_{1:T})
= P(Z_t = s, X_{1:t} = x_{1:t}) P(Z_{t+1} = s', X_{t+1:T} = x_{t+1:T} \mid Z_t = s, X_{1:t} = x_{1:t})
= \alpha_s(t) P(Z_{t+1} = s' \mid Z_t = s) P(X_{t+1:T} = x_{t+1:T} \mid Z_{t+1} = s')
= \alpha_s(t) a_{s,s'} P(X_{t+1} = x_{t+1} \mid Z_{t+1} = s') P(X_{t+2:T} = x_{t+2:T} \mid Z_{t+1} = s')
= \alpha_s(t) a_{s,s'} b_{s',x_{t+1}} \beta_{s'}(t+1)$$

The normalization constant is in fact again $P(X_{1:T} = x_{1:T})$

Finding the most likely path

Though can't use forward and backward messages directly to find the most likely path, it is very similar to the forward procedure.

Finding the most likely path

Though can't use forward and backward messages directly to find the most likely path, it is very similar to the forward procedure. Key: compute

$$\delta_s(t) = \max_{z_{1:t-1}} P(Z_t = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t})$$

the probability of the most likely path for time 1:t ending at state s

$$\delta_s(t) = \max_{z_{1:t-1}} P(Z_t = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t})$$

$$\delta_s(t) = \max_{z_{1:t-1}} P(Z_t = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t})$$

$$= \max_{s'} \max_{z_{1:t-2}} P(Z_t = s, Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t} = x_{1:t})$$

$$\delta_{s}(t) = \max_{z_{1:t-1}} P(Z_{t} = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t})$$

$$= \max_{s'} \max_{z_{1:t-2}} P(Z_{t} = s, Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t} = x_{1:t})$$

$$= \max_{s'} P(Z_{t} = s \mid Z_{t-1} = s') P(X_{t} = x_{t} \mid Z_{t} = s) \cdot$$

$$\max_{z_{1:t-2}} P(Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t-1} = x_{1:t-1})$$

$$\begin{split} \delta_{s}(t) &= \max_{z_{1:t-1}} P(Z_{t} = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t}) \\ &= \max_{s'} \max_{z_{1:t-2}} P(Z_{t} = s, Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t} = x_{1:t}) \\ &= \max_{s'} P(Z_{t} = s \mid Z_{t-1} = s') P(X_{t} = x_{t} \mid Z_{t} = s) \cdot \\ &\qquad \qquad \max_{s'} P(Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t-1} = x_{1:t-1}) \\ &= b_{s,x_{t}} \max_{s'} a_{s',s} \delta_{s'}(t-1) \end{split}$$
 (recursive form!)

$$\begin{split} \delta_s(t) &= \max_{z_{1:t-1}} P(Z_t = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t}) \\ &= \max_{s'} \max_{z_{1:t-2}} P(Z_t = s, Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t} = x_{1:t}) \\ &= \max_{s'} P(Z_t = s \mid Z_{t-1} = s') P(X_t = x_t \mid Z_t = s) \cdot \\ &\qquad \qquad \max_{s'} P(Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t-1} = x_{1:t-1}) \\ &= b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1) \end{split}$$
 (recursive form!)

Base case:
$$\delta_s(1) = P(Z_1 = s, X_1 = x_1) = \pi_s b_{s,x_1}$$

Observe

$$\begin{split} \delta_s(t) &= \max_{z_{1:t-1}} P(Z_t = s, Z_{1:t-1} = z_{1:t-1}, X_{1:t} = x_{1:t}) \\ &= \max_{s'} \max_{z_{1:t-2}} P(Z_t = s, Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t} = x_{1:t}) \\ &= \max_{s'} P(Z_t = s \mid Z_{t-1} = s') P(X_t = x_t \mid Z_t = s) \cdot \\ &\qquad \qquad \max_{s'} P(Z_{t-1} = s', Z_{1:t-2} = z_{1:t-2}, X_{1:t-1} = x_{1:t-1}) \\ &= b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1) \end{split}$$
 (recursive form!)

Base case:
$$\delta_s(1) = P(Z_1 = s, X_1 = x_1) = \pi_s b_{s,x_1}$$

Exactly the same as forward messages except replacing "sum" by "max"!

Viterbi Algorithm

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

Viterbi Algorithm

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

ullet for each $s \in [S]$, compute

$$\delta_s(t) = b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1),$$

Viterbi Algorithm

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1),$$

$$\Delta_s(t) = \operatorname*{argmax}_{s'} a_{s',s} \delta_{s'}(t-1).$$

Viterbi Algorithm

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \dots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1),$$

$$\Delta_s(t) = \operatorname*{argmax}_{s'} a_{s',s} \delta_{s'}(t-1).$$

Backtracking: let $z_T^* = \operatorname{argmax}_s \delta_s(T)$.

Viterbi Algorithm

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1),$$

$$\Delta_s(t) = \operatorname*{argmax}_{s'} a_{s',s} \delta_{s'}(t-1).$$

Backtracking: let $z_T^* = \operatorname{argmax}_s \delta_s(T)$. For each $t = T, \dots, 2$: set $z_{t-1}^* = \Delta_{z_t^*}(t)$.

Viterbi Algorithm

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \dots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1),$$

$$\Delta_s(t) = \operatorname*{argmax}_{s'} a_{s',s} \delta_{s'}(t-1).$$

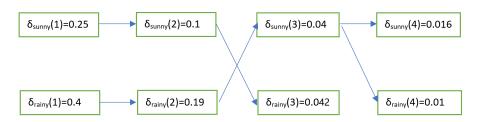
Backtracking: let $z_T^* = \operatorname{argmax}_s \delta_s(T)$.

For each $t=T,\ldots,2$: set $z_{t-1}^*=\Delta_{z_t^*}(t)$.

Output the most likely path z_1^*, \ldots, z_T^* .

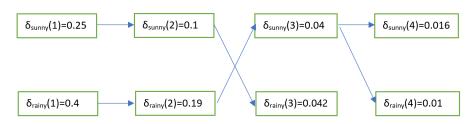
Example

Arrows represent the "argmax", i.e. $\Delta_s(t)$.



Example

Arrows represent the "argmax", i.e. $\Delta_s(t)$.



The most likely path is "rainy, rainy, sunny, sunny".

Exercise 1

What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

Exercise 1

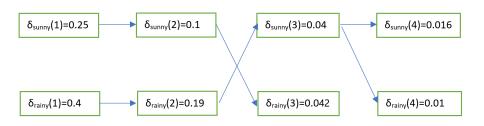
What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

• Is it the first T_0 outputs of the Viterbi algorithm (with all data)?

Exercise 1

What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

• Is it the first T_0 outputs of the Viterbi algorithm (with all data)?

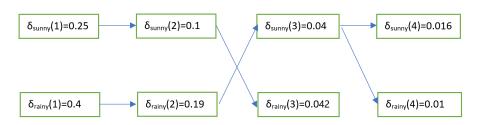


What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

• Is it the first T_0 outputs of the Viterbi algorithm (with all data)?

No. It should be

- $z_{T_0}^* = \operatorname{argmax}_s \delta_s(T_0)$
- for each $t = T_0, \dots, 2$: $z_{t-1}^* = \Delta_{z_t^*}(t)$

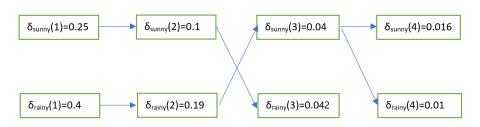


What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

• Is it the first T_0 outputs of the Viterbi algorithm (with all data)?

No. It should be

- $z_{T_0}^* = \operatorname{argmax}_s \delta_s(T_0)$
- for each $t = T_0, \dots, 2$: $z_{t-1}^* = \Delta_{z_t^*}(t)$



The answer for $T_0 = 3$ is: "sunny, sunny, rainy".

What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T}$ for some $T_0 < T$?

What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T}$ for some $T_0 < T$?

• Is it the same as Exercise 1?

What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T}$ for some $T_0 < T$?

- Is it the same as Exercise 1?
- Is it the first T_0 outputs of the Viterbi algorithm (with all data)?

What is the most likely sequence $z_{1:T_0}^*$ given $x_{1:T}$ for some $T_0 < T$?

- Is it the same as Exercise 1?
- Is it the first T_0 outputs of the Viterbi algorithm (with all data)?

Neither. It should be

- $z_{T_0}^* = \operatorname{argmax}_s \delta_s(T_0) \beta_s(T_0)$
- for each $t = T_0, \dots, 2$: $z_{t-1}^* = \Delta_{z_t^*}(t)$

$$z_{T_0}^* = \operatorname*{argmax}_{s} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T} = x_{1:T})$$

$$\begin{split} z_{T_0}^* &= \underset{s}{\operatorname{argmax}} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T} = x_{1:T}) \\ &= \underset{s}{\operatorname{argmax}} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \cdot \\ P(X_{T_0+1,T} = x_{T_0+1:T} \mid Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \end{split}$$

$$\begin{split} z_{T_0}^* &= \underset{s}{\operatorname{argmax}} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T} = x_{1:T}) \\ &= \underset{s}{\operatorname{argmax}} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \cdot \\ &P(X_{T_0+1,T} = x_{T_0+1:T} \mid Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \\ &= \underset{s}{\operatorname{argmax}} \left(\max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \right) \cdot \\ &P(X_{T_0+1,T} = x_{T_0+1:T} \mid Z_{T_0} = s) \end{split}$$

$$\begin{split} z_{T_0}^* &= \underset{s}{\operatorname{argmax}} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T} = x_{1:T}) \\ &= \underset{s}{\operatorname{argmax}} \max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \cdot \\ &P(X_{T_0+1,T} = x_{T_0+1:T} \mid Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \\ &= \underset{s}{\operatorname{argmax}} \left(\max_{z_{1:T_0-1}} P(Z_{T_0} = s, Z_{1:T_0-1} = z_{1:T_0-1}, X_{1:T_0} = x_{1:T_0}) \right) \cdot \\ &P(X_{T_0+1,T} = x_{T_0+1:T} \mid Z_{T_0} = s) \\ &= \underset{s}{\operatorname{argmax}} \delta_s(T_0) \beta_s(T_0) \end{split}$$

What is the most likely sequence $z_{1:T}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

What is the most likely sequence $z_{1:T}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

• Is it the same as the Viterbi algorithm (with all data)?

What is the most likely sequence $z_{1:T}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

- Is it the same as the Viterbi algorithm (with all data)?
- Are the first T_0 states the same as Exercise 1?

What is the most likely sequence $z_{1:T}^*$ given $x_{1:T_0}$ for some $T_0 < T$?

- Is it the same as the Viterbi algorithm (with all data)?
- Are the first T_0 states the same as Exercise 1?

Again, neither is true.

Viterbi Algorithm with partial data $x_{1:T_0}$

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

Viterbi Algorithm with partial data $x_{1:T_0}$

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = \begin{cases} b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{if } t \le T_0 \end{cases}$$

Viterbi Algorithm with partial data $x_{1:T_0}$

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = \begin{cases} b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{if } t \leq T_0 \\ \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{else} \end{cases}$$

Viterbi Algorithm with partial data $x_{1:T_0}$

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = \begin{cases} b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{if } t \leq T_0 \\ \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{else} \end{cases}$$

$$\Delta_s(t) = \operatorname*{argmax}_{s'} a_{s',s} \delta_{s'}(t-1).$$

Viterbi Algorithm with partial data $x_{1:T_0}$

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

• for each $s \in [S]$, compute

$$\delta_s(t) = \begin{cases} b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{if } t \leq T_0 \\ \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{else} \end{cases}$$

$$\Delta_s(t) = \operatorname*{argmax}_{s'} a_{s',s} \delta_{s'}(t-1).$$

Backtracking: let $z_T^* = \operatorname{argmax}_s \delta_s(T)$.

Viterbi Algorithm with partial data $x_{1:T_0}$

For each $s \in [S]$, compute $\delta_s(1) = \pi_s b_{s,x_1}$.

For each $t = 2, \ldots, T$,

• for each $s \in [S]$, compute

$$\begin{split} \delta_s(t) &= \begin{cases} b_{s,x_t} \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{if } t \leq T_0 \\ \max_{s'} a_{s',s} \delta_{s'}(t-1) & \text{else} \end{cases} \\ \Delta_s(t) &= \underset{s'}{\operatorname{argmax}} a_{s',s} \delta_{s'}(t-1). \end{split}$$

Backtracking: let $z_T^* = \operatorname{argmax}_s \delta_s(T)$. For each $t = T, \dots, 2$: set $z_{t-1}^* = \Delta_{z_t^*}(t)$.

Output the most likely path z_1^*, \ldots, z_T^* .

All previous inferences depend on knowing the parameters (π, A, B) .

All previous inferences depend on knowing the parameters (π, A, B) .

How do we learn the parameters based on N observation sequences $x_{n,1}, \ldots, x_{n,T}$ for $n = 1, \ldots, N$?

All previous inferences depend on knowing the parameters (π, A, B) .

How do we learn the parameters based on N observation sequences $x_{n,1}, \ldots, x_{n,T}$ for $n = 1, \ldots, N$?

MLE is intractable due to the hidden variables $Z_{n,t}$'s (similar to GMMs)

All previous inferences depend on knowing the parameters (π, A, B) .

How do we learn the parameters based on N observation sequences $x_{n,1}, \ldots, x_{n,T}$ for $n = 1, \ldots, N$?

MLE is intractable due to the hidden variables $Z_{n,t}$'s (similar to GMMs)

Need to apply EM again! Known as the Baum-Welch algorithm.

Recall in the E-Step we fix the parameters and find the **posterior** distributions q of the hidden states (for each sample n),

Recall in the E-Step we fix the parameters and find the **posterior** distributions q of the hidden states (for each sample n), which leads to the complete log-likelihood:

$$\mathbb{E}_{z_{1:T} \sim q} \left[\ln(Z_{1:T} = z_{1:T}, X_{1:T} = x_{1:T}) \right]$$

Recall in the E-Step we fix the parameters and find the **posterior distributions** q **of the hidden states** (for each sample n), which leads to the complete log-likelihood:

$$\mathbb{E}_{z_{1:T} \sim q} \left[\ln(Z_{1:T} = z_{1:T}, X_{1:T} = x_{1:T}) \right]$$

$$= \mathbb{E}_{z_{1:T} \sim q} \left[\ln \pi_{z_1} + \sum_{t=1}^{T-1} \ln a_{z_t, z_{t+1}} + \sum_{t=1}^{T} \ln b_{z_t, x_t} \right]$$

Recall in the E-Step we fix the parameters and find the **posterior** distributions q of the hidden states (for each sample n), which leads to the complete log-likelihood:

$$\begin{split} &\mathbb{E}_{z_{1:T} \sim q} \left[\ln(Z_{1:T} = z_{1:T}, X_{1:T} = x_{1:T}) \right] \\ &= \mathbb{E}_{z_{1:T} \sim q} \left[\ln \pi_{z_1} + \sum_{t=1}^{T-1} \ln a_{z_t, z_{t+1}} + \sum_{t=1}^{T} \ln b_{z_t, x_t} \right] \\ &= \sum_{s} \gamma_s(1) \ln \pi_s + \sum_{t=1}^{T-1} \sum_{s, s'} \xi_{s, s'}(t) \ln a_{s, s'} + \sum_{t=1}^{T} \sum_{s} \gamma_s(t) \ln b_{s, x_t} \end{split}$$

We have discussed how to compute

$$\gamma_s(t) = P(Z_t = s \mid X_{1:T} = x_{1:T})$$

$$\xi_{s,s'}(t) = P(Z_t = s, Z_{t+1} = s' \mid X_{1:T} = x_{1:T})$$

The maximizer of complete log-likelihood is simply doing **weighted counting** (compared to the unweighted counting on Slide 16):

$$\pi_s \propto \sum_n \gamma_s^{(n)}(1) = \mathbb{E}_q \left[\text{ \#initial states with value } s \right]$$

$$a_{s,s'} \propto \sum_n \sum_{t=1}^{T-1} \xi_{s,s'}^{(n)}(t) = \mathbb{E}_q \left[\text{ \#transitions from } s \text{ to } s' \right]$$

$$b_{s,o} \propto \sum_n \sum_{t:x_t=o} \gamma_s^{(n)}(t) = \mathbb{E}_q \left[\text{ \#state-outcome pairs } (s,o) \right]$$

The maximizer of complete log-likelihood is simply doing **weighted counting** (compared to the unweighted counting on Slide 16):

$$\pi_s \propto \sum_n \gamma_s^{(n)}(1) = \mathbb{E}_q \left[\text{ \#initial states with value } s \right]$$

$$a_{s,s'} \propto \sum_n \sum_{t=1}^{T-1} \xi_{s,s'}^{(n)}(t) = \mathbb{E}_q \left[\text{ \#transitions from } s \text{ to } s' \right]$$

$$b_{s,o} \propto \sum_n \sum_{t:x_t=o} \gamma_s^{(n)}(t) = \mathbb{E}_q \left[\text{ \#state-outcome pairs } (s,o) \right]$$

where

$$\gamma_s^{(n)}(t) = P(Z_{n,t} = s \mid X_{n,1:T} = x_{n,1:T})$$

$$\xi_{s,s'}^{(n)}(t) = P(Z_{n,t} = s, Z_{n,t+1} = s' \mid X_{n,1:T} = x_{n,1:T})$$

Step 0 Initialize the parameters $(oldsymbol{\pi}, oldsymbol{A}, oldsymbol{B})$

Step 0 Initialize the parameters (π, A, B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward messages for all sample sequences, then use these to compute $\gamma_s^{(n)}(t)$ and $\xi_{s,s'}^{(n)}(t)$ for each n,t,s,s' (see Slides 25 and 26).

Step 0 Initialize the parameters $(m{\pi}, m{A}, m{B})$

Step 1 (E-Step) Fixing the parameters, compute forward and backward messages for all sample sequences, then use these to compute $\gamma_s^{(n)}(t)$ and $\xi_{s,s'}^{(n)}(t)$ for each n,t,s,s' (see Slides 25 and 26).

Step 2 (M-Step) Update parameters:

$$\pi_s \propto \sum_n \gamma_s^{(n)}(1), \quad a_{s,s'} \propto \sum_n \sum_{t=1}^{T-1} \xi_{s,s'}^{(n)}(t), \quad b_{s,o} \propto \sum_n \sum_{t:x_t=o} \gamma_s^{(n)}(t)$$

Step 0 Initialize the parameters $(m{\pi}, m{A}, m{B})$

Step 1 (E-Step) Fixing the parameters, compute forward and backward messages for all sample sequences, then use these to compute $\gamma_s^{(n)}(t)$ and $\xi_{s,s'}^{(n)}(t)$ for each n,t,s,s' (see Slides 25 and 26).

Step 2 (M-Step) Update parameters:

$$\pi_s \propto \sum_n \gamma_s^{(n)}(1), \quad a_{s,s'} \propto \sum_n \sum_{t=1}^{T-1} \xi_{s,s'}^{(n)}(t), \quad b_{s,o} \propto \sum_n \sum_{t:x_t=o} \gamma_s^{(n)}(t)$$

Step 3 Return to Step 1 if not converged

Summary

Very important models: Markov chains, hidden Markov models

Summary

Very important models: Markov chains, hidden Markov models

Several algorithms:

- forward and backward procedures
- inferring HMMs based on forward and backward messages
- Viterbi algorithm
- Baum–Welch algorithm