# CSCI567 Machine Learning (Fall 2020) 

Prof. Haipeng Luo<br>U of Southern California

Sep 3, 2020

## Outline

(1) Administration
(2) Review of last lecture
(3) Linear regression
4. Linear regression with nonlinear basis
(5) Overfitting and preventing overfitting

## Outline

(1) Administration

(2) Review of last lecture

3 Linear regression
4. Linear regression with nonlinear basis
(5) Overfitting and preventing overfitting

## Administrative stuff

Please enroll in Piazza (163/202 as of this morning).

## Administrative stuff

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

## Administrative stuff

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Programming project:

- invitation to enroll is out


## Administrative stuff

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now


## Administrative stuff

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now
- collaboration not allowed


## Administrative stuff

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now
- collaboration not allowed
- \#submissions updated from 10 to $\infty$


## Outline

(1) Administration
(2) Review of last lecture
(3) Linear regression
4. Linear regression with nonlinear basis
(5) Overfitting and preventing overfitting

## Multi-class classification

Training data (set)

- $\mathbf{N}$ samples/instances: $\mathcal{D}^{\text {Train }}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \cdots,\left(\boldsymbol{x}_{\mathrm{N}}, y_{\mathrm{N}}\right)\right\}$
- Each $\boldsymbol{x}_{\boldsymbol{n}} \in \mathbb{R}^{\mathrm{D}}$ is called a feature vector.
- Each $y_{n} \in[\mathbf{C}]=\{1,2, \cdots, \mathbf{C}\}$ is called a label/class/category.
- They are used to learn $f: \mathbb{R}^{\mathrm{D}} \rightarrow[\mathrm{C}]$ for future prediction.

Special case: binary classification

- Number of classes: $\mathrm{C}=2$
- Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

K-NNC: predict the majority label within the $K$-nearest neighbor set

## Datasets

## Training data

- $\mathbf{N}$ samples/instances: $\mathcal{D}^{\text {TRAIN }}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \cdots,\left(\boldsymbol{x}_{\mathrm{N}}, y_{\mathrm{N}}\right)\right\}$
- They are used to learn $f(\cdot)$


## Test data

- M samples/instances: $\mathcal{D}^{\text {TEST }}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \cdots,\left(\boldsymbol{x}_{\mathrm{M}}, y_{\mathrm{M}}\right)\right\}$
- They are used to evaluate how well $f(\cdot)$ will do.


## Development/Validation data

- L samples/instances: $\mathcal{D}^{\text {DEV }}=\left\{\left(\boldsymbol{x}_{1}, y_{1}\right),\left(\boldsymbol{x}_{2}, y_{2}\right), \cdots,\left(\boldsymbol{x}_{\mathrm{L}}, y_{\mathrm{L}}\right)\right\}$
- They are used to optimize hyper-parameter(s).

These three sets should not overlap!

## S-fold Cross-validation

## What if we do not have a development set?

- Split the training data into $S$ equal parts.
- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.
$S=5: 5$-fold cross validation


Special case: $\mathrm{S}=\mathrm{N}$, called leave-one-out.

## High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.


## High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the red part exactly?

## Outline

## (1) Administration

(2) Review of last lecture
(3) Linear regression

- Motivation
- Setup and Algorithm
- Discussions
(4) Linear regression with nonlinear basis
(5) Overfitting and preventing overfitting


## Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house


## Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.


## Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

## Ex: Predicting the sale price of a house

## Retrieve historical sales records (training data)



## Features used to predict



## Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

Drate prowided by Fivech MLS and nay not natiob he putic record. Lean Mlers.

| 1 Interior Features |  |  |
| :---: | :---: | :---: |
| Kitchen Information <br> - Rismodeled <br> - Oven, Renge | Laundry Information <br> - Inside Laundry | Heating a Cooling <br> - Wal Cooling Lnit(\|s) |
| Muit-Unititiformation |  |  |
| Community Features <br> - Units in Complex (Tata): 5 <br> Mult-Family Information <br> - \# Leased: 5 <br> - $\pi$ of Builings: 1 <br> - Owner Pays Water <br> - Tenant Pays Electricity. Tenant Pays Gas <br> Unit 1 Information <br> - \#. of Bedas: 2 <br> - \# of Batns: 1 <br> - Unfumished <br> - Monthly Rent \$1,700 | Unit 2 information <br> - \# of Beds: 3 <br> - \# of Baths: 1 <br> - Unfurnished <br> - Manthly Rent: $\$ 2,250$ <br> Unit 3 Information <br> - Unfurnished <br> Unit 4 Information <br> - \# of Beds: 3 <br> - \# of Baths: 1 <br> - Unfurnished | - Monthly Rent: $\$ 2,350$ <br> Unit 5 Intormation <br> - $\ddagger$ of Beds: 3 <br> - \# of Baths 2 <br> - Unfurnished <br> - Nonthly Rent: $\$ 2,326$ <br> Unit 6 Intormation <br> - \#ot Beds:3 <br> - \#ol Barhs: 1 <br> - Monthly Fient: $\$ 2,250$ |
| Property / Lot Detalls |  |  |
| Property Features <br> - Automatic Gate, Card/Code Access <br> Lot Information <br> - Let Size (Sq. Fi.): 9,849 <br> - Lot Size (Acrest 0.2215 <br> - Lot Size Source: Public Records | - Automatic Gate, Lawn, Sidewalks <br> - Corner Lot, Near Public Trassit <br> Property Information <br> - Updatediriamodeled <br> - Square Footace Sourser Public Fiecords | - Tax Paroar Number: 5040017018 |
| Parking / Garage, Exterior Features, Uulities \& Financing |  |  |
| Parking Intormation <br> - \# of Parking Spaces (Total): 12 <br> - Parking Space <br> - Gatad <br> Buliding Information <br> - Total Floors: 2 | Utility Information <br> - Green Certlication Rating: 0.00 <br> - Green Location: Transportation, Walkability <br> - Green Walk Score: 0 <br> - Green Year Cartified: 0 | Financial Information <br> - Cspitalization Rate (\%)/ 6.25 <br> - Actual Annual Gross Fient: $\$ 128,391$ <br> - Gross Fient Muitiplier. 11.29 |
| Location Datalls, Misc. Intormation \& Listing intormation |  |  |
| Location Information <br> - Cross Streats: W 36th Pl | Expense Information <br> - Operating: \$37,664 | Listing Information <br> - Listing Terma Cash, Cash To Existing Loan <br> - Buyer Finanang: Cash |

## Correlation between square footage and sale price



## Possibly linear relationship

Sale price $\approx$ price_per_sqft $\times$ square_footage + fixed_expense


## Possibly linear relationship

Sale price $\approx$ price_per_sqft $\times$ square_footage + fixed_expense (slope) (intercept)


## How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.


## How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |


## How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)


## How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

## How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

## How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

- test set, ideal but we cannot use test set while training


## How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. right or wrong) is inappropriate for continuous outcomes.
- We can look at
- absolute error: | prediction - sale price |
- or squared error: (prediction - sale price) ${ }^{2}$ (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but on what set?

- test set, ideal but we cannot use test set while training
- training set $\checkmark$


## Example

Predicted price $=$ price_per_sqft $\times$ square_footage + fixed_expense one model: price_per_sqft $=0.3 \mathrm{~K}$, fixed_expense $=210 \mathrm{~K}$

| sqft | sale price (K) | prediction (K) | squared error |
| :--- | :--- | :--- | :--- |
| 2000 | 810 | 810 | 0 |
| 2100 | 907 | 840 | $67^{2}$ |
| 1100 | 312 | 540 | $228^{2}$ |
| 5500 | 2,600 | 1,860 | $740^{2}$ |
| $\cdots$ | $\cdots$ | $\cdots$ | $\cdots$ |
| Total |  |  | $0+67^{2}+228^{2}+740^{2}+\cdots$ |

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

## Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$

## Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}$

## Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose),

## Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias $w_{0}$


## Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias $w_{0}$

NOTE: for notation convenience, very often we

- append 1 to each $x$ as the first feature: $\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & \ldots\end{array} x_{\mathrm{D}}\right]^{\mathrm{T}}$


## Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias $w_{0}$

NOTE: for notation convenience, very often we

- append 1 to each $x$ as the first feature: $\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & \ldots\end{array} x_{\mathrm{D}}\right]^{\mathrm{T}}$
- let $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$, a concise representation of all $D+1$ parameters


## Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias $w_{0}$

NOTE: for notation convenience, very often we

- append 1 to each $x$ as the first feature: $\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & \ldots\end{array} x_{\mathrm{D}}\right]^{\mathrm{T}}$
- let $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$, a concise representation of all $D+1$ parameters
- the model becomes simply $f(\boldsymbol{x})=\tilde{\boldsymbol{w}}^{\mathbf{T}} \tilde{\boldsymbol{x}}$


## Formal setup for linear regression

Input: $\boldsymbol{x} \in \mathbb{R}^{\mathrm{D}}$ (features, covariates, context, predictors, etc)
Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)
Training data: $\mathcal{D}=\left\{\left(\boldsymbol{x}_{n}, y_{n}\right), n=1,2, \ldots, \mathrm{~N}\right\}$
Linear model: $f: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$, with $f(\boldsymbol{x})=w_{0}+\sum_{d=1}^{D} w_{d} x_{d}=w_{0}+\boldsymbol{w}^{\mathbf{T}} \boldsymbol{x}$ (superscript ${ }^{T}$ stands for transpose), i.e. a hyper-plane parametrized by

- $\boldsymbol{w}=\left[\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias $w_{0}$

NOTE: for notation convenience, very often we

- append 1 to each $x$ as the first feature: $\tilde{\boldsymbol{x}}=\left[\begin{array}{llll}1 & x_{1} & x_{2} & \ldots\end{array} x_{\mathrm{D}}\right]^{\mathrm{T}}$
- let $\tilde{\boldsymbol{w}}=\left[\begin{array}{lllll}w_{0} & w_{1} & w_{2} & \cdots & w_{\mathrm{D}}\end{array}\right]^{\mathrm{T}}$, a concise representation of all $D+1$ parameters
- the model becomes simply $f(\boldsymbol{x})=\tilde{\boldsymbol{w}}^{\mathbf{T}} \tilde{\boldsymbol{x}}$
- sometimes just use $\boldsymbol{w}, \boldsymbol{x}, \mathrm{D}$ for $\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{x}}, \mathrm{D}+1$ !


## Goal

Minimize total squared error

$$
\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

## Goal

Minimize total squared error

- Residual Sum of Squares (RSS), a function of $\tilde{\boldsymbol{w}}$

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

## Goal

Minimize total squared error

- Residual Sum of Squares (RSS), a function of $\tilde{\boldsymbol{w}}$

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

- find $\tilde{\boldsymbol{w}}^{*}=\operatorname{argmin} \operatorname{RSS}(\tilde{\boldsymbol{w}})$, i.e. least (mean) squares solution $\tilde{\boldsymbol{w}} \in \mathbb{R}^{\mathrm{D}+1}$
(more generally called empirical risk minimizer)


## Goal

Minimize total squared error

- Residual Sum of Squares (RSS), a function of $\tilde{\boldsymbol{w}}$

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

- find $\tilde{\boldsymbol{w}}^{*}=\operatorname{argmin} \operatorname{RSS}(\tilde{\boldsymbol{w}})$, i.e. least (mean) squares solution $\tilde{\boldsymbol{w}} \in \mathbb{R}^{\mathrm{D}+1}$
(more generally called empirical risk minimizer)
- reduce machine learning to optimization


## Goal

Minimize total squared error

- Residual Sum of Squares (RSS), a function of $\tilde{\boldsymbol{w}}$

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(f\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

- find $\tilde{\boldsymbol{w}}^{*}=\operatorname{argmin} \operatorname{RSS}(\tilde{\boldsymbol{w}})$, i.e. least (mean) squares solution $\tilde{\boldsymbol{w}} \in \mathbb{R}^{\mathrm{D}+1}$
(more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a closed-form solution

Warm-up: $\mathrm{D}=0$

Only one parameter $w_{0}$ : constant prediction $f(x)=w_{0}$

$f$ is a horizontal line, where should it be?

Warm-up: $\mathrm{D}=0$

## Optimization objective becomes

$$
\left.\operatorname{RSS}\left(w_{0}\right)=\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad \text { (it's a quadratic } a w_{0}^{2}+b w_{0}+c\right)
$$

## Warm-up: $\mathrm{D}=0$

## Optimization objective becomes

$$
\begin{aligned}
\operatorname{RSS}\left(w_{0}\right) & =\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad\left(\text { it's a quadratic } a w_{0}^{2}+b w_{0}+c\right) \\
& =N w_{0}^{2}-2\left(\sum_{n} y_{n}\right) w_{0}+\mathrm{cnt}
\end{aligned}
$$

## Warm-up: $\mathrm{D}=0$

## Optimization objective becomes

$$
\begin{aligned}
\operatorname{RSS}\left(w_{0}\right) & =\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad\left(\text { it's a quadratic } a w_{0}^{2}+b w_{0}+c\right) \\
& =N w_{0}^{2}-2\left(\sum_{n} y_{n}\right) w_{0}+\mathrm{cnt} \\
& =N\left(w_{0}-\frac{1}{N} \sum_{n} y_{n}\right)^{2}+\mathrm{cnt}
\end{aligned}
$$

## Warm-up: $\mathrm{D}=0$

## Optimization objective becomes

$$
\begin{aligned}
\operatorname{RSS}\left(w_{0}\right) & =\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad\left(\text { it's a quadratic } a w_{0}^{2}+b w_{0}+c\right) \\
& =N w_{0}^{2}-2\left(\sum_{n} y_{n}\right) w_{0}+\mathrm{cnt} \\
& =N\left(w_{0}-\frac{1}{N} \sum_{n} y_{n}\right)^{2}+\mathrm{cnt}
\end{aligned}
$$

It is clear that $w_{0}^{*}=\frac{1}{N} \sum_{n} y_{n}$, i.e. the average

Warm-up: $\mathrm{D}=0$

## Optimization objective becomes

$$
\begin{aligned}
\operatorname{RSS}\left(w_{0}\right) & =\sum_{n}\left(w_{0}-y_{n}\right)^{2} \quad\left(\text { it's a quadratic } a w_{0}^{2}+b w_{0}+c\right) \\
& =N w_{0}^{2}-2\left(\sum_{n} y_{n}\right) w_{0}+\mathrm{cnt} \\
& =N\left(w_{0}-\frac{1}{N} \sum_{n} y_{n}\right)^{2}+\mathrm{cnt}
\end{aligned}
$$

It is clear that $w_{0}^{*}=\frac{1}{N} \sum_{n} y_{n}$, i.e. the average
Exercise: what if we use absolute error instead of squared error?

## Warm-up: $\mathrm{D}=1$

## Optimization objective becomes

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right)^{2}
$$

## Warm-up: $\mathrm{D}=1$

## Optimization objective becomes

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right)^{2}
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\left\{\begin{array}{ll}
\frac{\partial \operatorname{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \\
\frac{\partial \operatorname{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0
\end{array} \Rightarrow \begin{array}{ll}
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) & =0 \\
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) x_{n} & =0
\end{array}\right.
$$

Warm-up: $\mathrm{D}=1$

## Optimization objective becomes

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right)^{2}
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\begin{aligned}
& \left\{\begin{array}{rl}
\frac{\partial \mathrm{RSS}(\tilde{\boldsymbol{w}})}{\partial \omega_{0}} & =0 \\
\frac{\partial \mathrm{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{1}} & =0
\end{array} \Rightarrow \begin{array}{l}
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) \\
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) x_{n}
\end{array}=0\right. \\
& \Rightarrow \begin{array}{ll}
N w_{0}+w_{1} \sum_{n} x_{n} & =\sum_{n} y_{n} \\
w_{0} \sum_{n} x_{n}+w_{1} \sum_{n} x_{n}^{2} & =\sum_{n} y_{n} x_{n}
\end{array} \\
& \text { (a linear system) }
\end{aligned}
$$

## Warm-up: $\mathrm{D}=1$

## Optimization objective becomes

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right)^{2}
$$

General approach: find stationary points, i.e., points with zero gradient

$$
\begin{gathered}
\left\{\begin{array}{c}
\frac{\partial \operatorname{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{0}}=0 \\
\frac{\partial \operatorname{RSS}(\tilde{\boldsymbol{w}})}{\partial w_{1}}=0
\end{array} \Rightarrow \begin{array}{c}
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) \\
\sum_{n}\left(w_{0}+w_{1} x_{n}-y_{n}\right) x_{n} \\
=0
\end{array}\right. \\
\Rightarrow \begin{array}{l}
N w_{0}+w_{1} \sum_{n} x_{n} \quad=\sum_{n} y_{n} \quad \text { (a linear system) } \\
w_{0} \sum_{n} x_{n}+w_{1} \sum_{n} x_{n}^{2}=\sum_{n} y_{n} x_{n}
\end{array} \\
\Rightarrow\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)\binom{w_{0}}{w_{1}}=\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
\end{gathered}
$$

## Least square solution for $\mathrm{D}=1$

$$
\Rightarrow\binom{w_{0}^{*}}{w_{1}^{*}}=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)^{-1}\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
$$

(assuming the matrix is invertible)

## Least square solution for $\mathrm{D}=1$

$$
\Rightarrow\binom{w_{0}^{*}}{w_{1}^{*}}=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)^{-1}\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

## Least square solution for $\mathrm{D}=1$

$$
\Rightarrow\binom{w_{0}^{*}}{w_{1}^{*}}=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)^{-1}\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- yes for convex objectives (RSS is convex in $\tilde{\boldsymbol{w}}$ )


## Least square solution for $D=1$

$$
\Rightarrow\binom{w_{0}^{*}}{w_{1}^{*}}=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n}^{n} x_{n}^{2}
\end{array}\right)^{-1}\binom{\sum_{n} y_{n}}{\sum_{n} x_{n} y_{n}}
$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- yes for convex objectives (RSS is convex in $\tilde{\boldsymbol{w}}$ )
- not true in general


## General least square solution

## Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

## General least square solution

## Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Again, find stationary points (multivariate calculus)

$$
\nabla \operatorname{RSS}(\tilde{\boldsymbol{w}})=2 \sum_{n} \tilde{\boldsymbol{x}}_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)
$$

## General least square solution

## Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Again, find stationary points (multivariate calculus)

$$
\nabla \operatorname{RSS}(\tilde{\boldsymbol{w}})=2 \sum_{n} \tilde{\boldsymbol{x}}_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right) \propto\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}}\right) \tilde{\boldsymbol{w}}-\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}
$$

## General least square solution

## Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Again, find stationary points (multivariate calculus)

$$
\begin{aligned}
\nabla \mathrm{RSS}(\tilde{\boldsymbol{w}}) & =2 \sum_{n} \tilde{\boldsymbol{x}}_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right) \propto\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}}\right) \tilde{\boldsymbol{w}}-\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n} \\
& =\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

where

$$
\tilde{\boldsymbol{X}}=\left(\begin{array}{c}
\tilde{\boldsymbol{x}}_{1}^{\mathrm{T}} \\
\tilde{\boldsymbol{x}}_{2}^{\mathrm{T}} \\
\vdots \\
\tilde{\boldsymbol{x}}_{\mathrm{N}}^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N} \times(D+1)}, \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{\mathrm{N}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N}}
$$

## General least square solution

## Objective

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right)^{2}
$$

Again, find stationary points (multivariate calculus)

$$
\begin{aligned}
\nabla \mathrm{RSS}(\tilde{\boldsymbol{w}}) & =2 \sum_{n} \tilde{\boldsymbol{x}}_{n}\left(\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}}-y_{n}\right) \propto\left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\mathrm{T}}\right) \tilde{\boldsymbol{w}}-\sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n} \\
& =\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}
\end{aligned}
$$

where

$$
\tilde{\boldsymbol{X}}=\left(\begin{array}{c}
\tilde{\boldsymbol{x}}_{1}^{\mathrm{T}} \\
\tilde{\boldsymbol{x}}_{2}^{\mathrm{T}} \\
\vdots \\
\tilde{\boldsymbol{x}}_{\mathrm{N}}^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N} \times(D+1)}, \quad \boldsymbol{y}=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{\mathrm{N}}
\end{array}\right) \in \mathbb{R}^{\mathrm{N}}
$$

## General least square solution

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

assuming $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ (covariance matrix) is invertible for now.

## General least square solution

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

assuming $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ (covariance matrix) is invertible for now.
Again by convexity $\tilde{\boldsymbol{w}}^{*}$ is the minimizer of RSS.

## General least square solution

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

assuming $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ (covariance matrix) is invertible for now.
Again by convexity $\tilde{\boldsymbol{w}}^{*}$ is the minimizer of RSS.

Verify the solution when $D=1$ :

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{\mathrm{N}}
\end{array}\right)\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \cdots \\
1 & x_{\mathrm{N}}
\end{array}\right)=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)
$$

## General least square solution

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

assuming $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ (covariance matrix) is invertible for now.
Again by convexity $\tilde{\boldsymbol{w}}^{*}$ is the minimizer of RSS.

Verify the solution when $\mathrm{D}=1$ :

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{\mathrm{N}}
\end{array}\right)\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\cdots & \cdots \\
1 & x_{\mathrm{N}}
\end{array}\right)=\left(\begin{array}{cc}
N & \sum_{n} x_{n} \\
\sum_{n} x_{n} & \sum_{n} x_{n}^{2}
\end{array}\right)
$$

when $\mathrm{D}=0:\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1}=\frac{1}{N}, \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}=\sum_{n} y_{n}$

## Another approach

RSS is a quadratic:

$$
\operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2}
$$

## Another approach

RSS is a quadratic:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})
\end{aligned}
$$

## Another approach

RSS is a quadratic:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}) \\
& =\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}+\mathrm{cnt} .
\end{aligned}
$$

## Another approach

RSS is a quadratic:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}) \\
& =\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}+\mathrm{cnt} \\
& =\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)+\mathrm{cnt} .
\end{aligned}
$$

## Another approach

RSS is a quadratic:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}) \\
& =\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}+\mathrm{cnt} . \\
& =\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)+\mathrm{cnt} .
\end{aligned}
$$

Note: $\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{u}=(\tilde{\boldsymbol{X}} \boldsymbol{u})^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{u}=\|\tilde{\boldsymbol{X}} \boldsymbol{u}\|_{2}^{2} \geq 0$ and is 0 if $\boldsymbol{u}=0$.

## Another approach

RSS is a quadratic:

$$
\begin{aligned}
& \operatorname{RSS}(\tilde{\boldsymbol{w}})=\sum_{n}\left(\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n}-y_{n}\right)^{2}=\|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}\|_{2}^{2} \\
& =(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y})^{\mathrm{T}}(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}) \\
& =\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}}-\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}+\mathrm{cnt} \\
& =\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)\left(\tilde{\boldsymbol{w}}-\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)+\mathrm{cnt} .
\end{aligned}
$$

Note: $\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{u}=(\tilde{\boldsymbol{X}} \boldsymbol{u})^{\mathrm{T}} \tilde{\boldsymbol{X}} \boldsymbol{u}=\|\tilde{\boldsymbol{X}} \boldsymbol{u}\|_{2}^{2} \geq 0$ and is 0 if $\boldsymbol{u}=0$. So $\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$ is the minimizer.

## Computational complexity

Bottleneck of computing

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

is to invert the matrix $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \in \mathbb{R}^{(\mathrm{D}+1) \times(\mathrm{D}+1)}$

- naively need $O\left(\mathrm{D}^{3}\right)$ time


## Computational complexity

Bottleneck of computing

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

is to invert the matrix $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \in \mathbb{R}^{(\mathrm{D}+1) \times(\mathrm{D}+1)}$

- naively need $O\left(\mathrm{D}^{3}\right)$ time
- there are many faster approaches (such as conjugate gradient)


## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

What does that imply?

## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

What does that imply?

Recall $\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{w}^{*}=\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$.

## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

## What does that imply?

Recall $\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{w}^{*}=\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$. If $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ not invertible, this equation has

- no solution


## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

## What does that imply?

Recall $\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{w}^{*}=\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$. If $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ not invertible, this equation has

- no solution
- or infinitely many solutions


## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

## What does that imply?

Recall $\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \boldsymbol{w}^{*}=\tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$. If $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ not invertible, this equation has

- no solution ( $\Rightarrow$ RSS has no minimizer? $x$ )
- or infinitely many solutions ( $\Rightarrow$ infinitely many minimizers $\checkmark$ )


## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

## Why would that happen?

## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

## Why would that happen?

One situation: $\mathrm{N}<\mathrm{D}+1$, i.e. not enough data to estimate all parameters.

## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

## Why would that happen?

One situation: $\mathrm{N}<\mathrm{D}+1$, i.e. not enough data to estimate all parameters.

Example: $\mathrm{D}=\mathrm{N}=1$

| sqft | sale price |
| :--- | :--- |
| 1000 | 500 K |

## What if $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ is not invertible

## Why would that happen?

One situation: $\mathrm{N}<\mathrm{D}+1$, i.e. not enough data to estimate all parameters.

Example: $\mathrm{D}=\mathrm{N}=1$

| sqft | sale price |
| :--- | :--- |
| 1000 | 500 K |

Any line passing this single point is a minimizer of RSS.

## How about the following?

$\mathrm{D}=1, \mathrm{~N}=2$

| sqft | sale price |
| :---: | :---: |
| 1000 | 500 K |
| 1000 | 600 K |

## How about the following?

$\mathrm{D}=1, \mathrm{~N}=2$

| sqft | sale price |
| :---: | :---: |
| 1000 | 500 K |
| 1000 | 600 K |

Any line passing the average is a minimizer of RSS.

## How about the following?

$\mathrm{D}=1, \mathrm{~N}=2$

| sqft | sale price |
| :---: | :---: |
| 1000 | 500 K |
| 1000 | 600 K |

Any line passing the average is a minimizer of RSS.
$\mathrm{D}=2, \mathrm{~N}=3$ ?

| sqft | \#bedroom | sale price |
| :---: | :---: | :---: |
| 1000 | 2 | 500 K |
| 1500 | 3 | 700 K |
| 2000 | 4 | 800 K |

## How about the following?

$\mathrm{D}=1, \mathrm{~N}=2$

| sqft | sale price |
| :---: | :---: |
| 1000 | 500 K |
| 1000 | 600 K |

Any line passing the average is a minimizer of RSS.
$\mathrm{D}=2, \mathrm{~N}=3 ?$

| sqft | \#bedroom | sale price |
| :---: | :---: | :---: |
| 1000 | 2 | 500 K |
| 1500 | 3 | 700 K |
| 2000 | 4 | 800 K |

Again infinitely many minimizers.

## How to resolve this issue?

Intuition: what does inverting $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ do?

$$
\text { eigendecomposition: } \quad \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}} & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}
\end{array}\right] \boldsymbol{U}
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{\mathrm{D}+1} \geq 0$ are eigenvalues.

## How to resolve this issue?

Intuition: what does inverting $\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}$ do?

$$
\text { eigendecomposition: } \quad \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}} & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}
\end{array}\right] \boldsymbol{U}
$$

where $\lambda_{1} \geq \lambda_{2} \geq \cdots \lambda_{\mathrm{D}+1} \geq 0$ are eigenvalues.

$$
\text { inverse: } \quad\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right)^{-1}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\frac{1}{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}} & 0 \\
0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}}
\end{array}\right] \boldsymbol{U}
$$

i.e. just inverse the eigenvalues

## How to solve this problem?

Non-invertible $\Rightarrow$ some eigenvalues are 0 .

## How to solve this problem?

Non-invertible $\Rightarrow$ some eigenvalues are 0 .
One natural fix: add something positive

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1}+\lambda & 0 & \cdots & 0 \\
0 & \lambda_{2}+\lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}}+\lambda & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}+\lambda
\end{array}\right] \boldsymbol{U}
$$

where $\lambda>0$ and $\boldsymbol{I}$ is the identity matrix.

## How to solve this problem?

Non-invertible $\Rightarrow$ some eigenvalues are 0 .
One natural fix: add something positive

$$
\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\lambda_{1}+\lambda & 0 & \cdots & 0 \\
0 & \lambda_{2}+\lambda & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \lambda_{\mathrm{D}}+\lambda & 0 \\
0 & \cdots & 0 & \lambda_{\mathrm{D}+1}+\lambda
\end{array}\right] \boldsymbol{U}
$$

where $\lambda>0$ and $\boldsymbol{I}$ is the identity matrix. Now it is invertible:

$$
\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}\right)^{-1}=\boldsymbol{U}^{\mathrm{T}}\left[\begin{array}{cccc}
\frac{1}{\lambda_{1}+\lambda} & 0 & \cdots & 0 \\
0 & \frac{1}{\lambda_{2}+\lambda} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}+\lambda} & 0 \\
0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}+\lambda}
\end{array}\right] \boldsymbol{U}
$$

## Fix the problem

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

- not a minimizer of the original RSS


## Fix the problem

The solution becomes

$$
\tilde{\boldsymbol{w}}^{*}=\left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}+\lambda \boldsymbol{I}\right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}
$$

- not a minimizer of the original RSS
$\lambda$ is a hyper-parameter, can be tuned by cross-validation.


## Comparison to NNC

Parametric versus non-parametric

- Parametric methods: the size of the model does not grow with the size of the training set N .
- e.g. linear regression, $D+1$ parameters, independent of $N$.
- Non-parametric methods: the size of the model grows with the size of the training set.
- e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.


## Outline

## (1) Administration

(2) Review of last lecture
(3) Linear regression
4. Linear regression with nonlinear basis
(5) Overfitting and preventing overfitting

## What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data


## Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{D} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space

## Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{D} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space
2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

## Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$
\boldsymbol{\phi}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{D} \rightarrow \boldsymbol{z} \in \mathbb{R}^{M}
$$

to transform the data to a more complicated feature space
2. Then apply linear regression (hope: linear model is a better fit for the new feature space).


## Regression with nonlinear basis

Model: $f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$

## Regression with nonlinear basis

Model: $f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$
Objective:

$$
\operatorname{RSS}(\boldsymbol{w})=\sum_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}
$$

## Regression with nonlinear basis

Model: $f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$
Objective:

$$
\operatorname{RSS}(\boldsymbol{w})=\sum_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)-y_{n}\right)^{2}
$$

Similar least square solution:

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \quad \text { where } \quad \boldsymbol{\Phi}=\left(\begin{array}{c}
\boldsymbol{\phi}\left(\boldsymbol{x}_{1}\right)^{\mathrm{T}} \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{2}\right)^{\mathrm{T}} \\
\vdots \\
\boldsymbol{\phi}\left(\boldsymbol{x}_{N}\right)^{\mathrm{T}}
\end{array}\right) \in \mathbb{R}^{N \times M}
$$

## Example

Polynomial basis functions for $\mathrm{D}=1$

$$
\phi(x)=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{M}
\end{array}\right] \Rightarrow f(x)=w_{0}+\sum_{m=1}^{M} w_{m} x^{m}
$$

## Example

## Polynomial basis functions for $\mathrm{D}=1$

$$
\boldsymbol{\phi}(x)=\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
\vdots \\
x^{M}
\end{array}\right] \Rightarrow f(x)=w_{0}+\sum_{m=1}^{M} w_{m} x^{m}
$$

Learning a linear model in the new space
$=$ learning an $M$-degree polynomial model in the original space

## Example

Fitting a noisy sine function with a polynomial ( $M=0,1$, or 3 ):




## Why nonlinear?

Can I use a fancy linear feature map?

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}-x_{2} \\
3 x_{4}-x_{3} \\
2 x_{1}+x_{4}+x_{5} \\
\vdots
\end{array}\right]=\boldsymbol{A} \boldsymbol{x} \quad \text { for some } \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times \mathrm{D}}
$$

## Why nonlinear?

Can I use a fancy linear feature map?

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}-x_{2} \\
3 x_{4}-x_{3} \\
2 x_{1}+x_{4}+x_{5} \\
\vdots
\end{array}\right]=\boldsymbol{A} \boldsymbol{x} \quad \text { for some } \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times \mathrm{D}}
$$

No, it basically does nothing since

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}} \sum_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{n}-y_{n}\right)^{2}=\min _{\boldsymbol{w}^{\prime} \in \operatorname{lm}\left(\boldsymbol{A}^{\mathrm{T}}\right) \subset \mathbb{R}^{\mathrm{D}}} \sum_{n}\left(\boldsymbol{w}^{\prime \mathrm{T}} \boldsymbol{x}_{n}-y_{n}\right)^{2}
$$

## Why nonlinear?

Can I use a fancy linear feature map?

$$
\boldsymbol{\phi}(\boldsymbol{x})=\left[\begin{array}{c}
x_{1}-x_{2} \\
3 x_{4}-x_{3} \\
2 x_{1}+x_{4}+x_{5} \\
\vdots
\end{array}\right]=\boldsymbol{A} \boldsymbol{x} \quad \text { for some } \boldsymbol{A} \in \mathbb{R}^{\mathrm{M} \times \mathrm{D}}
$$

No, it basically does nothing since

$$
\min _{\boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}} \sum_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{n}-y_{n}\right)^{2}=\min _{\boldsymbol{w}^{\prime} \in \operatorname{lm}\left(\boldsymbol{A}^{\mathrm{T}}\right) \subset \mathbb{R}^{\mathrm{D}}} \sum_{n}\left(\boldsymbol{w}^{\prime \mathrm{T}} \boldsymbol{x}_{n}-y_{n}\right)^{2}
$$

We will see more nonlinear mappings soon.

## Outline

(1) Administration
(2) Review of last lecture
(3) Linear regression
(4) Linear regression with nonlinear basis
(5) Overfitting and preventing overfitting

## Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:




## Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:





## Underfitting and Overfitting

$M \leq 2$ is underfitting the data

- large training error
- large test error
$M \geq 9$ is overfitting the data
- small training error
- large test error



## Underfitting and Overfitting

$M \leq 2$ is underfitting the data

- large training error
- large test error
$M \geq 9$ is overfitting the data
- small training error
- large test error


More complicated models $\Rightarrow$ larger gap between training and test error

## Underfitting and Overfitting

$M \leq 2$ is underfitting the data

- large training error
- large test error
$M \geq 9$ is overfitting the data
- small training error
- large test error


More complicated models $\Rightarrow$ larger gap between training and test error How to prevent overfitting?

## Method 1: use more training data

The more, the merrier



## Method 1: use more training data

The more, the merrier



## Method 1: use more training data

## The more, the merrier





## Method 1: use more training data

## The more, the merrier





More data $\Rightarrow$ smaller gap between training and test error

## Method 2: control the model complexity

For polynomial basis, the degree $M$ clearly controls the complexity

- use cross-validation to pick hyper-parameter $M$


## Method 2: control the model complexity

For polynomial basis, the degree $M$ clearly controls the complexity

- use cross-validation to pick hyper-parameter $M$

When $M$ or in general $\Phi$ is fixed, are there still other ways to control complexity?

## Magnitude of weights

Least square solution for the polynomial example:

|  | $M=0$ | $M=1$ | $M=3$ | $M=9$ |
| :--- | ---: | ---: | ---: | ---: |
| $w_{0}$ | 0.19 | 0.82 | 0.31 | 0.35 |
| $w_{1}$ |  | -1.27 | 7.99 | 232.37 |
| $w_{2}$ |  |  | -25.43 | -5321.83 |
| $w_{3}$ |  |  | 17.37 | 48568.31 |
| $w_{4}$ |  |  |  | -231639.30 |
| $w_{5}$ |  |  |  | 640042.26 |
| $w_{6}$ |  |  |  | -1061800.52 |
| $w_{7}$ |  |  |  | 1042400.18 |
| $w_{8}$ |  |  |  | -557682.99 |
| $w_{9}$ |  |  |  | 125201.43 |

## Magnitude of weights

Least square solution for the polynomial example:

|  | $M=0$ | $M=1$ | $M=3$ | $M=9$ |
| :--- | ---: | ---: | ---: | ---: |
| $w_{0}$ | 0.19 | 0.82 | 0.31 | 0.35 |
| $w_{1}$ |  | -1.27 | 7.99 | 232.37 |
| $w_{2}$ |  |  | -25.43 | -5321.83 |
| $w_{3}$ |  |  | 17.37 | 48568.31 |
| $w_{4}$ |  |  |  | -231639.30 |
| $w_{5}$ |  |  |  | 640042.26 |
| $w_{6}$ |  |  |  | -1061800.52 |
| $w_{7}$ |  |  |  | 1042400.18 |
| $w_{8}$ |  |  |  | -557682.99 |
| $w_{9}$ |  |  |  | 125201.43 |

Intuitively, large weights $\Rightarrow$ more complex model

## How to make $\boldsymbol{w}$ small?

Regularized linear regression: new objective

$$
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda R(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} \mathcal{E}(\boldsymbol{w})$

## How to make $\boldsymbol{w}$ small?

Regularized linear regression: new objective

$$
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda R(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} \mathcal{E}(\boldsymbol{w})$

- $R: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{+}$is the regularizer
- measure how complex the model $\boldsymbol{w}$ is
- common choices: $\|\boldsymbol{w}\|_{2}^{2},\|\boldsymbol{w}\|_{1}$, etc.


## How to make $w$ small?

Regularized linear regression: new objective

$$
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda R(\boldsymbol{w})
$$

Goal: find $\boldsymbol{w}^{*}=\operatorname{argmin}_{w} \mathcal{E}(\boldsymbol{w})$

- $R: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{+}$is the regularizer
- measure how complex the model $\boldsymbol{w}$ is
- common choices: $\|\boldsymbol{w}\|_{2}^{2},\|\boldsymbol{w}\|_{1}$, etc.
- $\lambda>0$ is the regularization coefficient
- $\lambda=0$, no regularization
- $\lambda \rightarrow+\infty, \boldsymbol{w} \rightarrow \operatorname{argmin}_{w} R(\boldsymbol{w})$
- i.e. control trade-off between training error and complexity


## The effect of $\lambda$

when we increase regularization coefficient $\lambda$

|  | $\ln \lambda=-\infty$ | $\ln \lambda=-18$ | $\ln \lambda=0$ |
| :--- | ---: | ---: | ---: |
| $w_{0}$ | 0.35 | 0.35 | 0.13 |
| $w_{1}$ | 232.37 | 4.74 | -0.05 |
| $w_{2}$ | -5321.83 | -0.77 | -0.06 |
| $w_{3}$ | 48568.31 | -31.97 | -0.06 |
| $w_{4}$ | -231639.30 | -3.89 | -0.03 |
| $w_{5}$ | 640042.26 | 55.28 | -0.02 |
| $w_{6}$ | -1061800.52 | 41.32 | -0.01 |
| $w_{7}$ | 1042400.18 | -45.95 | -0.00 |
| $w_{8}$ | -557682.99 | -91.53 | 0.00 |
| $w_{9}$ | 125201.43 | 72.68 | 0.01 |

## The trade-off

when we increase regularization coefficient $\lambda$




## The trade-off

when we increase regularization coefficient $\lambda$





## How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$ :

$$
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2}
$$

## How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$ :

$$
\begin{gathered}
\mathcal{E}(\boldsymbol{w})=\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
\nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0
\end{gathered}
$$

## How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$ :

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{w}) & =\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \Rightarrow\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

## How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$ :

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{w}) & =\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \Rightarrow\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \\
& \Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

## How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$ :

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{w}) & =\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \Rightarrow\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \\
& \Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

Note the same form as in the fix when $\boldsymbol{X}^{T} \boldsymbol{X}$ is not invertible!

## How to solve the new objective?

Simple for $R(\boldsymbol{w})=\|\boldsymbol{w}\|_{2}^{2}$ :

$$
\begin{aligned}
\mathcal{E}(\boldsymbol{w}) & =\operatorname{RSS}(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{2}^{2}=\|\boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} \\
& \nabla \mathcal{E}(\boldsymbol{w})=2\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w}-\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}\right)+2 \lambda \boldsymbol{w}=0 \\
& \Rightarrow\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right) \boldsymbol{w}=\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y} \\
& \Rightarrow \boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \mathbf{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

Note the same form as in the fix when $\boldsymbol{X}^{T} \boldsymbol{X}$ is not invertible!
For other regularizers, as long as it's convex, standard optimization algorithms can be applied.

## Equivalent form

Regularization is also sometimes formulated as

$$
\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text { subject to } R(\boldsymbol{w}) \leq \beta
$$

where $\beta$ is some hyper-parameter.

## Equivalent form

Regularization is also sometimes formulated as

$$
\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text { subject to } R(\boldsymbol{w}) \leq \beta
$$

where $\beta$ is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

## Equivalent form

Regularization is also sometimes formulated as

$$
\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text { subject to } R(\boldsymbol{w}) \leq \beta
$$

where $\beta$ is some hyper-parameter.

Finding the solution becomes a constrained optimization problem.

Choosing either $\lambda$ or $\beta$ can be done by cross-validation.

## Summary

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

## Summary

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

## Summary

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

## Summary

$$
\boldsymbol{w}^{*}=\left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi}+\lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}
$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error
Preventing Overfitting: more data + regularization

## Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the red part exactly?

## General idea to derive ML algorithms

1. Pick a set of models $\mathcal{F}$

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$


## General idea to derive ML algorithms

1. Pick a set of models $\mathcal{F}$

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

2. Define error/loss $L\left(y^{\prime}, y\right)$

## General idea to derive ML algorithms

1. Pick a set of models $\mathcal{F}$

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

2. Define error/loss $L\left(y^{\prime}, y\right)$
3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)
$$

## General idea to derive ML algorithms

1. Pick a set of models $\mathcal{F}$

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

2. Define error/loss $L\left(y^{\prime}, y\right)$
3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)
$$

or regularized empirical risk minimizer:

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)+\lambda R(f)
$$

## General idea to derive ML algorithms

1. Pick a set of models $\mathcal{F}$

- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{D}}\right\}$
- e.g. $\mathcal{F}=\left\{f(\boldsymbol{x})=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathrm{M}}\right\}$

2. Define error/loss $L\left(y^{\prime}, y\right)$
3. Find empirical risk minimizer (ERM):

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)
$$

or regularized empirical risk minimizer:

$$
\boldsymbol{f}^{*}=\underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L\left(f\left(x_{n}\right), y_{n}\right)+\lambda R(f)
$$

ML becomes optimization

