CSCI567 Machine Learning (Fall 2020)

Prof. Haipeng Luo

U of Southern California

Sep 3, 2020

Outline

- Administration
- Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- Overfitting and preventing overfitting

Outline

- Administration
- Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- 5 Overfitting and preventing overfitting

Please enroll in Piazza (163/202 as of this morning).

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Programming project:

invitation to enroll is out

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now
- collaboration not allowed

Please enroll in Piazza (163/202 as of this morning).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now
- collaboration not allowed
- \bullet #submissions updated from 10 to ∞

Outline

- Administration
- Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- 5 Overfitting and preventing overfitting

Multi-class classification

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- ullet Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \dots, C\}$ is called a label/class/category.
- They are used to learn $f: \mathbb{R}^{D} \to [C]$ for future prediction.

Special case: binary classification

- Number of classes: C=2
- Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

K-NNC: predict the majority label within the K-nearest neighbor set

Datasets

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{N}}, y_{\mathsf{N}})\}$
- They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{ ext{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

These three sets should *not* overlap!

S-fold Cross-validation

What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part in turn as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best average performance.

 $\mathsf{S}=5$: 5-fold cross validation

Special case: S = N, called leave-one-out.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

Outline

- Administration
- Review of last lecture
- 3 Linear regression
 - Motivation
 - Setup and Algorithm
 - Discussions
- 4 Linear regression with nonlinear basis
- 5 Overfitting and preventing overfitting

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure prediction errors differently.
- lead to quite different learning algorithms.

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)

Features used to predict

Correlation between square footage and sale price

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense

Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense (slope) (intercept)

How to measure error for one prediction?

• The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *absolute* error: | prediction sale price |

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (**most common**)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (**most common**)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

• test set, ideal but we cannot use test set while training

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (**most common**)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set √

Example

Predicted price = $price_per_sqft \times square_footage + fixed_expense$ one model: $price_per_sqft = 0.3K$, $fixed_expense = 210K$

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^2
1100	312	540	228^2
5500	2,600	1,860	740^2
		•••	
Total			$0 + 67^2 + 228^2 + 740^2 + \cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^{D} \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^{D} w_d x_d$

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w^T} \boldsymbol{x}$ (superscript T stands for transpose),

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \boldsymbol{w^T} x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_0

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

ullet append 1 to each x as the first feature: $\tilde{\pmb{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$

Input: $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w}^T x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

- ullet append 1 to each x as the first feature: $ilde{m{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathsf{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^{D} \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^{D} w_d x_d = w_0 + \mathbf{w}^T x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathrm{T}}$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

- ullet append 1 to each x as the first feature: $ilde{m{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathsf{T}}$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters
- the model becomes simply $f(x) = \tilde{w}^T \tilde{x}$

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f: \mathbb{R}^D \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^D w_d x_d = w_0 + \mathbf{w^T} x$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by

- $w = [w_1 \ w_2 \ \cdots \ w_D]^T$ (weights, weight vector, parameter vector, etc)
- bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{x} = [1 \ x_1 \ x_2 \ \dots \ x_D]^T$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters
- the model becomes simply $f(x) = \tilde{w}^T \tilde{x}$
- sometimes just use w, x, D for $\tilde{w}, \tilde{x}, D + 1!$

Minimize total squared error

$$\sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

ullet find $ilde{m{w}}^* = \mathop{\mathrm{argmin}}_{ ilde{m{w}} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}(ilde{m{w}})$, i.e. least (mean) squares solution (more generally called empirical risk minimizer)

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- ullet find $ilde{m{w}}^* = rgmin_{m{w} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}(ilde{m{w}})$, i.e. least (mean) squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization

Minimize total squared error

ullet Residual Sum of Squares (RSS), a function of $ilde{w}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- $oldsymbol{ar{w}}$ find $ilde{oldsymbol{w}}^* = \mathop{\mathrm{argmin}}_{ ilde{oldsymbol{w}} \in \mathbb{R}^{\mathsf{D}+1}} \mathrm{RSS}(ilde{oldsymbol{w}})$, i.e. least (mean) squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a closed-form solution

Only one parameter w_0 : constant prediction $f(x) = w_0$

f is a horizontal line, where should it be?

$$RSS(w_0) = \sum_{n} (w_0 - y_n)^2 \qquad \text{(it's a quadratic } aw_0^2 + bw_0 + c\text{)}$$

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \qquad \text{(it's a } \textit{quadratic} \ aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt}. \end{split}$$

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c \text{)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Optimization objective becomes

$$\begin{split} \mathrm{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a } \textit{quadratic } aw_0^2 + bw_0 + c) \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \mathrm{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \mathrm{cnt.} \end{split}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Exercise: what if we use absolute error instead of squared error?

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \sum_{n} (w_0 + w_1 x_n - y_n) = 0\\ \sum_{n} (w_0 + w_1 x_n - y_n) x_n = 0$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{cases} \sum_n (w_0 + w_1 x_n - y_n) = 0\\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)}$$

Optimization objective becomes

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \mathrm{RSS}(\boldsymbol{w})}{\partial w_0} = 0 \\ \frac{\partial \mathrm{RSS}(\bar{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \frac{\sum_n (w_0 + w_1 x_n - y_n)}{\sum_n (w_0 + w_1 x_n - y_n) x_n} = 0$$

$$\Rightarrow \frac{N w_0 + w_1 \sum_n x_n}{w_0 \sum_n x_n + w_1 \sum_n x_n^2} = \frac{\sum_n y_n}{\sum_n y_n x_n} \quad \text{(a linear system)}$$

$$\Rightarrow \left(\frac{N}{\sum_n x_n} \sum_n \frac{x_n}{x_n} \right) \left(\frac{w_0}{w_1} \right) = \left(\frac{\sum_n y_n}{\sum_n x_n y_n} \right)$$

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

ullet yes for **convex** objectives (RSS is convex in $ilde{w})$

$$\Rightarrow \begin{pmatrix} w_0^* \\ w_1^* \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}^{-1} \begin{pmatrix} \sum_n y_n \\ \sum_n x_n y_n \end{pmatrix}$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- ullet yes for **convex** objectives (RSS is convex in $ilde{w}$)
- not true in general

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n})$$

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}$$

where

$$ilde{m{X}} = \left(egin{array}{c} ilde{m{x}}_1^{
m T} \ ilde{m{x}}_2^{
m T} \ dots \ ilde{m{x}}_{
m N}^{
m T} \end{array}
ight) \in \mathbb{R}^{{\sf N} imes (D+1)}, \quad m{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ y_{
m N} \end{array}
ight) \in \mathbb{R}^{{\sf N}}$$

Objective

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}} \right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} = \boldsymbol{0}$$

where

$$\tilde{\boldsymbol{X}} = \begin{pmatrix} \tilde{\boldsymbol{x}}_1^{\mathrm{T}} \\ \tilde{\boldsymbol{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N} \times (D+1)}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{\mathsf{N}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N}}$$

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{X}^{\mathrm{T}} ilde{X}$ (covariance matrix) is invertible for now.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{X}^{\mathrm{T}} ilde{X}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{X}^{\mathrm{T}} ilde{X}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^* = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{X}^{\mathrm{T}} ilde{X}$ (covariance matrix) is invertible for now.

Again by convexity \tilde{w}^* is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when D = 0:
$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}=\frac{1}{N}$$
, $\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}=\sum_{n}y_{n}$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = ||\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}||_{2}^{2}$$

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = ||\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}||_{2}^{2}$$
$$= (\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y})^{T} (\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y})$$

$$\begin{split} & \operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_n (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_n - y_n)^2 = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_2^2 \\ & = \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ & = \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \mathrm{cnt.} \end{split}$$

$$\begin{split} & \operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ & = \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ & = \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \\ & = \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.} \end{split}$$

Another approach

RSS is a quadratic:

$$\begin{aligned} &\mathrm{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \mathrm{cnt.} \end{aligned}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u}=\left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u}=\|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2}\geq0$$
 and is 0 if $\boldsymbol{u}=0$.

Another approach

RSS is a quadratic:

$$\begin{aligned} &\mathrm{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \mathrm{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \mathrm{cnt.} \end{aligned}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$$
 and is 0 if $\boldsymbol{u} = 0$. So $\tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$ is the minimizer.

Computational complexity

Bottleneck of computing

$$ilde{m{w}}^* = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)^{-1} ilde{m{X}}^{ ext{T}}m{y}$$

is to invert the matrix $\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

ullet naively need $O({\rm D}^3)$ time

Computational complexity

Bottleneck of computing

$$ilde{m{w}}^* = \left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)^{-1} ilde{m{X}}^{ ext{T}}m{y}$$

is to invert the matrix $\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

- ullet naively need $O({\rm D}^3)$ time
- there are many faster approaches (such as conjugate gradient)

What does that imply?

What does that imply?

Recall
$$\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight) m{w}^* = ilde{m{X}}^{\mathrm{T}} m{y}.$$

What does that imply?

Recall $\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{\mathrm{T}}m{y}$. If $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ not invertible, this equation has

no solution

What does that imply?

Recall $\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{\mathrm{T}}m{y}$. If $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ not invertible, this equation has

- no solution
- or infinitely many solutions

What does that imply?

Recall $\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{\mathrm{T}}m{y}$. If $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ not invertible, this equation has

- no solution (⇒ RSS has no minimizer? X)
- or infinitely many solutions (⇒ infinitely many minimizers √)

Why would that happen?

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example:
$$D = N = 1$$

sqft	sale price
1000	500K

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example:
$$D = N = 1$$

sqft	sale price
1000	500K

Any line passing this single point is a minimizer of RSS.

$$\mathsf{D}=1, \mathsf{N}=2$$

sqft	sale price
1000	500K
1000	600K

$$\mathsf{D}=1,\mathsf{N}=2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$\mathsf{D}=1,\mathsf{N}=2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

$$D = 1, N = 2$$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

$$D = 2, N = 3$$
?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

Again infinitely many minimizers.

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ do?

eigendecomposition:
$$\tilde{m{X}}^{\mathrm{T}}\tilde{m{X}} = m{U}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} \end{bmatrix} m{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are **eigenvalues**.

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ do?

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are **eigenvalues**.

i.e. just inverse the eigenvalues

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1} + \lambda} & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda_{2} + \lambda} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}} + \lambda} & 0 \\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1} + \lambda} \end{bmatrix} \boldsymbol{U}$$

Fix the problem

The solution becomes

$$\tilde{m{w}}^* = \left(\tilde{m{X}}^{\mathrm{T}} \tilde{m{X}} + \lambda m{I} \right)^{-1} \tilde{m{X}}^{\mathrm{T}} m{y}$$

• not a minimizer of the original RSS

Fix the problem

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}\right)^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

not a minimizer of the original RSS

 λ is a *hyper-parameter*, can be tuned by cross-validation.

Comparison to NNC

Parametric versus non-parametric

- Parametric methods: the size of the model does *not grow* with the size of the training set N.
 - e.g. linear regression, D+1 parameters, independent of N.
- **Non-parametric methods**: the size of the model *grows* with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

Outline

- Administration
- Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- 5 Overfitting and preventing overfitting

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^D
ightarrowoldsymbol{z}\in\mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}): oldsymbol{x} \in \mathbb{R}^D
ightarrow oldsymbol{z} \in \mathbb{R}^M$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

Regression with nonlinear basis

Model:
$$f(x) = w^{\mathrm{T}} \phi(x)$$
 where $w \in \mathbb{R}^M$

Regression with nonlinear basis

Model: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Regression with nonlinear basis

Model: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n})^{2}$$

Similar least square solution:

$$m{w}^* = \left(m{\Phi}^{ ext{T}}m{\Phi}
ight)^{-1}m{\Phi}^{ ext{T}}m{y} \quad ext{where} \quad m{\Phi} = \left(egin{array}{c} m{\phi}(m{x}_1)^{ ext{T}} \ m{\phi}(m{x}_2)^{ ext{T}} \ dots \ m{\phi}(m{x}_N)^{ ext{T}} \end{array}
ight) \in \mathbb{R}^{N imes M}$$

Example

Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Example

Polynomial basis functions for D=1

$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Learning a linear model in the new space

= learning an M-degree polynomial model in the original space

Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

Why nonlinear?

Can I use a fancy linear feature map?

$$m{\phi}(m{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = m{A}m{x} \quad ext{ for some } m{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$m{\phi}(m{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = m{A}m{x} \quad ext{ for some } m{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w'} \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w'}^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$oldsymbol{\phi}(oldsymbol{x}) = \left[egin{array}{c} x_1 - x_2 \ 3x_4 - x_3 \ 2x_1 + x_4 + x_5 \ dots \end{array}
ight] = oldsymbol{A} oldsymbol{x} \quad ext{ for some } oldsymbol{A} \in \mathbb{R}^{\mathsf{M} imes \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w}'^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

We will see more nonlinear mappings soon.

Outline

- Administration
- Review of last lecture
- 3 Linear regression
- 4 Linear regression with nonlinear basis
- 5 Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error

Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error

More complicated models ⇒ larger gap between training and test error

Underfitting and Overfitting

 $M \leq 2$ is *underfitting* the data

- large training error
- large test error

 $M \geq 9$ is *overfitting* the data

- small training error
- large test error

More complicated models ⇒ larger gap between training and test error

How to prevent overfitting?

More data ⇒ smaller gap between training and test error

Method 2: control the model complexity

For polynomial basis, the **degree** M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

Method 2: control the model complexity

For polynomial basis, the **degree** M clearly controls the complexity

ullet use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Magnitude of weights

Least square solution for the polynomial example:

	M=0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Magnitude of weights

Least square solution for the polynomial example:

	M=0	M = 1	M = 3	M = 9
$\overline{w_0}$	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Intuitively, large weights ⇒ more complex model

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

- \bullet $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model $oldsymbol{w}$ is
 - common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

- \bullet $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model $oldsymbol{w}$ is
 - common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.
- $\lambda > 0$ is the regularization coefficient
 - $\lambda = 0$, no regularization
 - $\lambda \to +\infty$, $\boldsymbol{w} \to \operatorname{argmin}_{\boldsymbol{w}} R(\boldsymbol{w})$
 - i.e. control trade-off between training error and complexity

The effect of λ

when we increase regularization coefficient λ

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
$\overline{w_0}$	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01

The trade-off

when we increase regularization coefficient $\boldsymbol{\lambda}$

The trade-off

when we increase regularization coefficient λ

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$\mathcal{E}(w) = \text{RSS}(w) + \lambda ||w||_2^2 = ||\Phi w - y||_2^2 + \lambda ||w||_2^2$$

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:
$$\mathcal{E}(\boldsymbol{w}) = \mathrm{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\text{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\boldsymbol{\Phi}^{\text{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\text{T}}\boldsymbol{y}$$

Simple for
$$R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$$
:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when X^TX is not invertible!

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_{2}^{2} = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2}$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{T}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{T}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{T}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{T}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{T}\boldsymbol{y}$$

Note the same form as in the fix when X^TX is not invertible!

For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Equivalent form

Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

- 1. Pick a set of **models** \mathcal{F}
 - \bullet e.g. $\mathcal{F} = \{ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$

- 1. Pick a set of models \mathcal{F}
 - \bullet e.g. $\mathcal{F} = \{ f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)

- 1. Pick a set of **models** \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}} oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}} \}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

- 1. Pick a set of models \mathcal{F}
 - ullet e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$
 - ullet e.g. $\mathcal{F} = \{f(oldsymbol{x}) = oldsymbol{w}^{\mathrm{T}}oldsymbol{\Phi}(oldsymbol{x}) \mid oldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$f^* = \underset{f \in \mathcal{F}}{\operatorname{argmin}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization