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Naive Bayes

Assume: conditioning on a label, features are independent

D
p(a,y) = p(y)p(a | y) = ply) [ [ plza |y =)
d=1
For a label ¢ € [C],
_{nige=cl

p(y=rc) N

For each possible value k of a discrete feature d,

{n: ng = k,yn = ¢}
{n : yn = c}
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Review of last lecture

Input: a dataset represented as X, #components p we want

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XT X, denoted by V' € RP*P

Step 3 Construct the new compressed dataset XV € RV*P
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Review of last lecture

Naive Bayes: continuous features
If the feature is continuous, we can do

@ parametric estimation, e.g. via a Gaussian

— — ) = 1 (% — ftea)”
p(m—ﬂy—@—me}{p T o2
c cd

where 1.4 and afd are the empirical mean and variance of feature d
among all examples with label c.

@ or nonparametric estimation, e.g. via a Kernel K and bandwidth h:

1
p(xd::ﬂy:c):m Z Kn(z — zna)

n:Yn=cC
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[ o]
KPCA

Input: a dataset X, #components p we want, a kernel fucntion k

Step 1 Compute the Gram matrix K and the centered Gram matrix

K=K-EK-KE+EKE (implicitly centering ®)

Step 2 Find the top p eigenvectors of K with the appropriate scaling,
denoted by A € RNxP

(implicitly finding unit eigenvectors of ®T®: V = ®T A ¢ RMxP)

Step 3 Construct the new dataset KA € RN*P B o
(implicitly /equivalently computing @V = &®T A)
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(Hidden) Markov models Markov chain
Definition
A Markov chain is a stochastic process with Markov property: a
sequence of random variables Z1, Zs,--- s.t.
P(Ziy1 | Z1a) = P(Zia | Z4) (Markov property)

i.e. the current state only depends on the most recent state (notation Z1.
denotes the sequence Z1,...,Z;).

We only consider the following case:
e All Z;'s take value from the same discrete set {1,...,S}
® P(Zit1 =5"|Z =s) = asy, known as transition probability
e P(Z1=3s)=ms
o ({ms},{ass}) = (m, A) are parameters of the model
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(Hidden) Markov models

Markov Models

Markov models are powerful probabilistic tools to analyze sequential data:

@ text or speech data
@ stock market data
@ gene data
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(GISESERYRVETICVANIESEI  Markov chain

Examples

e Example 1 (Language model)

States [S] represent a dictionary of words,
Gjce,cream = P(Z;41 = cream | Z; = ice)

is an example of the transition probability.

e Example 2 (Weather)

States [S] represent weather at each day

Asunny,rainy = P(Zi+1 = rainy | Z; = sunny)
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(GICESEUYRVETICVANIISEIN  Markov chain

High-order Markov chain

Is the Markov assumption reasonable? Not completely for the language
model for example.

Higher order Markov chains make it more reasonable, e.g.
P(Zyy1 | Z1:4) = P(Zig1 | Zs, Zy1)

(second-order Markov)

i.e. the current word only depends on the last two words.

Learning higher order Markov chains is similar, but more expensive.

We only consider standard Markov chains.
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(GICESENYRVETCCVANIESEI  Markov chain

Learning from examples

Now suppose we have observed N sequences of examples:

() 21,1,...,21"1“

o ..

@ Znly---s2n,T

° ..

(*)] ZN,la---7zN,T
where

o for simplicity we assume each sequence has the same length T’

@ lower case z,; represents the value of the random variable 7, ;
From these observations how do we learn the model parameters (7, A)?
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(GISESEUYRVETICVANIISEIN  Markov chain

Graph Representation

picture from Wikipedia

It is intuitive to represent a Markov model as a graph
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(GISESERYRVETICVANIESEI  Markov chain

Finding the MLE

Same story, find the MLE. The log-likelihood of a sequence z1,..., 27 is

1nP(leT = Zl:T)

Zy =z | Zig—1 = 21:4-1) (always true)

Zy =2z | Zi1 = z1-1) (Markov property)

T

D InP(
t=1

T
Z In P(
t=1

T
=lnm, + Zln Az 1y 2
t=2
T
= Z]I[zl = s]lnms + Z (Z [[zt—1 = s,2¢ = s'}) Inag ¢
s s,8" \t=2

16 / 47



(GICESEUYRVETICVANIISEIN  Markov chain

Finding the MLE

So MLE is

argmax Z(#initial states with value s)In g

A S

+ Z(#transitions from s to ') Ina,

8,8’

We have seen this many times. The solution is:

T oC #initial states with value s

ass o #transitions from s to s’
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(GICEEYRYETCYANGEEEM Hidden Markov Model

Markov Model with outcomes

Now suppose each state Z; also “emits” some outcome X; € [O] based
on the following model

P(Xi=o0|Zi=5s)=bs, (emission probability)

independent of anything else.

For example, in the language model, X, is the speech signal for the
underlying word Z; (very useful for speech recognition).

Now the model parameters are ({7}, {as s}, {bs0}) = (7, A, B).
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(GISESEUYRVETICVANIISEIN  Markov chain

Example

Suppose we observed the following 2 sequences of length 5
@ sunny, sunny, rainy, rainy, rainy

@ rainy, sunny, sunny, sunny, rainy

MLE is the following model

(GICEEYRYETICYANEESE Hidden Markov Model

Another example

On each day, we also observe Bob’s activity: walk, shop, or clean,
which only depends on the weather of that day.
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picture from Wikipedia
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(GICEEYRVYETCCVANEEIESE Hidden Markov Model

Joint likelihood

The joint log-likelihood of a state-outcome sequence 21, 1,..., 2, T is

In P(Zy.r = 217, X117 = T1.7)

=InP(Zir=z.7) + I P(X1.0 =217 | Z1.r = z1.7)  (always true)

T T
== ZlnP(Zt = Zt | Zt—l = Zt—l) + ZlnP(Xt = Tt ‘ Zt = Zt)
t=1 t=1
(due to all the independence)

T T
=Inm, + E Ina,, ., + E Inb,, .
t=2 t=1
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(GICEEYRYETCYANGEEEM Hidden Markov Model

Learning the model

However, most often we do not observe the states! Think about the
speech recognition example.

This is called Hidden Markov Model (HMM), widely used in practice

How to learn HMMs? Roadmap:

e first discuss how to infer when the model is known (key: dynamic
programming)

@ then discuss how to learn the model (key: EM)
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(GICEEYRVYETICVANEIESE Hidden Markov Model

Learning the model

If we observe N state-outcome sequences: 2z 1,Tn1,---,2n,T, Tn,T fOr
n=1,...,N, the MLE is again very simple (verify yourself):

ms < FFinitial states with value s
ass o< #transitions from s to s’

bs,o x #£state-outcome pairs (s, 0)
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(Hidden) Markov models Inferring HMMs

What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer
o the probability of observing some sequence
P(X17 = z1.7)

e.g. prob. of observing Bob's activities “walk, walk, shop, clean, walk,
shop, shop” for one week

o the state at some point, given an observation sequence
P(Zy = s | X1.r = 21.7)

e.g. given Bob's activities for one week, how was the weather like on
Wed?
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(Hidden) Markov models Inferring HMMs (Hidden) Markov models Inferring HMMs

What can we infer for a known HMM? Forward and backward messages

Knowing the parameter of an HMM, we can infer

e the transition at some point, given an observation sequence The key to infer all these is to compute two things:

P(Zy=5,Z11 =58 | X110 = x1.7) e forward messages: for each s and ¢
e.g. given Bob's activities for one week, how was the weather like on as(t) = P(Zy = s, X1t = 1)
Wed and Thu?
o most likely hidden states path, given an observation sequence o backward messages: for each s and ¢
argmax P(Z1.0 = z1.7 | X110 = 21.7) Bs(t) = P(Xig11 = g1 | Zt = 5)
z1.T

e.g. given Bob's activities for one week, what's the most likely
weather for this week?
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(Hidden) Markov models Inferring HMMs (Hidden) Markov models Inferring HMMs
Computing forward messages Forward procedure
Key: establish a recursive formula
as(t) Forward procedure
— P(Zy = 8, X1t = 712 For all s € [S], compute as(1) = msbs 4, -
=PXy=2¢ | Zy = 5, X141 = T14-1)P(Zy = 8, X1:4-1 = T1:4-1) Fort=2,...,T
= bsa, ZP(Zt =5,211=5,X14-1=T14-1) (marginalizing) e for each s € [S], compute
S/
= bs.q, ZP(Zt =5|Zi-1=5,X14-1=214-1)P(Z1—1 =5, X141 = 21.4-1) as(t) = b, Zas"sas/ (t=1)
s’ s’
= bg. Z ay sag(t —1) (recursive form!)
° It takes O(S?T') time and O(ST) space.
Base case: a4(1) = P(Z) = 5, X1 = x1) = sbs 4,
27 / 47
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(Hidden) Markov models Inferring HMMs

Computing backward messages

Again establish a recursive formula
Bs(t)
= P(Xiy1.1 = Terrr | Zt = 8)

= ZP(XH-I:T =T Zig1 = S | Zy = 5)

S

(marginalizing)

= ZP(ZtH = | Zt = s)P(Xt41.1 = Tey17 | Zip1 = s, Zy = s)

S

= a5y P(Xpy1 = 241 | Zip1 = §)P(Xpyor = 2yg07 | Zopr = )

S/

= Z as,s/bs’,a:t+1/65/ (t + 1)
Sl

(recursive form!)

Base case: §5(T) =1
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(Hidden) Markov models Inferring HMMs

Using forward and backward messages

With forward and backward messages, we can easily infer many things, e.g.

vs(t) = P(Zy = s | X1.7 = 21.7)
x P(Z; = s, X110 = x1.7)
= P(Zt =5,X14 = $1:t)P(Xt+1:T = Tt+4+1:T | 4y =58,X14 = $1:t)
= as(t) s (1)

What constant are we omitting in ‘oc”? It is exactly
P(Xpr =a10) = 3 as(t)Bs(t),
S

the probability of observing the sequence x1.7.
This is true for any ¢; a good way to check correctness of your code.
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(Hidden) Markov models Inferring HMMs

Backward procedure

Backward procedure
For all s € [S], set B5(T) = 1.

Fort=T-1,...,1

e for each s € [S], compute

Bs(t) = Z QS,S’bS’,rtH By (t+1)

s/

Again it takes O(S?T) time and O(ST) space.
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(Hidden) Markov models Inferring HMMs

Using forward and backward messages

Another example: the conditional probability of transition s to s’ at time ¢

£s, (1)

=P(Zy=5,Z11 =58 | X110 = 21.7)

x P(Zy=s,Z;11 =8, X1.7 = 21.7)

(Zy = 8, X14 = 210) P(Zi11 = 8, Xev1r = Tegrr | Zo = 8, X1 = 2124)
= as(t)P(Zyy1 =8 | Zy = $)P(Xpg1:r = Tig1.1 | Zig1 = )

= as(t)as o P(Xip1 = 41 | Zoyr = 8 )P(Xiqor = Teqor | Ziy1 = 5')
s(t)as,sbs wyyy Bs (t+1)

i)

|
o

The normalization constant is in fact again P(X1.7 = x1.7)
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(Hidden) Markov models Inferring HMMs

Finding the most likely path

Though can’t use forward and backward messages directly to find the
most likely path, it is very similar to the forward procedure. Key: compute

5s(t) = max P(Zt =S, Zl:t—l = 21:it—1, Xl:t = xl:t)

21:t—1

the probability of the most likely path for time 1 : ¢ ending at state s
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Viterbi Algorithm (!)

Viterbi Algorithm

For each s € [S], compute 05(1) = 7sbs z, -

Foreacht=2,...,T,

e for each s € [S], compute
d5(t) = bs a, max ay 0y (t — 1),
Ag(t) = argmaxay 0y (t — 1).
S/

Backtracking: let 2. = argmax, d,(T).

Foreacht =T,...,2: set z; | = A, ().

Output the most likely path 27,...,2}.
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(Hidden) Markov models Inferring HMMs

Computing 04(t)

Observe

5s(t) = Inax P(Zt =8, 21:4—1 = Z1:t—1, X1:t = xl:t)

21:t—1

/
=max max P(Zy = s, 21 = 8, Z1u—2 = 214-2, X126 = T11)
S 1:t—2
=maxP(Z; = s | Zi1 =8 )P(Xe = a0 | Zi = 5):
S
/
max P(Zi_1 =8, Z1:4—2 = 21:0—2, X1:0—1 = T1:—1)
1:t—2

= bs 1, max ag 0y (t —1) (recursive form!)

Base case: (1) = P(Z1 = 5, X1 = x1) = 7sbs 4,
Exactly the same as forward messages except replacing “sum” by “max”!
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(Hidden) Markov models Inferring HMMs

Example

Arrows represent the “argmax”, i.e. Ag(t).

Ssunny(1)=0.25

A 4

Ssunny(2)=0.1

Ssunny(3)=0.04

Bsunny(4)=0.016 ‘

> rainy(2)=0.19 Brainy(3)=0.042

H 6rainy(1):0.4 5rainy(4):0.01

The most likely path is “rainy, rainy, sunny, sunny”.
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(Hidden) Markov models Inferring HMMs
Exercise 1

What is the most likely sequence zi‘:TO given z 1.7, for some Ty < 177

@ Is it the first Tj outputs of the Viterbi algorithm (with all data)?

No. It should be
o zj, = argmax, ds(7p)

o foreacht =1Tp,...,2: 2z | =

Az;‘ (t)

Ssunny(2)=0.1

A 4

Ssunny(1)=0.25 Ssunny(3)=0.04 Ssunny(4)=0.016

H 5rainy(1)=0~4 > 5rainy(2)=o.19

H Bramy(3)=0.042 “ B1amy(4)=0.01 “

The answer for Ty = 3 is: “sunny, sunny, rainy” .
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(Hidden) Markov models Inferring HMMs

Exercise 2 (cont.)

Reasoning:
*
27, = argmax max P(Zz, = s, Z1.179—1 = 21:75—1, X1.7 = T1.T)
S 1:Tp—1

= argmax max P(Zg, = s, Z1.1-1 = 21:19—1, X1:1Ty = T1:1)-
S 1:Tp—1

P(X1y41,1 = 1941:7 | Z19 = 8, Z1:T9—1 = 21:TH—1, X 12T = T1:T,)

= argmax (ZmaX P(Zr, = s, Z1.:1y-1 = 21:19—1, X1:19 = $1:TO)> .
s 1:Ty—1

P(Xty+1,1 = 21417 | Z1y = 8)
= argmax 05(70)58s(To)
S
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(Hidden) Markov models Inferring HMMs

Exercise 2

What is the most likely sequence z}":TO given x1.7 for some Ty < T7
@ Is it the same as Exercise 17

e Is it the first Tj) outputs of the Viterbi algorithm (with all data)?

Neither. It should be
o zp = argmax, ds(7o)3s(1o)

o foreacht =Tp,...,2: 2 1 = A.x(t)
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(Hidden) Markov models Inferring HMMs

Exercise 3

What is the most likely sequence 2., given x;.7, for some Ty < 177
@ Is it the same as the Viterbi algorithm (with all data)?

@ Are the first Tj states the same as Exercise 17

Again, neither is true.
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(Hidden) Markov models Inferring HMMs

Exercise 3 (cont.)

Viterbi Algorithm with partial data z;.7;,
For each s € [S], compute 05(1) = 7sbs 5, -
Foreacht=2,...,T,

e for each s € [S], compute

bs,xt maXxgs a3175(55/ (t — 1) if ¢ < TO
5S(t) =
maxy ag s0g(t — 1) else

Ag(t) = argmaxay 0y (t —1).

s’

Backtracking: let z}. = argmax, d5(7).
Foreacht =T,...,2: set z; | = A_:(1).

Output the most likely path z7,..., 27.
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(Hidden) Markov models

Applying EM: E-Step

Learning HMMs

Recall in the E-Step we fix the parameters and find the posterior

distributions ¢ of the hidden states (for each sample n), which leads to
the complete log-likelihood:

E. . ;~g In(Z10 = 21:7, X117 = 21.7)]

T-1 T
=K, ;g |Inm + Z Inay, .., + Zln bz,
t=1 t=1
—Z'Ys lnﬂs+ZZfss 1nass’+2275 lnbsxt

t=1 s,s’

We have discussed how to compute

vs(t) = P(Zy = s | X117 = 21.7)
¢ss(t) =P(Zi =8, 2111 = | X1.r = 21.7)
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(Hidden) Markov models Learning HMMs

Learning the parameters of an HMM

All previous inferences depend on knowing the parameters (m, A, B).

How do we learn the parameters based on N observation sequences
Tniy---, Ty form=1,... N7

MLE is intractable due to the hidden variables Z,, ;'s (similar to GMMs)

Need to apply EM again! Known as the Baum—Welch algorithm.

(Hidden) Markov models

Applying EM: M-Step

Learning HMMs

The maximizer of complete log-likelihood is simply doing weighted
counting (compared to the unweighted counting on Slide 22):

s X ngn)
! T-1
g st X Z Z 55;2;)/ (t) =E

n t=1

boo x 33 4t

n t:xt=o

= [E, [ #initial states with value s]

¢ | #transitions from s to s']
E, [ #state-outcome pairs (s, 0)]

where

(1) = P(Znt=s| Xn11 = Tn1:7)
(1)

P(Zn,t =S, Zn,t—H =5 ‘ Xn,l:T = xn,l:T)
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(Hidden) Markov models Learning HMMs (Hidden) Markov models Learning HMMs

Baum-Welch algorithm Summary
Step 0 Initialize the parameters (7, A, B)

Very i tant models: Markov chains, hidden Marko odels
Step 1 (E-Step) Fixing the parameters, compute forward and backward ery important modets reov s, iaden reov m

messages for all sample sequences, then use these to compute 'yén) (t) and

¢ (t) for each n,t, s, s (see Slides 31 and 32). Several algorithms:

S,

e forward and backward procedures

Step 2 (M-Step) Update parameters: e inferring HMMs based on forward and backward messages

T—1 . . .
n N e Viterbi algorithm
msoc Y WD), sy o YD END), beoox D] Y A ()
n t=1

n n txi=o @ Baum—Welch algorithm

Step 3 Return to Step 1 if not converged
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