
CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

U of Southern California

Nov 18, 2021

1 / 44

Administration

Reminder: HW5 is due on the coming Tuesday.

Quiz 2 logistics (12/02, 5:00-7:40pm):

online via zoom, can take it wherever you want (SGM 123 is available)

join the regular lecture zoom 10 minutes earlier (link available on
course/DEN website; remember to sign in!), with your camera on

A bit before 5pm, Crowdmark will send you the quiz.

open-book/note, but no collaboration or consultation

make a private Piazza post if you have clarification questions

duration is 2.5 hours + 10 extra minutes for uploading; x% penalty
for x minutes late (past 7:40).

2 / 44

More on Quiz 2

Coverage: SVM + topics after Quiz 1; some other basic concepts (e.g.
training error, regularization, kernel, etc.) might appear in conjunction.

Five problems in total

one problem of 15 multiple-choice multiple-answer questions

today’s topics only appear here

four other homework-like problems, each has a couple sub-problems

in total, upload five scanned pdf/jpg/png’s, one for each problem

each can have multiple pages

Same tip: expect variants of questions from discussion/homework

3 / 44

Outline

1 Review of last lecture

2 Multi-armed Bandits

3 Reinforcement learning

4 / 44

Review of last lecture

Outline

1 Review of last lecture

2 Multi-armed Bandits

3 Reinforcement learning

5 / 44

Review of last lecture

Hidden Markov Models

Model parameters:

initial distribution
P (Z1 = s) = πs

transition distribution
P (Zt+1 = s′ | Zt = s) = as,s′

emission distribution
P (Xt = o | Zt = s) = bs,o

6 / 44

Review of last lecture

Baum–Welch algorithm

Step 0 Initialize the parameters (π,A,B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward

messages for all sample sequences, then use these to compute γ
(n)
s (t) and

ξ
(n)
s,s′(t) for each n, t, s, s′.

Step 2 (M-Step) Update parameters:

πs ∝
∑
n

γ(n)s (1), as,s′ ∝
∑
n

T−1∑
t=1

ξ
(n)
s,s′(t), bs,o ∝

∑
n

∑
t:xt=o

γ(n)s (t)

Step 3 Return to Step 1 if not converged

7 / 44

Review of last lecture

Viterbi Algorithm

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1)

∆s(t) = argmax
s′

as′,sδs′(t− 1)

Backtracking: let z∗T = argmaxs δs(T).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .

8 / 44

Review of last lecture

Example

Arrows represent the “argmax”, i.e. ∆s(t).

The most likely path is “rainy, rainy, sunny, sunny”.

9 / 44

Review of last lecture

Viterbi Algorithm with missing data

Viterbi Algorithm with partial data x1:T0

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) =

{
bs,xt maxs′ as′,sδs′(t− 1) if t ≤ T0
maxs′ as′,sδs′(t− 1) else

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .

10 / 44

Multi-armed Bandits

Outline

1 Review of last lecture

2 Multi-armed Bandits
Online decision making
Motivation and setup
Exploration vs. Exploitation

3 Reinforcement learning

11 / 44

Multi-armed Bandits Online decision making

Decision making

Problems we have discussed so far:

start with a training dataset

learn a predictor or discover some patterns

But many real-life problems are about learning continuously:

make a prediction/decision

receive some feedback

repeat

Broadly, these are called online decision making problems.

12 / 44

Multi-armed Bandits Online decision making

Examples

Amazon/Netflix/MSN recommendation systems:

a user visits the website

the system recommends some products/movies/news stories

the system observes whether the user clicks on the recommendation

Playing games (Go/Atari/StarCraft/...) or controlling robots:

make a move

receive some reward (e.g. score a point) or loss (e.g. fall down)

make another move...

13 / 44

Multi-armed Bandits Online decision making

Two formal setups

We discuss two such problems today:

multi-armed bandit

reinforcement learning

14 / 44

Multi-armed Bandits Motivation and setup

Mulit-armed bandits: motivation

Imagine going to a casino to play a slot machine

it robs you, like a “bandit” with a single arm

Of course there are many slot machines in the casino

like a bandit with multiple arms (hence the name)

if I can play for 10 times, which machines should I play?

15 / 44

Multi-armed Bandits Motivation and setup

Applications

This simple model and its variants capture many real-life applications

recommendation systems, each product/movie/news story is an arm
(Microsoft MSN indeed employs a variant of bandit algorithm)

game playing, each possible move is an arm
(AlphaGo indeed has a bandit algorithm as one of the components)

16 / 44

Multi-armed Bandits Motivation and setup

Formal setup

There are K arms (actions/choices/...)

The problem proceeds in rounds between the environment and a learner:
for each time t = 1, . . . , T

the environment decides the reward for each arm rt,1, . . . , rt,K

the learner picks an arm at ∈ [K]

the learner observes the reward for arm at, i.e., rt,at

Importantly, learner does not observe rewards for arms not selected!

This kind of limited feedback is now usually referred to as bandit feedback

17 / 44

Multi-armed Bandits Motivation and setup

Objective

What is the goal of this problem?

Maximizing total rewards
∑T

t=1 rt,at seems natural

But the absolute value of rewards is not meaningful, instead we should
compare it to some benchmark. A classic benchmark is

max
a∈[K]

T∑
t=1

rt,a

i.e. the largest reward one can achieve by always playing a fixed arm

So we want to minimize

max
a∈[K]

T∑
t=1

rt,a −
T∑
t=1

rt,at

This is called the regret: how much I regret for not sticking with the best
fixed arm in hindsight?

18 / 44

Multi-armed Bandits Motivation and setup

Environments

How are the rewards generated by the environments?

they could be generated via some fixed distribution

they could be generated via some changing distribution

they could be generated even completely arbitrarily/adversarially

We focus on a simple setting:

rewards of arm a are i.i.d. samples of Ber(µa), that is, rt,a is 1 with
prob. µa, and 0 with prob. 1− µa, independent of anything else.

each arm has a different mean (µ1, . . . , µK); the problem is essentially
about finding the best arm argmaxa µa as quickly as possible

19 / 44

Multi-armed Bandits Motivation and setup

Empirical means

Let µ̂t,a be the empirical mean of arm a up to time t:

µ̂t,a =
1

nt,a

∑
τ≤t:aτ=a

rτ,a

where
nt,a =

∑
τ≤t

I[aτ == a]

is the number of times we have picked arm a.

Concentration: µ̂t,a should be close to µa if nt,a is large

20 / 44

Multi-armed Bandits Exploration vs. Exploitation

Exploitation only

Greedy

Pick each arm once for the first K rounds.

For t = K + 1, . . . , T , pick at = argmaxa µ̂t−1,a

What’s wrong with this greedy algorithm?

Consider the following example:

K = 2, µ1 = 0.6, µ2 = 0.5 (so arm 1 is the best)

suppose the algorithm first picks arm 1 and sees reward 0, then picks
arm 2 and sees reward 1 (this happens with decent probability)

the algorithm will never pick arm 1 again!

21 / 44

Multi-armed Bandits Exploration vs. Exploitation

The key challenge

All bandit problems face the same dilemma:

Exploitation vs. Exploration trade-off

on one hand we want to exploit the arms that we think are good

on the other hand we need to explore all arms often enough in order
to figure out which one is better

so each time we need to ask: do I explore or exploit? and how?

We next discuss three ways to trade off exploration and exploitation for
our simple multi-armed bandit setting.

22 / 44

Multi-armed Bandits Exploration vs. Exploitation

A natural first attempt

Explore–then–Exploit

Input: a parameter T0 ∈ [T]

Exploration phase: for the first T0 rounds, pick each arm for T0/K times

Exploitation phase: for the remaining T − T0 rounds, stick with the
empirically best arm argmaxa µ̂T0,a

Parameter T0 clearly controls the exploration/exploitation trade-off

23 / 44

Multi-armed Bandits Exploration vs. Exploitation

Issues of Explore–then–Exploit

It’s pretty reasonable, but the disadvantages are also clear:

not clear how to tune the hyperparameter T0

in the exploration phase, even if an arm is clearly worse than others
based on a few pulls, it’s still pulled for T0/K times

clearly it won’t work if the environment is changing

24 / 44

Multi-armed Bandits Exploration vs. Exploitation

A slightly better algorithm

ε-Greedy

Pick each arm once for the first K rounds.

For t = K + 1, . . . , T ,

with probability ε, explore: pick an arm uniformly at random

with probability 1− ε, exploit: pick at = argmaxa µ̂t−1,a

Pros

always exploring and exploiting

applicable to many other problems

first thing to try usually

Cons

need to tune ε

same uniform exploration

Is there a more adaptive way to explore?

25 / 44

Multi-armed Bandits Exploration vs. Exploitation

More adaptive exploration

A simple modification of “Greedy” leads to the well-known:

Upper Confidence Bound (UCB) algorithm

For t = 1, . . . , T , pick at = argmaxa UCBt,a where

UCBt,a , µ̂t−1,a + 2

√
ln t

nt−1,a

the first term in UCBt,a represents exploitation, while the second
(bonus) term represents exploration

the bonus term is large if the arm is not pulled often enough, which
encourages exploration (adaptive due to the first term)

a parameter-free algorithm, and it enjoys optimal regret!

26 / 44

Multi-armed Bandits Exploration vs. Exploitation

Upper confidence bound

Why is it called upper confidence bound?

One can prove that with high probability,

µa ≤ UCBt,a

so UCBt,a is indeed an upper bound on the true mean.

Another way to interpret UCB, “optimism in face of uncertainty”:

true environment is unknown due to randomness (uncertainty)

just pretend it’s the most preferable one among all plausible
environments (optimism)

This principle is useful for many other bandit problems.

27 / 44

Reinforcement learning

Outline

1 Review of last lecture

2 Multi-armed Bandits

3 Reinforcement learning
Markov decision process
Learning MDPs

28 / 44

Reinforcement learning

Motivation

Multi-armed bandit is among the simplest decision making problems with
limited feedback.

It’s often too simple to capture many real-life problems. One thing it fails
to capture is the “state” of the learning agent, which has impacts on the
reward of each action.

e.g. for Atari games, after making one move, the agent moves to a
different state, with possible different rewards for each action

29 / 44

Reinforcement learning

Reinforcement learning

Reinforcement learning (RL) is one way to deal with this issue.

Huge recent success when combined with deep learning techniques

Atari games, poker, self-driving cars, etc.

The foundation of RL is Markov Decision Process (MDP),
a combination of Markov model (Lec 10) and multi-armed bandit

30 / 44

Reinforcement learning Markov decision process

Markov decision process

An MDP is parameterized by five elements

S: a set of possible states

A: a set of possible actions

P : transition probability, Pa(s, s
′) is the probability of transiting from

state s to state s′ after taking action a (Markov property)

r: reward function, ra(s) is (expected) reward of action a at state s

γ ∈ (0, 1): discount factor, informally, reward of 1 from tomorrow is
only counted as γ for today

Different from Markov models discussed in Lec 10, the state transition is
influenced by the taken action.

Different from Multi-armed bandit, the reward depends on the state.

31 / 44

Reinforcement learning Markov decision process

Example

3 states, 2 actions

32 / 44

Reinforcement learning Markov decision process

Policy

A policy π : S → A indicates which action to take at each state.

If we start from state s0 ∈ S and act according to a policy π, the
discounted rewards for time 0, 1, 2, . . . are respectively

rπ(s0)(s0), γrπ(s1)(s1), γ2rπ(s2)(s2), · · ·

where s1 ∼ Pπ(s0)(s0, ·), s2 ∼ Pπ(s1)(s1, ·), · · ·

If we follow the policy forever, the total (discounted) reward is

E

[∞∑
t=0

γtrπ(st)(st)

]

where the randomness is from st+1 ∼ Pπ(st)(st, ·).

Note: the discount factor allows us to consider an infinite learning process

33 / 44

Reinforcement learning Markov decision process

Optimal policy and Bellman equation

First goal: knowing all parameters, how to find the optimal policy

argmax
π

E

[∞∑
t=0

γtrπ(st)(st)

]
?

We first answer a related question: what is the maximum reward one can
achieve starting from an arbitrary state s?

V (s) = max
π

E

[∞∑
t=0

γtrπ(st)(st)
∣∣∣ s0 = s

]

= max
a∈A

(
rs(a) + γ

∑
s′∈S

Pa(s, s
′)V (s′)

)

V is called the (optimal) value function. It satisfies the above Bellman
equation: |S| nonlinear equations with |S| unknowns, how to solve it?

34 / 44

Reinforcement learning Markov decision process

Value Iteration

Value Iteration

Initialize V0(s) randomly for all s ∈ S

For k = 1, 2, . . . (until convergence)

Vk(s) = max
a∈A

(
rs(a) + γ

∑
s′∈S

Pa(s, s
′)Vk−1(s

′)

)
(Bellman upate)

Knowing V , the optimal policy π∗ is simply

π∗(s) = argmax
a∈A

(
rs(a) + γ

∑
s′∈S

Pa(s, s
′)V (s′)

)

35 / 44

Reinforcement learning Markov decision process

Convergence of Value Iteration

Does Value Iteration always find the true value function V ? Yes!

|Vk(s)− V (s)| =

∣∣∣∣∣max
a∈A

(
rs(a) + γ

∑
s′∈S

Pa(s, s
′)Vk−1(s

′)

)

−max
a∈A

(
rs(a) + γ

∑
s′∈S

Pa(s, s
′)V (s′)

)∣∣∣∣∣
≤ γmax

a∈A

∣∣∣∣∣∑
s′∈S

Pa(s, s
′)
(
Vk−1(s

′)− V (s′)
)∣∣∣∣∣

≤ γmax
a∈A

∑
s′∈S

Pa(s, s
′)
∣∣Vk−1(s′)− V (s′)

∣∣
≤ γmax

s′′

∣∣Vk−1(s′′)− V (s′′)
∣∣ ≤ · · · ≤ γk max

s′′

∣∣V0(s′′)− V (s′′)
∣∣

So the distance between Vk and V is shrinking exponentially fast.

36 / 44

Reinforcement learning Learning MDPs

Learning MDPs

Now suppose we do not know the parameters of the MDP

transition probability P

reward function r

But we do still assume we can observe the states (in contrast to HMM),
how do we find the optimal policy?

We discuss examples from two families of learning algorithms:

model-based approaches

model-free approaches

37 / 44

Reinforcement learning Learning MDPs

Model-based approaches

Key idea: learn the model P and r explicitly from samples

Suppose we have a sequence of interactions:
s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT , then the MLE for P and r are simply

Pa(s, s
′) ∝ #transitions from s to s′ after taking action a

ra(s) = average observed reward at state s after taking action a

Having estimates of the parameters we can then apply value iteration to
find the optimal policy.

38 / 44

Reinforcement learning Learning MDPs

Model-based approaches

How do we collect data s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT ?

Simplest idea: follow a random policy for T steps. This is similar to
explore–then–exploit, and we know this is not the best way.

Let’s adopt the ε-Greedy idea instead.

A sketch for model-based approaches

Initialize V, P, r randomly

For t = 1, 2, . . .,

with probability ε, explore: pick an action uniformly at random

with probability 1− ε, exploit: pick the optimal action based on V

update the model parameters P, r

update the value function V (via value iteration)

39 / 44

Reinforcement learning Learning MDPs

Model-free approaches

Key idea: do not learn the model explicitly. What do we learn then?

Define the Q : S ×A → R function as

Q(s, a) = ra(s) + γ
∑
s′∈S

Pa(s, s
′) max
a′∈A

Q(s′, a′)

In words, Q(s, a) is the expected reward one can achieve starting from

state s with action a, then acting optimally.

Clearly, V (s) = maxaQ(s, a).

Knowing Q(s, a), the optimal policy at state s is simply argmaxaQ(s, a).

Model-free approaches learn the Q function directly from samples.

40 / 44

Reinforcement learning Learning MDPs

Temporal difference

How to learn the Q function?

Q(s, a) = ra(s) + γ
∑
s′∈S

Pa(s, s
′) max
a′∈A

Q(s′, a′)

On experience 〈st, at, rt, st+1〉, with the current guess on Q,
rt + γmaxa′ Q(st+1, a

′) is like a sample of the RHS of the equation.

So it’s natural to do the following update:

Q(st, at)← (1− α)Q(st, at) + α

(
rt + γmax

a′
Q(st+1, a

′)

)
= Q(st, at) + α

(
rt + γmax

a′
Q(st+1, a

′)−Q(st, at)

)
︸ ︷︷ ︸

temporal difference

α is like the learning rate
41 / 44

Reinforcement learning Learning MDPs

Q-learning

The simplest model-free algorithm:

Q-learning

Initialize Q randomly; denote the initial state by s1.

For t = 1, 2, . . .,

with probability ε, explore: at is chosen uniformly at random

with probability 1− ε, exploit: at = argmaxaQ(st, a)

execute action at, receive reward rt, arrive at state st+1

update the Q function

Q(st, at)← (1− α)Q(st, at) + α
(
rt + γmax

a
Q(st+1, a)

)
for some learning rate α.

42 / 44

Reinforcement learning Learning MDPs

Comparisons

Model-based Model-free

What it learns model parameters P, r, . . . Q function

Space O(|S|2|A|) O(|S||A|)

Performance usually better usually worse

There are many different algorithms and RL is an active research area.

43 / 44

Reinforcement learning Learning MDPs

Summary

A brief introduction to some online decision making problems:

Multi-armed bandits

most basic problem to understand exploration vs. exploitation

algorithms: explore–then–exploit, ε-greedy, UCB

Markov decision process and reinforcement learning

a combination of Markov models and multi-armed bandits

learning the optimal policy with a known MDP: value iteration

learning the optimal policy with an unknown MDP: model-based
approach and model-free approach (e.g. Q-learning)

44 / 44

	Review of last lecture
	Multi-armed Bandits
	Reinforcement learning

