CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

U of Southern California

Sep 2, 2021

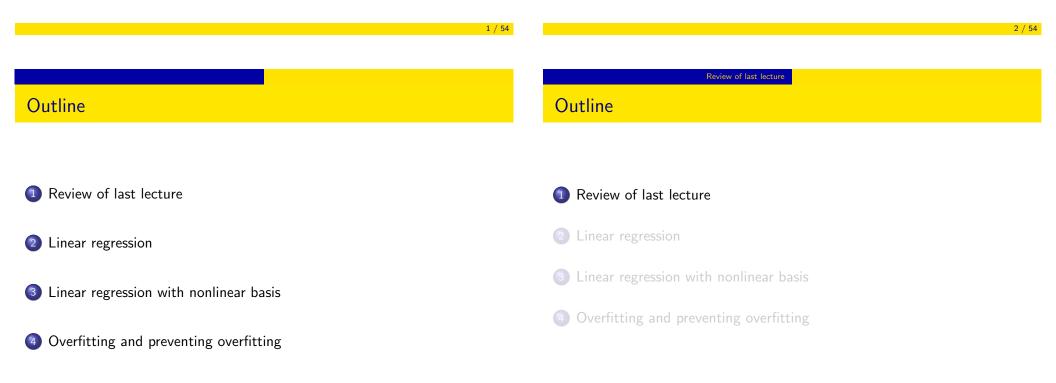
Administrative stuff

Please enroll in Piazza (still missing some of you).

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now, with detailed description
- collaboration not allowed, for questions talk to graders



Multi-class classification

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [\mathsf{C}] = \{1, 2, \cdots, \mathsf{C}\}$ is called a label/class/category.
- They are used to learn $f : \mathbb{R}^{D} \to [C]$ for future prediction.

Special case: binary classification

- Number of classes: C = 2
- Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

K-NNC: predict the majority label within the K-nearest neighbor set

Review of last lecture

Datasets

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_M, y_M)\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{\text{DEV}} = \{(x_1, y_1), (x_2, y_2), \cdots, (x_1, y_1)\}$
- They are used to optimize hyper-parameter(s).

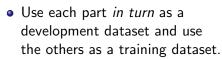
These three sets should *not* overlap!

Review of last lecture

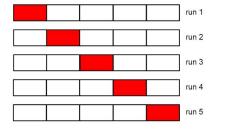
S-fold Cross-validation

What if we do not have a development set?

- Split the training data into S equal parts.
- S = 5: 5-fold cross validation



• Choose the hyper-parameter leading to best average performance.



Special case: S = N, called leave-one-out.

Review of last lecture High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- Train a model with a machine learning algorithm. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

Today: from a simple example to a general recipe

Outline

1 Review of last lecture

2 Linear regression

- Motivation
- Setup and Algorithm
- Discussions

3 Linear regression with nonlinear basis

Overfitting and preventing overfitting

Linear regression Motivation

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

• continuous vs discrete

Features used to predict

- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Linear regression

9 / 54

Linear regression Motivation

Ex: Predicting the sale price of a house

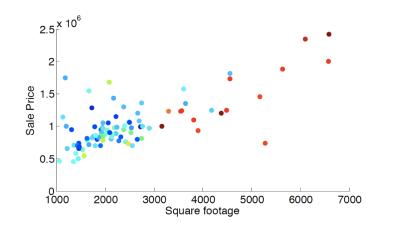
Retrieve historical sales records (training data)

**		South BL peles, CA 90			\$1,510,000 Last Sold Price Built: 1956 Lot	14 Beds	6 Baths	4,418 st \$342 / Sq
Overview	Prope	rty Details	Tour Insights	Property Histo			Activity	Schools
st	.n.,				-	-		
						NOW 14	ALMING 8.9039	
			小順	3.16				
-	1.60	-			a stanting			
						h		
	E	17 III			2.12	III.	-	Tech MLS
1 of 12		P. 24 1100		a state of the second	100	1		(D)
Five u leases always recent DPS (nit apartn i have pan s fully leas ly renoval Departme	ent complex ants as guan red. Situated red, and has	within 2 blocks o antors). Most USC I on a gated, come in-unit laundry ho	If USC campus, G students live off r lot, and across f lok ups, wall -unit us Cruiser patrolle	ate #6. Great for s campus, so housi rom an elementar; AG, and 12 parki	tudents (r ng units li y school, t ng spaces	ke this are his complex . It is within	x was a
Five u leases always recent DPS (proper	nit apartn i have pan s fully leas ly renovat Departme rty, not to	ent complex ants as guan sed. Situated red, and has nt of Public !	within 2 blocks o antors). Most USC I on a gated, come in-unit laundry ho Safety) and Camp	If USC campus, G i students live off er lot, and across f lok ups, wall -unit us Cruiser patrolle	ate #6. Great for s campus, so housi rom an elementar; AG, and 12 parki	itudents (r ng units li y school, t ng spaces reat incom	ke this are his complex . It is within	x was a

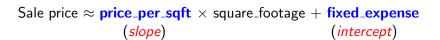
Motivation

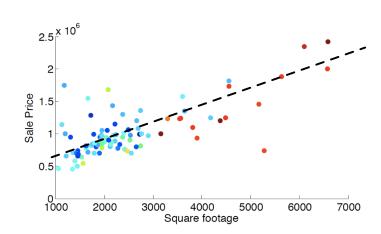
Laundry Information + Inside Laundry	Heating & Cooling • Wall Cooling Unit(s)
Ubit 2 Information • of Boot 3 • of Boot 3 • Uniformatine • Uniformation • Uniformation • Uniformation • Uniformation • of Backs 3 • of Backs 1 • Uniformation	 Monthly Rent: \$2,300 Units Elivformation # of Beth: 3 # of Beth: 2 Unitamized Unitamized Monthly Rent: \$2,225 Units Enformation # of Beth:: 3 # of Beth:: 1 Monthly Rent: \$2,250
Automatic Gate, Lawn, Sidewalka Comer Lot, Neer Public Transit Property Indemnation Updated/Remodeled Square Footage Source: Public Records	Tax Parcel Number: 5040017019
ancing	
Utility Information • Green Certification Rating: 0.00 • Green Loadion: Transportation, Walkability • Green Valk Score: 0 • Green Year Certified: 0	Financial Information • Capitalization Refe (%): 6.25 • Actual Annual Gross Rent: \$128,331 • Gross Rent Multiplier: 11.29
mation	
	but 2 shares the second s

Correlation between square footage and sale price



Possibly linear relationship





13 / 54

Linear regression Motivation How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *absolute* error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set \checkmark

Linear regression Motivation

Example

Predicted price = price_per_sqft \times square_footage + fixed_expense one model: price_per_sqft = 0.3K, fixed_expense = 210K

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^2
1100	312	540	228^2
5500	2,600	1,860	740^2
•••	•••	•••	
Total			$0 + 67^2 + 228^2 + 740^2 + \cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

Formal setup for linear regression

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., \mathsf{N}\}$

Linear model: $f : \mathbb{R}^{\mathsf{D}} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_0 + \sum_{d=1}^{D} w_d x_d = w_0 + \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_1 \ w_2 \ \cdots \ w_{\mathsf{D}}]^{\mathsf{T}}$ (weights, weight vector, parameter vector, etc) • bias w_0

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{x} = \begin{bmatrix} 1 & x_1 & x_2 & \dots & x_D \end{bmatrix}^T$
- let $\tilde{\boldsymbol{w}} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters

Setup and Algorithm

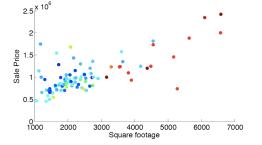
- the model becomes simply $f(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^{T} \tilde{\boldsymbol{x}}$
- sometimes just use $\boldsymbol{w}, \boldsymbol{x}, \mathsf{D}$ for $\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{x}}, \mathsf{D}+1!$

17 / 5

Warm-up: D = 0

Only one parameter w_0 : constant prediction $f(x) = w_0$

Linear regression



f is a horizontal line, where should it be?

Goal

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_{n}) - y_{n})^{2} = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

- find $\tilde{w}^* = \underset{\tilde{w} \in \mathbb{R}^{D+1}}{\operatorname{argmin}} \operatorname{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a *closed-form solution*

Linear regression Setup and Algorithm

Warm-up:
$$D = 0$$

Optimization objective becomes

$$RSS(w_0) = \sum_n (w_0 - y_n)^2 \quad (\text{it's a } quadratic \ aw_0^2 + bw_0 + c)$$
$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$
$$= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Exercise: what if we use absolute error instead of squared error?

Linear regression Setup and Algorithm

Optimization objective becomes

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\frac{\frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0}{\frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0} \Rightarrow \sum_n (w_0 + w_1 x_n - y_n) = 0$$

$$\Rightarrow \frac{Nw_0 + w_1 \sum_n x_n}{w_0 \sum_n x_n + w_1 \sum_n x_n^2} = \sum_n y_n \quad \text{(a linear system)}$$
$$\Rightarrow \left(\frac{N}{\sum_n x_n} \sum_n x_n^2 \right) \left(\frac{w_0}{w_1} \right) = \left(\frac{\sum_n y_n}{\sum_n x_n y_n} \right)$$

Least square solution for D = 1

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

Are stationary points minimizers?

- yes for **convex** objectives (RSS is convex in \tilde{w})
- not true in general

21 / 54

Linear regression Setup and Algorithm

General least square solution

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} = \boldsymbol{0}$$

where

$$ilde{oldsymbol{X}} = \left(egin{array}{c} ilde{oldsymbol{x}}_1^{\mathrm{T}} \ ilde{oldsymbol{x}}_2^{\mathrm{T}} \ dots \ ilde{oldsymbol{x}}_N^{\mathrm{T}} \end{array}
ight) \in \mathbb{R}^{\mathsf{N} imes (D+1)}, \quad oldsymbol{y} = \left(egin{array}{c} y_1 \ y_2 \ dots \ d$$

 Linear regression
 Setup and Algorithm

 General least square solution

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{X}^{\mathrm{T}} ilde{X}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when $\mathsf{D} = 0$: $(\tilde{\bm{X}}^{\mathrm{T}}\tilde{\bm{X}})^{-1} = \frac{1}{N}$, $\tilde{\bm{X}}^{\mathrm{T}}\bm{y} = \sum_n y_n$

Linear regression Setup and Algorithm

Computational complexity

RSS is a quadratic, so let's complete the square:

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.} \end{aligned}$$

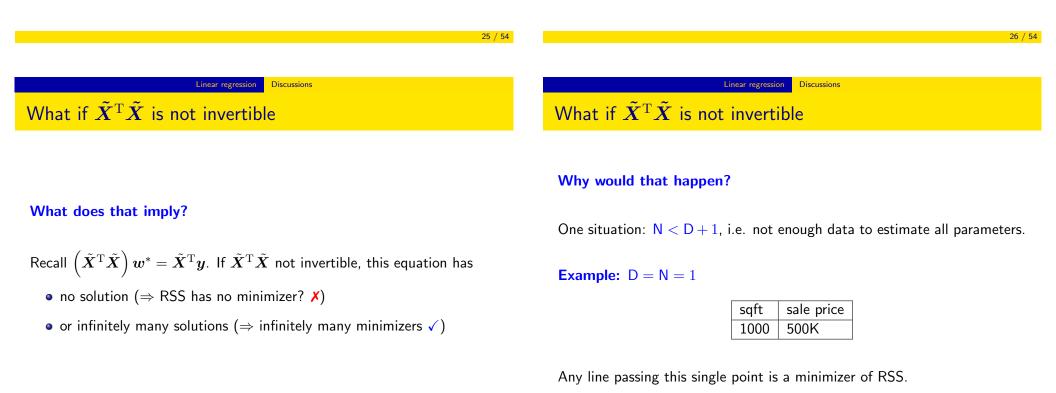
Note: $\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \ge 0$ and is 0 if $\boldsymbol{u} = 0$. So $\tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$ is the minimizer. Bottleneck of computing

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{\mathrm{T}} oldsymbol{y}$$

is to invert the matrix $ilde{m{X}}^{\mathrm{T}} ilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1) imes (\mathsf{D}+1)}$

• naively need $O(D^3)$ time

• there are many faster approaches (such as conjugate gradient)



Linear regression Discussions

How about the following?

 $\mathsf{D}=1,\mathsf{N}=2$

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

D = 2, N = 3?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

Again infinitely many minimizers.

Linear regression Discussions

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1} + \lambda} & 0 & \cdots & 0\\ 0 & \frac{1}{\lambda_{2} + \lambda} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}} + \lambda} & 0\\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}} + 1 + \lambda} \end{bmatrix} \boldsymbol{U}$$

How to resolve this issue?

Intuition: what does inverting $ilde{X}^{ ext{T}} ilde{X}$ do?

eigendecomposition:
$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathrm{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathrm{D}+1} \end{bmatrix} \boldsymbol{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are eigenvalues.

inverse:
$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1}} & 0 & \cdots & 0\\ 0 & \frac{1}{\lambda_{2}} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}} & 0\\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}} \end{bmatrix} \boldsymbol{U}$$

i.e. just invert the eigenvalues

30 / 54

Linear regression Discussions

Fix the problem

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} \right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)
- λ is a *hyper-parameter*, can be tuned by cross-validation.

Linear regression Discussions

Comparison to NNC

Non-parametric versus Parametric

- Non-parametric methods: the size of the model grows with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.
- Parametric methods: the size of the model does not grow with the size of the training set N.
 - e.g. linear regression, D + 1 parameters, independent of N.

Linear regression with nonlinear basis

Outline

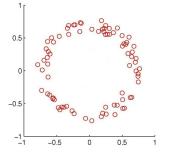
- 3 Linear regression with nonlinear basis

34 / 54

Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data



Linear regression with nonlinear basis

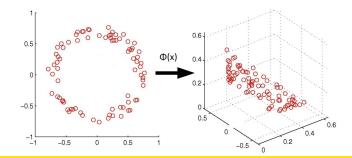
Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D} ooldsymbol{z}\in\mathbb{R}^{M}$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).



Model:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$
 where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$RSS(\boldsymbol{w}) = \sum_{n} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n} \right)^{2}$$

Similar least square solution:

$$oldsymbol{w}^* = ig(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi}ig)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y} ~~$$
 where $oldsymbol{\Phi} = egin{pmatrix} oldsymbol{\phi}(oldsymbol{x}_2)^{\mathrm{T}} \ oldsymbol{\phi}(oldsymbol{x}_2)^{\mathrm{T}} \ dots \ oldsymbol{\phi}(oldsymbol{x}_N)^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{N imes M}$

Example

Polynomial basis functions for D = 1

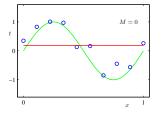
$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \Rightarrow f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

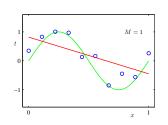
Learning a linear model in the new space = learning an *M*-degree polynomial model in the original space

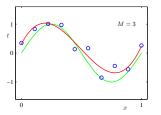
Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):







Linear regression with nonlinear basis

Why nonlinear?

Can I use a fancy linear feature map?

$$\boldsymbol{\phi}(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

No, it basically *does nothing* since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathrm{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w'}^{\mathrm{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

We will see more nonlinear mappings soon.

37 / 54

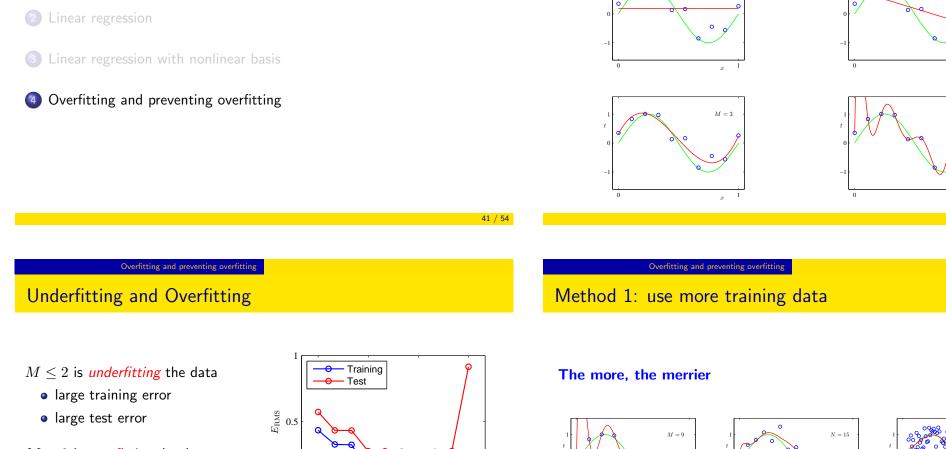
Review of last lecture

Should we use a very complicated mapping?

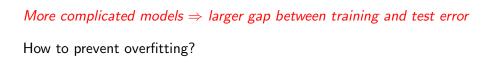
Ex: fitting a noisy sine function with a polynomial:

M = 0

More data \Rightarrow smaller gap between training and test error



- $M\geq 9$ is overfitting the data
 - small training error
 - large test error



0 _____0

3

M

6

M = 1

x

M = 9

42 / 54

Method 2: control the model complexity

• use cross-validation to pick hyper-parameter M

For polynomial basis, the **degree** M clearly controls the complexity

When M or in general Φ is fixed, are there still other ways to control

Magnitude of weights

Least square solution for the polynomial example:

	M = 0	M = 1	M = 3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

ng

Intuitively, large weights \Rightarrow more complex model

45 / 54

Overfitting and preventing overfitting

How to make w small?

complexity?

Regularized linear regression: new objective

 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

Goal: find $w^* = \operatorname{argmin}_w \mathcal{E}(w)$

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model w is, penalize complex models
 - common choices: $\|\boldsymbol{w}\|_2^2$, $\|\boldsymbol{w}\|_1$, etc.

• $\lambda > 0$ is the *regularization coefficient*

- $\lambda = 0$, no regularization
- $\lambda \to +\infty$, $oldsymbol{w} \to \operatorname{argmin}_w R(oldsymbol{w})$
- i.e. control trade-off between training error and complexity

Overfitting	and	preventing	overfitti

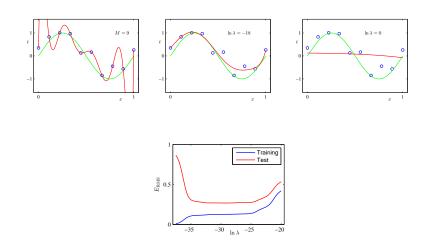
The effect of λ

when we increase regularization coefficient λ

	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01

The trade-off

when we increase regularization coefficient $\boldsymbol{\lambda}$



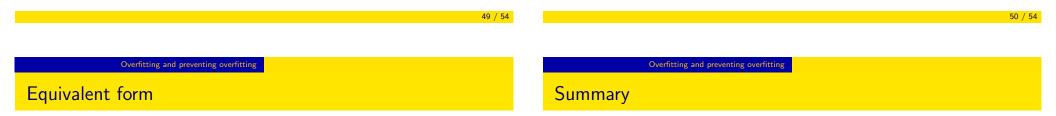
How to solve the new objective?

Simple for $R(w) = ||w||_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Note the same form as in the fix when $X^T X$ is not invertible!

For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.



Regularization is also sometimes formulated as

$$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

$$oldsymbol{w}^* = \left(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi} + \lambda oldsymbol{I}
ight)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization

Overfitting and preventing overfitting

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- *Train a model with a machine learning algorithm*. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

General idea to derive ML algorithms

- 1. Pick a set of models \mathcal{F}
 - e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$
 - e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$
- 2. Define **error/loss** L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^N L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$\mathbf{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization

53 / 54