Administration

CSCI567 Machine Learning (Fall 2021)

@ HW 1 is due on Tue, 9/14.

Prof. Haipeng Luo
@ recall the late day policy: 3 in total, at most 1 for each homework

U of Southern California

Sep 9, 2021

1/53 2/53

I
Outline Outline

@ Review of Last Lecture © Review of Last Lecture
@ Linear Classifiers and Surrogate Losses

© A Detour of Numerical Optimization Methods

@ Perceptron

© Logistic Regression

3/53 4/53

Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

o lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(x) = w'a

5 /53 6 /53
Regression with nonlinear basis Underfitting and Overfitting
1
; M < 2 is underfitting the data © 12”2{"”9
892 o o0 @ large training error
05 R8© ° e 0
% @Oé; ox o @ large test error é 05
of %, . _>. _
%o " M > 9 is overfitting the data
0O
o o, Ho° e small training error .
9 06 O
—— o large test error 0 3 m ° o
How to prevent overfitting? more data + regularization
Model: f(x) = w ¢(x) where w € RM
* : 2 T 1l &T
. . -1 w” = argmin (RSS(w) + Afjw|3) = (" P+ \I) P
Similar least square solution: w* = (<I>T<I>) ®Ty gw ((w) | HQ) () y
7/53 8 /53

Least square solution

w™ = argmin RSS(w) x]
w ZL‘T
. 2 2
= argmin | Xw — y||5 X = . ;
w .
= (XTX)_IXTy ZBEI‘

Two approaches to find the minimum:
o find stationary points by setting gradient = 0

e “complete the square”

Y1
Y2

YN

Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
o eg F={f(x)=w"z|wecRP}
°oeg F={f(x)=w'®(x)|wecRM}

Step 2. Define error/loss L(y',y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

N
£ = argmin > " L(f(2n),yn) + AR(f)

fer

n=1

ML becomes optimization

Today: another exercise of this recipe + a closer look at Step 3

9/53

Classification

Recall the setup:
e input (feature vector): « € RP
e output (label): y € [C] ={1,2,---,C}
@ goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C = 2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ more like a heuristic

11 /53

Linear Classifiers and Surrogate Losses
Outline

© Linear Classifiers and Surrogate Losses

10 / 53

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTa?

Sign of wTa predicts the label:

. T +1 I'F ’UJTCC > 0
sign(w) =3 1 it e <0

(Sometimes use sgn for sign too.)

12 / 53

The models

The set of (separating) hyperplanes:
F={f(x) =sgn(wlax) |we RD}

Good choice for linearly separable data, i.e., Jw s.t.

sgn('wT:cn) =y, Of yYpw x,>0

for all n € [N].

13 / 53

The models

For clearly not linearly separable data,

Again can apply a nonlinear mapping ®:
F={f(z)=sgn(w' ®(z)) | w e RM}

More discussions in the next two lectures.

15 / 53

Linear Classifiers and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data

14 /53
0-1 Loss
Step 2. Define error/loss L(y/,y).
Most natural one for classification: 0-1 loss L(y/,y) = I[y # y]
For classification, more convenient to look at the loss as a function of
y'wTa:. That is, with
lo1(z) =1z < 0]
Ls
o
2 1 1 2
the loss for hyperplane w on example (x,y) is £o.1 (yw T x)
16 / 53

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

Even worse, minimizing 0-1 loss is NP-hard in general.

17 / 53

ML becomes convex optimization

Step 3. Find ERM:

N N
1
w”* = argmin E ((ynw'x,) = argmin — E ((ynw)
weRD n=1 weRP N n=1

where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

19 / 53

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

2.0 2.0

1.5 1.5
T I
2 1 1 2 IZ 1 1 2
2 N\ 2
\\
1 1
\\\
=2 Y
N
N
2 1 — T 1 1 2
a Oocvn () = max{N —>Y (nced in Percentran)
18 / 53
° lhinge(2) = max{0,1 — z}(used in SVM and many others)

W il [/ NN/ttt
A Detour of Numerical Optimization Methods

Outline

© A Detour of Numerical Optimization Methods
@ First-order methods
@ Second-order methods

20/ 53

A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup
e Given: a function F(w)

@ Goal: minimize F'(w) (approximately)

21 /53

Gz ool st
Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some w®). Fort =0,1,2,...
w* — w® — pVF(w®)

where 1 > 0 is called step size or learning rate

@ in theory 1 should be set in terms of some parameters of F'
@ in practice we just try several small values
@ might need to be changing over iterations (think F'(w) = |w|)

@ adaptive and automatic step size tuning is an active research area

23 /53

A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

e Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.

22 /53

A Detour of Numerical Optimization Methods First-order methods

An example

Example: F(w) = 0.5(w? — w2)? + 0.5(w; — 1)2. Gradient is

OF _
8w1 a

oF _

2(w% —wo)wy +wy — 1 Dy —(w% — w2)

GD:
e Initialize w&o) and wéo) (to be 0 or randomly), t =0
e do

2
wgtﬂ) - wgt) _q {Q(wgt) _ wét))wgt) + wgt) _ 1]

2
af ™ ol = |-l - off)]
t+—t+1

o until F(w®) does not change much or t reaches a fixed number

24 / 53

[D il Opimiaio s [KR
Why GD?
Intuition: by first-order Taylor approximation

F(w) =~ F(w®) + VF(w®)T (w — w®)
GD ensures

Pw™0) & Fw®) - g VP)3 < Fw®)

reasonable 7 decreases function value

but large 7 is unstable

25 /53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
They tell you how many iterations ¢ (in terms of €) needed to achieve

Fw®) - F(w*) <e

@ usually SGD needs more iterations

@ but then again each iteration takes less time

27 / 53

A Detour of Numerical Optimization Methods First-order methods

Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction
w) — w® — pVF(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

E [VF(w(t))} = VF(w®) (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!
(examples coming soon)

26 / 53
et N Opimiion o[RS
Convergence guarantees — nonconvex objectives
Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve
IVF(w®)|| < e
e that is, how close w(® is as an approximate stationary point
@ for convex objectives, stationary point = global minimizer
@ for nonconvex objectives, what does it mean?
28 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer or even a local/global
maximizer (but the latter is not an issue for GD/SGD).

10

29 /53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...

° f(w)=wi+wj

Vf(w) = (2w, 3w3)

so w = (0,0) is stationary

not local min/max for blue direction
(w1 =0)

GD gets stuck at (0, 0) for any initial
point with ws > 0 and small n

Even worse, distinguishing local min and saddle point is generally NP-hard.

31/53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local

maximizer! This is called a saddle point.

flw) = w? — w3

Vi(w) = 2wy, —2ws)

so w = (0,0) is stationary

local max for blue direction (w; = 0)
local min for green direction (we = 0)

but GD gets stuck at (0,0) only if
initialized along the green direction

so not a real issue especially when
initialized randomly

30 /53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:

@ GD/SGD coverages to a stationary point

@ for convex objectives, this is all we need

e for nonconvex objectives, can get stuck at local minimizers or “bad”

saddle points (random initialization escapes “good” saddle points)

@ recent research shows that many problems have no “bad” saddle

points or even “bad” local minimizers

e justify the practical effectiveness of GD/SGD (default method to try)

32 /53

A Detour of Numerical Optimization Methods Second-order methods

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) =~ F('w(t)) + VF('w(t))T(w — w(t))

What if we look at second-order Taylor approximation?
1
F(w) ~ F(w®) + VF(w™)T(w — w®) + 5w = wNTHy(w — w®)

where H, = V2F(w®) € RP*D is the Hessian of F at w®, ie.,

02F (w)
Ht,ij o awi(‘?wj w=wt)

(think “second derivative” when D = 1)

33 /53
Comparing GD and Newton
w) — w® — nVF(w®) (GD)
w) — w® — H'VF(w®) (Newton)

Both are iterative optimization procedures, but Newton method

has no learning rate 1 (so no tuning needed!)

@ converges super fast in terms of #iterations (for convex objectives)

e e.g. how many iterations needed when applied to a quadratic?

computing Hessian in each iteration is very slow though

does not really make sense for nonconvex objectives (but generally
Hessian can be useful for escaping saddle points)

35 /53

A Detour of Numerical Optimization Methods Second-order methods

Newton method

If we minimize the second-order approximation (via “complete the square”)

for convex F' (so H; is positive semidefinite)
we obtain Newton method:

w) — w® — H'VF(w®)

34 /53
Outline
@ Perceptron

36 / 53

Perceptron

Recall the perceptron loss

N
1
Flw) = N Z Cperceptron (yanmn)

n=1

N
1
=5 > max{0, —yhw x,}

n=1

Let's approximately minimize it with GD/SGD.

37 /53

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olypxn

clearly unbiased (convince yourself).

SGD update:
w < w+ nH[yanwn < O]ynwn

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

39 /53

Perceptron

Applying GD to perceptron loss
Objective

N
1
F(w) = N > max{0, —y,w' z,}

n=1

Gradient (or really sub-gradient) is

N
1
= Z [ynw' 2, < Olynz,

(only misclassified examples contribute to the gradient)
GD update

N
w<—w+]7\772:lﬂyn'w Ty < 0lypx,
n=

Slow: each update makes one pass of the entire training set!

The Perceptron Algorithm

Perceptron algorithm is SGD with = 1 applied to perceptron loss:

Repeat:

@ Pick a data point x,, uniformly at random

o If sgn(wTay,) # yn
W < W + Yy

Note:
@ w is always a linear combination of the training examples

@ why 1 =17 Does not really matter in terms of prediction of w

38 /53

40 / 53

Why does it make sense?

If the current weight w makes a mistake
yn'wan <0
then after the update w’ = w + y,x,, we have

T 2. T T

/T
YW Ty = YW Ty + YT, Ty 2> YW Ty,

Thus it is more likely to get it right after the update.

41 /53

Outline

© Logistic Regression
@ A probabilistic view

43 /53

Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data are not linearly separable.

42 /53
A simple view
In one sentence: find the minimizer of
1 N
F(w) = N Zglogistic(yn'men)
n=1
L N
_ T
B S
n=1
Before optimizing it: why logistic loss? and why “regression”?
44 / 53

B i il
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function + linear model
Ply = +1 | z;w) = o(w'x)

where ¢ is the sigmoid function:

0.9
0.8

1 o

0.4
03]
02|
0.1

45 / 53
How to regress with discrete labels?
What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w
@ perform Maximum Likelihood Estimation (MLE)
Specifically, what is the probability of seeing label y1,- -, y, given
r1, -+, Ty, as a function of some w?
N
P(w) = H P(yn ’ an'w)
n=1
MLE: find w* that maximizes the probability P(w)
47 / 53

A TR
Properties

1

Properties of sigmoid 0(2) = 17—

@ between 0 and 1 (good as probability) ‘

o o(wlxz) > 0.5 < whx > 0, consistent o
with predicting the label with sgn(wTx)

o larger w'x = larger o(w'x) = higher o

confidence in label 1 o

@ 0(z)+o(—z)=1forall z
The probability of label —1 is naturally
1-Ply=+1]|x;w) =1—-oc(wla) =c(—w'x)

and thus
1

. — Ty — I
Ply | @iw) = olyw’e) =

46 / 53

A probabilistic view
The MLE solution

N
w”* = argmax P(w) = argmax H P(yn | @n;w)
w

w

n=1
N N
= argmaxz InP(y, | Tn;w) = argminz —InP(y, | zn;w)
w n=1 w n=1
N N
= argmin Z In(1 + eiyanmn) = argmin Z elogistic(yn'men)
w n=1 w n=1
= argmin F(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

48 / 53

Let's apply SGD again Applying Newton to logistic loss
w +— w — nVF(w)
T . vwglogistic(yn'wTaf'n) = _U(_yanxn)ynxn
=w - nvwflogistic<yn'w mn) (71 S [N] is drawn u.a.r.)
=w—n <aglogistic(z> > YnT
o 0z —ynwTa,) O 0o (z
N V%UKIOgistiC(yanxn) = < 8() T yixnx?;
z Z=—Ynpw" Tp
=w-—7n 1_|_e Z|,_ yanmn> YnTn e ? -
=g - Tnx,
= w+770(nW wn)ynxn (+ e) Z=—YnW " Tn,
T T T
=w + nP(—y, | T, W)Y T, = U(ynw Tn) (1 —o(ynw wn)) Lndy,
This is a soft version of Perceptron! o Exercises:
P(—yp|zn; w) versus Iy, # sgn(men)] @ why is the Hessian of logistic loss positive semidefinite?
@ can we apply Newton method to perceptron/hinge loss?
449 /53 50 /53
Summary
Step 2. Pick the surrogate loss
™
N
N
\f.‘-.-\\
Linear models for classification: ~_
Step 1. Model is the set of separating hyperplanes
1 1] 1
F ={f(z) =sgn(w'xz) | w e RP}
° Cperceptron(z) = max{0, —z} (used in Perceptron)
° lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss £jogistic(2) = log(1 4 exp(—z)) (used in logistic regression)

51 /53 52 /53

Step 3. Find empirical risk minimizer (ERM):

N
1
w* = argmin — > A(y,wlx,)
were NV ; ! !
using
e GD: w <+ w—nVF(w

)
e SGD: w — w — nVF(w)
o Newton: w + w — (V2F(w))_1 VF(w)

(E[VF(w)] = VF(w))

53 / 53

	Review of Last Lecture
	Linear Classifiers and Surrogate Losses
	A Detour of Numerical Optimization Methods
	Perceptron
	Logistic Regression

