CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

U of Southern California

Sep 16, 2021

Administration

HW1 is being graded. Will discuss solutions today.

HW2 will be released after this lecture. Due on 9/28.

Outline

Review of Last Lecture

Multiclass Classification

Neural Nets

Outline

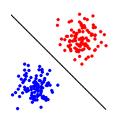
- Review of Last Lecture
- Multiclass Classification
- Neural Nets

Linear classifiers

Linear models for binary classification:

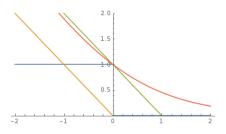
Step 1. Model is the set of separating hyperplanes

$$\mathcal{F} = \{ f(\boldsymbol{x}) = \operatorname{sgn}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}} \}$$



Linear classifiers

Step 2. Pick the surrogate loss



- perceptron loss $\ell_{perceptron}(z) = \max\{0, -z\}$ (used in Perceptron)
- hinge loss $\ell_{\mathsf{hinge}}(z) = \max\{0, 1-z\}$ (used in SVM and many others)
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z))$ (used in logistic regression)

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} F(\boldsymbol{w}) = \operatorname*{argmin}_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}} \frac{1}{N} \sum_{n=1}^{N} \ell(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n)$$

using

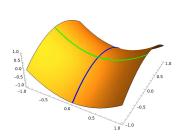
• GD: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \nabla F(\boldsymbol{w})$

• SGD: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \eta \tilde{\nabla} F(\boldsymbol{w})$ $(\mathbb{E}[\tilde{\nabla} F(\boldsymbol{w})] = \nabla F(\boldsymbol{w}))$

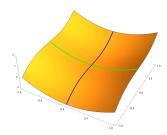
• Newton: $\boldsymbol{w} \leftarrow \boldsymbol{w} - \left(\nabla^2 F(\boldsymbol{w})\right)^{-1} \nabla F(\boldsymbol{w})$

Convergence guarantees of GD/SGD

- GD/SGD converges to a stationary point
- for convex objectives, this is all we need
- for nonconvex objectives, can get stuck at local minimizers or "bad" saddle points (random initialization escapes "good" saddle points)



"good" saddle points



"bad" saddle points

Perceptron and logistic regression

Initialize w=0 or randomly.

Repeat:

- ullet pick a data point $oldsymbol{x}_n$ uniformly at random (common trick for SGD)
- update parameter:

$$m{w} \leftarrow m{w} + egin{cases} \mathbb{I}[y_n m{w}^{\mathrm{T}} m{x}_n \leq 0] y_n m{x}_n & \qquad \text{(Perceptron)} \\ \eta \sigma(-y_n m{w}^{\mathrm{T}} m{x}_n) y_n m{x}_n & \qquad \text{(logistic regression)} \end{cases}$$



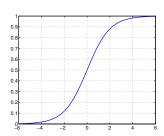
A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

$$\boldsymbol{w}^* = \operatorname*{argmin}_{\boldsymbol{w}} \sum_{n=1}^N \ell_{\mathsf{logistic}}(y_n \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}_n) = \operatorname*{argmax}_{\boldsymbol{w}} \prod_{n=1}^N \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{w})$$

where

$$\mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-y \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}}$$



Outline

- Review of Last Lecture
- 2 Multiclass Classification
 - Multinomial logistic regression
 - Reduction to binary classification
- Neural Nets

Classification

Recall the setup:

- ullet input (feature vector): $oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}$
- output (label): $y \in [C] = \{1, 2, \dots, C\}$
- ullet goal: learn a mapping $f:\mathbb{R}^{\mathsf{D}} o [\mathsf{C}]$

Examples:

- recognizing digits (C = 10) or letters (C = 26 or 52)
- predicting weather: sunny, cloudy, rainy, etc
- predicting image category: ImageNet dataset ($C \approx 20K$)

Nearest Neighbor Classifier naturally works for arbitrary C.

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from $\{-1, +1\}$ to $\{1, 2\}$)

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} \ge 0 \\ 2 & \text{if } \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} < 0 \end{cases}$$

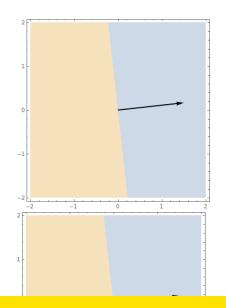
can be written as

$$f(\boldsymbol{x}) = \begin{cases} 1 & \text{if } \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} \\ 2 & \text{if } \boldsymbol{w}_2^{\mathrm{T}} \boldsymbol{x} > \boldsymbol{w}_1^{\mathrm{T}} \boldsymbol{x} \end{cases}$$
$$= \operatorname*{argmax}_{k \in \{1,2\}} \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}$$

for any $\boldsymbol{w}_1, \boldsymbol{w}_2$ s.t. $\boldsymbol{w} = \boldsymbol{w}_1 - \boldsymbol{w}_2$

Think of $w_k^{\mathrm{T}} x$ as a score for class k.

Linear models: from binary to multiclass

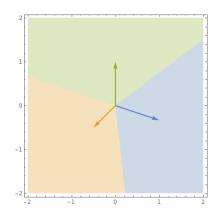


$$w = (\frac{3}{2}, \frac{1}{6}) = w_1 - w_2$$

 $w_1 = (1, -\frac{1}{3})$
 $w_2 = (-\frac{1}{2}, -\frac{1}{2})$

Blue class:

Linear models: from binary to multiclass



$$\mathbf{w}_1 = (1, -\frac{1}{3})$$

 $\mathbf{w}_2 = (-\frac{1}{2}, -\frac{1}{2})$
 $\mathbf{w}_3 = (0, 1)$

Blue class:

$$\{\boldsymbol{x}: 1 = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}\}$$

Orange class:

$$\{ \boldsymbol{x} : \boldsymbol{2} = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x} \}$$

• Green class:

$$\{\boldsymbol{x}: \boldsymbol{3} = \operatorname{argmax}_k \boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}\}$$

Linear models for multiclass classification

$$\mathcal{F} = \left\{ f(oldsymbol{x}) = rgmax_{k \in [\mathsf{C}]} oldsymbol{w}_k^{\mathrm{T}} oldsymbol{x} \mid oldsymbol{w}_1, \dots, oldsymbol{w}_{\mathsf{C}} \in \mathbb{R}^{\mathsf{D}}
ight\}$$

$$= \left\{ f(oldsymbol{x}) = rgmax_{k \in [\mathsf{C}]} (oldsymbol{W} oldsymbol{x})_k \mid oldsymbol{W} \in \mathbb{R}^{\mathsf{C} imes \mathsf{D}}
ight\}$$

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with $w=w_1-w_2$:

$$\mathbb{P}(y = 1 \mid \boldsymbol{x}; \boldsymbol{w}) = \sigma(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}}} = \frac{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}}{e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}} + e^{\boldsymbol{w}_{2}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_{1}^{\mathrm{T}} \boldsymbol{x}}$$

Naturally, for multiclass:

$$\mathbb{P}(y = k \mid \boldsymbol{x}; \boldsymbol{W}) = \frac{e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}}{\sum_{k' \in [\mathsf{C}]} e^{\boldsymbol{w}_{k'}^{\mathrm{T}} \boldsymbol{x}}} \propto e^{\boldsymbol{w}_k^{\mathrm{T}} \boldsymbol{x}}$$

This is called the *softmax function*.

Applying MLE again

Maximize probability of seeing labels y_1, \ldots, y_N given x_1, \ldots, x_N

$$P(\boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \mathbb{P}(y_n \mid \boldsymbol{x}_n; \boldsymbol{W}) = \prod_{n=1}^{\mathsf{N}} \frac{e^{\boldsymbol{w}_{y_n}^{\mathsf{T}} \boldsymbol{x}_n}}{\sum_{k \in [\mathsf{C}]} e^{\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}_n}}$$

By taking **negative log**, this is equivalent to minimizing

$$F(\boldsymbol{W}) = \sum_{n=1}^{N} \ln \left(\frac{\sum_{k \in [C]} e^{\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}_{n}}}{e^{\boldsymbol{w}_{y_{n}}^{\mathrm{T}} \boldsymbol{x}_{n}}} \right) = \sum_{n=1}^{N} \ln \left(1 + \sum_{k \neq y_{n}} e^{(\boldsymbol{w}_{k} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}} \boldsymbol{x}_{n}} \right)$$

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

Step 3: Optimization

Apply SGD: what is the gradient of

$$F_n(\boldsymbol{W}) = \ln \left(1 + \sum_{k' \neq y_n} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_n})^{\mathrm{T}} \boldsymbol{x}_n} \right) ?$$

It's a $C \times D$ matrix. Let's focus on the k-th row:

If $k \neq y_n$:

$$\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}}F_{n}(\boldsymbol{W}) = \frac{e^{(\boldsymbol{w}_{k} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}}\boldsymbol{x}_{n}}}{1 + \sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}}\boldsymbol{x}_{n}}} \boldsymbol{x}_{n}^{\mathrm{T}} = \mathbb{P}(k \mid \boldsymbol{x}_{n}; \boldsymbol{W}) \boldsymbol{x}_{n}^{\mathrm{T}}$$

else:

$$\nabla_{\boldsymbol{w}_{k}^{\mathrm{T}}} F_{n}(\boldsymbol{W}) = \frac{-\left(\sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}}} \boldsymbol{x}_{n}\right)}{1 + \sum_{k' \neq y_{n}} e^{(\boldsymbol{w}_{k'} - \boldsymbol{w}_{y_{n}})^{\mathrm{T}}} \boldsymbol{x}_{n}} \boldsymbol{x}_{n}^{\mathrm{T}} = (\mathbb{P}(y_{n} \mid \boldsymbol{x}_{n}; \boldsymbol{W}) - 1) \boldsymbol{x}_{n}^{\mathrm{T}}$$

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

- pick $n \in [N]$ uniformly at random
- update the parameters

$$m{W} \leftarrow m{W} - \eta \left(egin{array}{ccc} \mathbb{P}(y = 1 \mid m{x}_n; m{W}) & \vdots & & \\ \mathbb{P}(y = y_n \mid m{x}_n; m{W}) - 1 & & \vdots & \\ & \vdots & & & \vdots & \\ \mathbb{P}(y = \mathsf{C} \mid m{x}_n; m{W}) & & & \end{array}
ight) m{x}_n^{\mathrm{T}}$$

Think about why the algorithm makes sense intuitively.

A note on prediction

Having learned W, we can either

- ullet make a $extit{deterministic}$ prediction $rgmax_{k \in [\mathsf{C}]} oldsymbol{w}_k^{\mathrm{T}} oldsymbol{x}$
- ullet make a $\emph{randomized}$ prediction according to $\mathbb{P}(k \mid m{x}; m{W}) \propto e^{m{w}_k^{\mathrm{T}} m{x}}$

In either case, (expected) mistake is bounded by logistic loss

deterministic

$$\mathbb{I}[f(\boldsymbol{x}) \neq y] \leq \log_2 \left(1 + \sum_{k \neq y} e^{(\boldsymbol{w}_k - \boldsymbol{w}_y)^{\mathrm{T}} \boldsymbol{x}} \right)$$

randomized

$$\mathbb{E}\left[\mathbb{I}[f(\boldsymbol{x}) \neq y]\right] = 1 - \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W}) \leq -\ln \mathbb{P}(y \mid \boldsymbol{x}; \boldsymbol{W})$$

Reduce multiclass to binary

Is there an *even more general and simpler approach* to derive multiclass classification algorithms?

Given a binary classification algorithm (any one, not just linear methods), can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

- one-versus-all (one-versus-rest, one-against-all, etc.)
- one-versus-one (all-versus-all, etc.)
- Error-Correcting Output Codes (ECOC)
- tree-based reduction

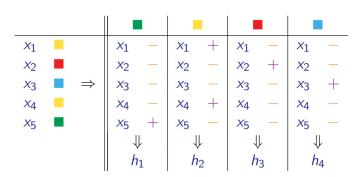
One-versus-all (OvA)

(picture credit: link)

Idea: train C binary classifiers to learn "is class k or not?" for each k.

Training: for each class $k \in [C]$,

- ullet relabel examples with class k as +1, and all others as -1
- ullet train a binary classifier h_k using this new dataset



One-versus-all (OvA)

Prediction: for a new example $oldsymbol{x}$

- ask each h_k : does this belong to class k? (i.e. $h_k(x)$)
- randomly pick among all k's s.t. $h_k(x) = +1$.

Issue: will (probably) make a mistake as long as one of h_k errs.

One-versus-one (OvO)

(picture credit: link)

Idea: train $\binom{\mathsf{C}}{2}$ binary classifiers to learn "is class k or k'?".

Training: for each pair (k, k'),

- ullet relabel examples with class k as +1 and examples with class k' as -1
- discard all other examples
- ullet train a binary classifier $h_{(k,k')}$ using this new dataset

		= v	s. 📙	■ v	s. =	■ v	s. =	- v	'S. 📙	■ v	s.	= v	s. 📙
x_1		<i>x</i> ₁	_					<i>x</i> ₁	_			<i>x</i> ₁	_
<i>x</i> ₂				<i>x</i> ₂	_	<i>x</i> ₂	+					<i>x</i> ₂	+
<i>X</i> 3	\Rightarrow					<i>X</i> 3	_	<i>X</i> 3	+	<i>X</i> 3	_		
<i>X</i> ₄		<i>X</i> ₄	_					<i>X</i> ₄	_			<i>X</i> ₄	_
<i>X</i> 5		<i>X</i> ₅	+	<i>X</i> 5	+					<i>X</i> ₅	+		
		↓		↓		↓		↓		₩			\Downarrow
		$h_{(1,2)}$		$h_{(1,3)}$		$h_{(3,4)}$		$h_{(4,2)}$		$h_{(1,4)}$		$h_{(3,2)}$	

One-versus-one (OvO)

Prediction: for a new example x

- ask each classifier $h_{(k,k')}$ to vote for either class k or k'
- predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but *slower* in prediction.

Error-correcting output codes (ECOC)

(picture credit: link)

Idea: based on a code $M \in \{-1, +1\}^{\mathsf{C} \times \mathsf{L}}$, train L binary classifiers to learn "is bit b on or off".

Training: for each bit $b \in [L]$

- ullet relabel example x_n as $M_{y_n,b}$
- train a binary classifier h_b using this new dataset.

M	1	2	3	4	5
	+	_	+	_	+
	_	_	+	+	+
	+	+	_	_	_
	+	- + +	+	+	_

		1		2	2 3		3	4		5	
x_1		<i>x</i> ₁	_	<i>x</i> ₁			+	<i>x</i> ₁	+	<i>x</i> ₁	+
<i>x</i> ₂		<i>x</i> ₂	+	<i>x</i> ₂		<i>x</i> ₂		<i>x</i> ₂	_	<i>x</i> ₂	_
<i>X</i> 3	\Rightarrow	<i>X</i> 3	+	<i>X</i> 3				<i>X</i> 3	+	<i>X</i> 3	_
<i>X</i> ₄		<i>X</i> ₄	_	<i>X</i> ₄		<i>X</i> ₄	+			<i>X</i> ₄	+
<i>X</i> 5			+	<i>X</i> 5	_	<i>X</i> 5	+		_		+
				1	ļ	1	ļ	1	ļ		
		h	1	h	2	h	3	h	4	h	5

Error-correcting output codes (ECOC)

Prediction: for a new example $oldsymbol{x}$

- compute the **predicted code** $c = (h_1(x), \dots, h_L(x))^T$
- ullet predict the class with the most similar code: $k = \operatorname{argmax}_k(\boldsymbol{M}\boldsymbol{c})_k$

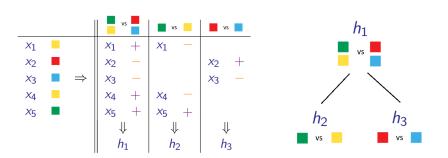
How to design the code M?

- the more *dissimilar* the codes, the more robust
 - \bullet if any two codes are d bits away, then prediction can tolerate about d/2 $\,$ errors
- random code is often a good choice

Tree based method

Idea: train \approx C binary classifiers to learn "belongs to which half?".

Training: see pictures



Prediction is also natural, *but is very fast!* (think ImageNet where $C \approx 20K$)

Multiclass Classification

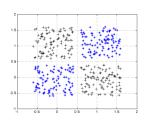
Comparisons

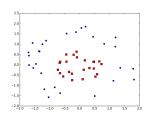
Reduction	training time	prediction time	remark				
OvA	CN	С	not robust				
OvO	(C-1)N	$\mathcal{O}(C^2)$	can achieve very small training error				
ECOC	LN	L	need diversity when designing code				
Tree	$\mathcal{O}((\log_2 C)N)$	$\mathcal{O}(\log_2C)$	good for "extreme classification"				

Outline

- Review of Last Lecture
- 2 Multiclass Classification
- Neural Nets
 - Definition
 - Backpropagation
 - Preventing overfitting

Linear models are not always adequate





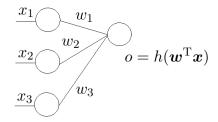
We can use a nonlinear mapping as discussed:

$$oldsymbol{\phi}(oldsymbol{x}): oldsymbol{x} \in \mathbb{R}^{\mathsf{D}}
ightarrow oldsymbol{z} \in \mathbb{R}^{\mathsf{M}}$$

But what kind of nonlinear mapping ϕ should be used? Can we actually learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

Linear model as a one-layer neural net



h(a) = a for linear model

To create non-linearity, can use

- Rectified Linear Unit (**ReLU**): $h(a) = \max\{0, a\}$
- sigmoid function: $h(a) = \frac{1}{1+e^{-a}}$
- TanH: $h(a) = \frac{e^a e^{-a}}{e^a + e^{-a}}$
- many more

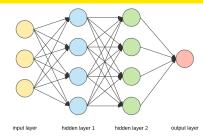
More output nodes



$$m{W} \in \mathbb{R}^{4 imes 3}$$
, $m{h}: \mathbb{R}^4 o \mathbb{R}^4$ so $m{h}(m{a}) = (h_1(a_1), h_2(a_2), h_3(a_3), h_4(a_4))$

Can think of this as a nonlinear mapping: $\phi(x) = h(Wx)$

More layers



Becomes a network:

- each node is called a neuron
- h is called the activation function
 - can use h(a) = 1 for one neuron in each layer to *incorporate bias term*
 - output neuron can use h(a) = a
- #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
- deep neural nets can have many layers and millions of parameters
- this is a **feedforward**, **fully connected** neural net, there are many variants (convolutional nets, residual nets, recurrent nets, etc.)

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any continuous functions.

It might need a huge number of neurons though, and depth helps!

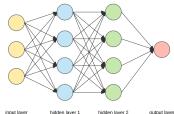
Designing network architecture is important and very complicated

• for feedforward network, need to decide number of hidden layers, number of neurons at each layer, activation functions, etc.

Math formulation

An L-layer neural net can be written as

$$oldsymbol{f}(oldsymbol{x}) = oldsymbol{h}_{\mathsf{L}}\left(oldsymbol{W}_{L}oldsymbol{h}_{\mathsf{L}-1}\left(oldsymbol{W}_{L-1}\cdotsoldsymbol{h}_{1}\left(oldsymbol{W}_{1}oldsymbol{x}
ight)
ight)$$



To ease notation, for a given input x, define recursively

$$oldsymbol{o}_0 = oldsymbol{x}, \qquad oldsymbol{a}_\ell = oldsymbol{W}_\ell oldsymbol{o}_{\ell-1}, \qquad oldsymbol{o}_\ell = oldsymbol{h}_\ell (oldsymbol{a}_\ell) \qquad \qquad (\ell = 1, \dots, \mathsf{L})$$

where

- $m{W}_\ell \in \mathbb{R}^{\mathsf{D}_\ell imes \mathsf{D}_{\ell-1}}$ is the weights between layer $\ell-1$ and ℓ
- ullet $D_0 = D, D_1, \dots, D_L$ are numbers of neurons at each layer
- $oldsymbol{a}_\ell \in \mathbb{R}^{\mathsf{D}_\ell}$ is input to layer ℓ
- $oldsymbol{o}_\ell \in \mathbb{R}^{\mathsf{D}_\ell}$ is output of layer ℓ
- $oldsymbol{h}_\ell:\mathbb{R}^{\mathsf{D}_\ell} o\mathbb{R}^{\mathsf{D}_\ell}$ is activation functions at layer ℓ

Learning the model

No matter how complicated the model is, our goal is the same: minimize

$$F(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_{\mathsf{L}}) = \frac{1}{N} \sum_{n=1}^{\mathsf{N}} F_n(\boldsymbol{W}_1,\ldots,\boldsymbol{W}_{\mathsf{L}})$$

where

$$F_n(\boldsymbol{W}_1,\dots,\boldsymbol{W}_L) = \begin{cases} \|\boldsymbol{f}(\boldsymbol{x}_n) - \boldsymbol{y}_n\|_2^2 & \text{for regression} \\ \ln\left(1 + \sum_{k \neq y_n} e^{f(\boldsymbol{x}_n)_k - f(\boldsymbol{x}_n)_{y_n}}\right) & \text{for classification} \end{cases}$$

How to optimize such a complicated function?

Same thing: apply **SGD**! even if the model is *nonconvex*.

What is the gradient of this complicated function?

Chain rule is the only secret:

• for a composite function f(g(w))

$$\frac{\partial f}{\partial w} = \frac{\partial f}{\partial g} \frac{\partial g}{\partial w}$$

• for a composite function $f(g_1(w), \ldots, g_d(w))$

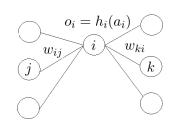
$$\frac{\partial f}{\partial w} = \sum_{i=1}^{d} \frac{\partial f}{\partial g_i} \frac{\partial g_i}{\partial w}$$

the simplest example $f(g_1(w), g_2(w)) = g_1(w)g_2(w)$

Computing the derivative

Drop the subscript ℓ for layer for simplicity.

Find the derivative of F_n w.r.t. to w_{ij}



$$\frac{\partial F_n}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial a_i}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} \frac{\partial (w_{ij}o_j)}{\partial w_{ij}} = \frac{\partial F_n}{\partial a_i} o_j$$

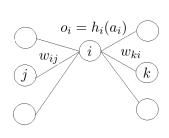
$$\frac{\partial F_n}{\partial a_i} = \frac{\partial F_n}{\partial o_i} \frac{\partial o_i}{\partial a_i} = \left(\sum_k \frac{\partial F_n}{\partial a_k} \frac{\partial a_k}{\partial o_i}\right) h'_i(a_i) = \left(\sum_k \frac{\partial F_n}{\partial a_k} w_{ki}\right) h'_i(a_i)$$

Computing the derivative

Adding the subscript for layer:

$$\frac{\partial F_n}{\partial w_{\ell,ij}} = \frac{\partial F_n}{\partial a_{\ell,i}} o_{\ell-1,j}$$

$$\frac{\partial F_n}{\partial a_{\ell,i}} = \left(\sum_k \frac{\partial F_n}{\partial a_{\ell+1,k}} w_{\ell+1,ki}\right) h'_{\ell,i}(a_{\ell,i})$$



For the last layer, for square loss

$$\frac{\partial F_n}{\partial a_{\mathsf{L},i}} = \frac{\partial (h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})^2}{\partial a_{\mathsf{L},i}} = 2(h_{\mathsf{L},i}(a_{\mathsf{L},i}) - y_{n,i})h'_{\mathsf{L},i}(a_{\mathsf{L},i})$$

Exercise: try to do it for logistic loss yourself.

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

$$\frac{\partial F_n}{\partial \boldsymbol{W}_{\ell}} = \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}} \in \mathbb{R}^{\mathsf{D}_{\ell} \times \mathsf{D}_{\ell-1}}$$

$$\frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} = \begin{cases} \left(\boldsymbol{W}_{\ell+1}^{\mathrm{T}} \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell+1}}\right) \circ \boldsymbol{h}'_{\ell}(\boldsymbol{a}_{\ell}) & \text{if } \ell < \mathsf{L} \\ 2(\boldsymbol{h}_{\mathsf{L}}(\boldsymbol{a}_{\mathsf{L}}) - \boldsymbol{y}_n) \circ \boldsymbol{h}'_{\mathsf{L}}(\boldsymbol{a}_{\mathsf{L}}) & \text{else} \end{cases}$$

where $v_1 \circ v_2 = (v_{11}v_{21}, \cdots, v_{1D}v_{2D})$ is the element-wise product (a.k.a. Hadamard product).

Verify yourself!

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W_1, \ldots, W_L randomly. Repeat:

- **1** randomly pick one data point $n \in [N]$
- **o** forward propagation: for each layer $\ell=1,\ldots,\mathsf{L}$ • compute $a_\ell=W_\ell o_{\ell-1}$ and $o_\ell=h_\ell(a_\ell)$ $(o_0=x_n)$
- **3** backward propagation: for each $\ell = L, \ldots, 1$
 - compute

$$\frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} = \begin{cases} \left(\boldsymbol{W}_{\ell+1}^{\mathrm{T}} \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell+1}}\right) \circ \boldsymbol{h}'_{\ell}(\boldsymbol{a}_{\ell}) & \text{if } \ell < \mathsf{L} \\ 2(\boldsymbol{h}_{\mathsf{L}}(\boldsymbol{a}_{\mathsf{L}}) - \boldsymbol{y}_n) \circ \boldsymbol{h}'_{\mathsf{L}}(\boldsymbol{a}_{\mathsf{L}}) & \text{else} \end{cases}$$

update weights

$$\boldsymbol{W}_{\ell} \leftarrow \boldsymbol{W}_{\ell} - \eta \frac{\partial F_n}{\partial \boldsymbol{W}_{\ell}} = \boldsymbol{W}_{\ell} - \eta \frac{\partial F_n}{\partial \boldsymbol{a}_{\ell}} \boldsymbol{o}_{\ell-1}^{\mathrm{T}}$$

(Important: should W_ℓ be overwritten immediately in the last step?)

More tricks to optimize neural nets

Many variants based on Backprop

- mini-batch: randomly sample a batch of examples to form a stochastic gradient (common batch size: 32, 64, 128, etc.)
- batch normalization: normalize the inputs of each neuron over the mini-batch (to zero-mean and one-variance; c.f. Lec 1)
- momentum: make use of previous gradients (taking inspiration from physics)
- . . .

SGD with momentum (a simple version)

Initialize $oldsymbol{w}_0$ and $oldsymbol{velocity}\ oldsymbol{v}=oldsymbol{0}$

For
$$t = 1, 2, ...$$

- ullet form a stochastic gradient $oldsymbol{g}_t$
- update velocity $\boldsymbol{v} \leftarrow \alpha \boldsymbol{v} + \boldsymbol{g}_t$ for some discount factor $\alpha \in (0,1)$
- ullet update weight $oldsymbol{w}_t \leftarrow oldsymbol{w}_{t-1} \eta oldsymbol{v}$

Updates for first few rounds:

- $w_1 = w_0 \eta g_1$
- $w_2 = w_1 \alpha \eta g_1 \eta g_2$
- $\mathbf{w}_3 = \mathbf{w}_2 \alpha^2 \eta \mathbf{g}_1 \alpha \eta \mathbf{g}_2 \eta \mathbf{g}_3$
-

Overfitting

Overfitting is very likely since neural nets are too powerful.

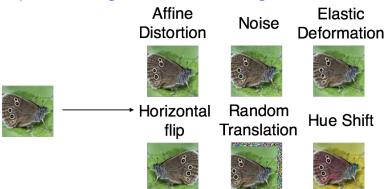
Methods to overcome overfitting:

- data augmentation
- regularization
- dropout
- early stopping
- . . .

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data



Regularization

L2 regularization: minimize

$$F'(W_1, ..., W_L) = F(W_1, ..., W_L) + \lambda \sum_{\ell=1}^{L} ||W_\ell||_2^2$$

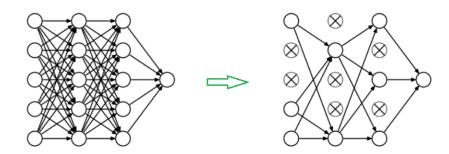
Simple change to the gradient:

$$\frac{\partial F'}{\partial w_{ij}} = \frac{\partial F}{\partial w_{ij}} + 2\lambda w_{ij}$$

Introduce weight decaying effect

Dropout

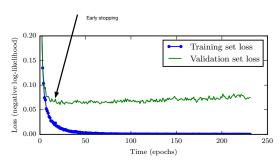
Independently delete each neuron with a fixed probability (say 0.5), during each iteration of Backprop (only for training, not for testing)



Very effective, makes training faster as well

Early stopping

Stop training when the performance on validation set stops improving



Conclusions for neural nets

Deep neural networks

- are hugely popular, achieving best performance on many problems
- do need a lot of data to work well
- take a lot of time to train (need GPUs for massive parallel computing)
- take some work to select architecture and hyperparameters
- are still not well understood in theory