CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

U of Southern California

Sep 16, 2021

1/51

Administration

HW1 is being graded. Will discuss solutions today.

HW2 will be released after this lecture. Due on 9/28.

2 /51

Outline

© Review of Last Lecture

© Muilticlass Classification

© Neural Nets

3/51

Outline

© Review of Last Lecture

4 /51

Review of Last Lecture

Linear classifiers

Linear models for binary classification:
Step 1. Model is the set of separating hyperplanes

F={f(z) =sgn(w'x) | w e R}

5/ 51

Review of Last Lecture

Linear classifiers

Step 2. Pick the surrogate loss

. 2
N
N\t
\\
N
° Lperceptron(2) = max{0, —z} (used in Perceptron)
° hinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss ogistic(2) = log(1 +exp(—z)) (used in logistic regression)

6 /51

Review of Last Lecture

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

w” = argmin F(w) = argmin — Z ((ypwTx,)

weRP weRP
using
e GD: w4+ w—nVEF(w)
e SGD: w + w — nVF(w) (E[VF(w)] = VF(w))

o Newton: w <+ w — (V2F(w))_1 VF(w)

751

Review of Last Lecture

Convergence guarantees of GD/SGD

@ GD/SGD converges to a stationary point
o for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

“good” saddle points “bad” saddle points

8 /51

Review of Last Lecture

Perceptron and logistic regression
Initialize w = 0 or randomly.

Repeat:
@ pick a data point x,, uniformly at random (common trick for SGD)
@ update parameter:

w — w -+ H[yanmn < O]ynwn (Per.ce.ptron) .
no(—ynw Ty) ynxn (logistic regression)

9 /51

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

N N
w* = argmin Z €|ogistic(yanmn) = argmax H P(yy | Tn;w)
w n=1 w n=1

where
1

. — Tr) = ___
Ply | @iw) = olyw’e) = ——

0.9)
0.8]
0.7]
0.6
0.5
0.4]
0.3]
0.2]
0.1

10 / 51

Outline

© Multiclass Classification
@ Multinomial logistic regression
@ Reduction to binary classification

11 /51

Multiclass Classification

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc
e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

12 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

f(m):{1 if wle >0

2 ifwle <0
can be written as

T

1 ifwle>wlx
2 ifwiz>wix

— argmax wy «
ke{1,2}

for any wi,ws s.t. w = w; — wq
Think of w,?ac as a score for class k.

13 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

@ Blue class:
14 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

@ Blue class:
T~] {x: 1 = argmax;, w) =}
° ;
1 1 {x : 2 = argmax, wlx}
° :
{x: 3 = argmax;, w; =}

15 / 51

Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =< f(xz) = argmax wix |w,..., wc € RP
kelC]

= { f(x) = argmax (Wax), | W € RSP
ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

16 / 51

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 — wy:

T
1 e ® T
P(y:1|w;w):a(wT)= T, = T T ocel®
1+67wm €w1w+€w2w
Naturally, for multiclass:
ewgw me
Ply=k|aW) = ————_ xe’
ke[€ ¥

This is called the softmax function.

17 / 51

AT e
Applying MLE again

Maximize probability of seeing labels y1,...,yn given ®1,..., &N
N N R
PW) = [[Pyn | @; W) = H—wTwn
n=1 nl 2kelc) €

By taking negative log, this is equivalent to minimizing

Zl (Zkewqemnk) Zln 1+Zewk Wy,) Te,

Y
" k#yn

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.

18 / 51

TG e e
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) =In|1+ Z e(wk/*wyn)Twn ?
K #yn

It's a C x D matrix. Let's focus on the k-th row:

If & # yn:
(wk_wyn)Tmn
e
F (W) = T —Pk| ap; W)t

ng W) L4+ sy e(Wy —wy,)T Tn Tn (k| @ W),

else:
— Zk’ . e(wk/ _wyn)Tw"

Veur Fn(W) = (7y)xz = (P(yn | zn; W) — 1) z;)

1+ Zk’#y e(wyr—wy,)Tz

19 / 51

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|zn; W)

Bl

W< W-—n P(y:yn‘mn;w)_l r
Ply=C|ax,;, W)

Think about why the algorithm makes sense intuitively.

20 / 51

Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W, we can either

© make a deterministic prediction argmaxycc wgw

o make a randomized prediction according to P(k | &; W) o e@r ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy | 1+ Z (Wi —wy) e
k#y

@ randomized

E[l[f(x) #yll =1-P(y|z;W) < —InP(y | z; W)

21/ 51

Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

one-versus-all (one-versus-rest, one-against-all, etc.)

one-versus-one (all-versus-all, etc.)

Error-Correcting Output Codes (ECOC)

tree-based reduction

22 / 51

Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Idea: train C binary classifiers to learn "“is class k£ or not?" for each k.

Training: for each class k € [C],

(picture credit: link)

@ relabel examples with class k as +1, and all others as —1
@ train a binary classifier hj using this new dataset
[| |
X1 X1 X1 X1 X1
x N X2 X2 X2 X2
X3 = X3 X3 X3 X3
X4 X4 X4 X4 X4
x; W X5 X5 X5 X5
hy ho h3 hy

23 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all £'s s.t. hy(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

24 / 51

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

(picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),

@ relabel examples with class k as +1 and examples with class &’ as —1

@ discard all other examples

e train a binary classifier i ;) using this new dataset

M vs. Hvs. B | Hvs. VS. M vs. M vs.
X1 X1 X1 X1
X2 X2 X2+ X2 +
X3 X3 X3+ | X3
X4 X4 X4 X4
X5 X5 4+ | x5 + X5 +

3 3 ! 4 \ I
h(1-2) h(l,:}) ’1(3,4) h(4,2) h(m) h(:s.:))

25 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x
e ask each classifier (3 1) to vote for either class £ or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

26 / 51

Reduction to binary classification
Error-correcting output codes (ECOC)

Idea: based on a code M € {—1,+1}*L, train L binary

learn "“is bit b on or off".
Training: for each bit b € [L]

(picture credit: link)

classifiers to

M|1 2 3 5
o relabel example x,, as M, "+ + +
+ -
@ train a binary classifier h; using m|+ +
this new dataset. |+ + +
1 2 3 4 5
X1 X1 X1 X1 +ix1 +x
xo M X2 + | X2 X2 X2 X2
X3 = || x3 + | X3 xXx3 + | x3 +|X3
X4 X4 X4 X4 + | Xa + | Xa
x5 M X5 + | X5 X5 + | Xs X5
U U U U U
h ho hs hy hs

27 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example x
e compute the predicted code ¢ = (hi(x),...,h (x))T

@ predict the class with the most similar code: k = argmax; (M c)y

How to design the code M?

@ the more dissimilar the codes, the more robust

e if any two codes are d bits away, then prediction can tolerate about d/2
errors

@ random code is often a good choice

28 / 51

Reduction to binary classification
Tree based method

Idea: train = C binary classifiers to learn "belongs to which half?".

Training: see pictures

.. s | S h]_
X1 X1+ | x | . |
xo | X2 Xy +
X3 = || x3 X3 \
X4 X4+ | X4
x; M X5 + | x5 + h2 h3
U U’ U(| B | IS
h ha h3

Prediction is also natural, but is very fast! (think ImageNet where
C =~ 20K)

29 / 51

Multiclass Classification Reduction to binary classification

Comparisons

training

prediction

Reduction time time remark
OvA CN C not robust
OovO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((logs CO)N) | O(log, C) good for “extreme classification”

30 / 51

Outline

© Neural Nets
@ Definition
@ Backpropagation
@ Preventing overfitting

31 /51

Linear models are not always adequate

18] il pr» itt‘% 3 * *f#\’ 0
EAREET AR AR 15
LR GO R 5
ho TR e 1
sl g R iscdl
CLE L Y .
o PR R B AR A S 03| ay
+ + + N " s
st sl B 00] 3
R ML S e e
o W d oy e s e -0.5] . L r
O P .
&1 N ~
. Eorpttgy BT R 19
b % e
s
) E
05 o 05 1 15 2—0 -15 -10 -05 00 05 10 15 20

We can use a nonlinear mapping as discussed:
¢(x):x € RP — z ¢ RM

But what kind of nonlinear mapping ¢ should be used? Can we actually

learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

32 /51

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use
Rectified Linear Unit (ReLU): h(a) = max{0,a}
sigmoid function: h(a) =

TanH: h(a) = &=

ett+e=®

1
I+e—@

a

many more

33 /51

More output nodes

o=h(Wax)

w

W e R¥3, b R4 - RY so h(a) = (hi(a1), ha(az), hs(as), ha(as))

Can think of this as a nonlinear mapping: ¢(x) = h(Wx)

34 /51

More layers

Becomes a network:

° each node iS called a neuron input layer hidden layer 1 hidden layer 2 output layer
@ h is called the activation function
o can use h(a) =1 for one neuron in each layer to incorporate bias term
e output neuron can use h(a) = a
o #layers refers to #hidden_layers (plus 1 or 2 for input/output layers)
@ deep neural nets can have many layers and millions of parameters
@ this is a feedforward, fully connected neural net, there are many

variants (convolutional nets, residual nets, recurrent nets, etc.)

35 / 51

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

36 / 51

Math formulation

An L-layer neural net can be written as

F(x)=hL(Wrhi 1 (Wp_1---hy (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer

To ease notation, for a given input x, define recursively

o) = &, ay = WgOg_l, Oy — h,g(ag) (f = 1, PN L)
where
o W, € RPexDPe-1 is the weights between layer £ — 1 and /¢
e Dy =D,Dy,...,DL are numbers of neurons at each layer
e ay € RP! is input to layer ¢
e oy € RP¢ is output of layer ¢
e hy: RPr — RDP¢ js activation functions at layer £

37 /51

Learning the model

No matter how complicated the model is, our goal is the same: minimize

N
1
F(Wy,...,W) = NZFn(Wl,...,WL)
n=1

where

I f(zn) — ynll3 for regression
F,(Wy,..., W) = I

(W1 L {ln (1 + D ktyn ef(w”)k*f(w")yn> for classification

38 / 51

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _0fog
ow 0g Ow

e for a composite function f(g1(w),...,ga(w))

of 0g;
Z dg; Ow

the simplest example f(g1 (1), g2(w)) = g1 (w)ga(w)

39 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F), w.r.t. to w;;

8Fn o 8Fn 8@1- o 8Fn 8(wijoj) . 8Fn04
(911]@']' N 8ai Gwij - Bai 8’(1)1‘]' - Bai J

oF, 0F, do; OF,, Oay, B OF, \.,
oa; N do; Oa; <Z Oday, Do;) a;) = (- day, wkl) hi(al)

40 / 51

Computing the derivative

Adding the subscript for layer:

OF, OF,
Owyi; Oag;

i | hpi(a
e — (0 g2 e ot

For the last layer, for square loss

OF, _ OhilaLs) ~ o) ,
da day ; (hri(aLi) — yni)hy ;(aLs)

O¢—1,5

Exercise: try to do it for logistic loss yourself.

41/ 51

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

OF, 8FnOT
oW, da, 1

c RDZXDZ—I

OF, _ <W£1 8?511) ohj(ar) ifl<L
Oay 2(hi(aL) —yn) o hi(aL) else

where v1 0 v = (v11V21, -+ , U1pV2p) IS the element-wise product (a.k.a.
Hadamard product).

Verify yourself!

42 / 51

T
Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W71, ..., W randomly. Repeat:

@ randomly pick one data point n € [N]
@ forward propagation: for each layer £ =1,...,L
o compute ay = Wy0p_1 and o, = hy(ay) (00 = x,)

© backward propagation: foreach /= 1L,...,1
e compute

80,144_1
8(1@

oF, _ [(Whi 2)onja) ife<L
2(hi(aL) —yn) o h{(aL) else

e update weights

oF, 0F,

oW, =We— 7767(”04—1
(Important: should W, be overwritten immediately in the last step?)

Wz%Wz*U

43 / 51

More tricks to optimize neural nets

Many variants based on Backprop

@ mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

@ batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

e momentum: make use of previous gradients (taking inspiration from
physics)

44 / 51

SGD with momentum (a simple version)

Initialize wg and velocity v =0
Fort=1,2,...
@ form a stochastic gradient g;
@ update velocity v « awv + g; for some discount factor « € (0,1)

@ update weight wy + w1 — nv

Updates for first few rounds:
¢ w; = wo —Ng1
® w2 = w1 —ang: — 192

® ws =w2—0627791 — angz —ngs
° o« e

45 / 51

s
Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping

46 / 51

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data

Affine . Elastic
Distortion Noise Deformation

R on X [o g

Horizontal Rando
flip Translation

47 / 51

Regularization

L2 regularization: minimize

L
F(Wi,..., W) = F(Wi,.... W) + A Y Wi}

Simple change to the gradient:

OF' oF
8101‘] C{)w”

+ 2 w;;

Introduce weight decaying effect

48 / 51

Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

PAVAY v !"'.

WL Kd f.‘.

'.‘oxtzvf;»‘.'.‘oztzvz. s

*'.ffs"\'.:'f:l"
LAAAN LARLA)

ORS00 /

l‘[’“\\ WOF
ARV
’A..A.

Very effective, makes training faster as well

49 / 51

s
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping

T T T
e—e Training set loss

— Validation set loss [

50 100 150 200 250
Time (epochs)

50 / 51

Conclusions for neural nets

Deep neural networks
@ are hugely popular, achieving best performance on many problems
@ do need a /ot of data to work well
@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory

51 / 51

	Review of Last Lecture
	Multiclass Classification
	Neural Nets

