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Administration

HW1 is being graded. Will discuss solutions today.

HW2 will be released after this lecture. Due on 9/28.
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Review of Last Lecture

Linear classifiers

Linear models for binary classification:

Step 1. Model is the set of separating hyperplanes

F = {f(x) = sgn(wTx) | w ∈ RD}
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Review of Last Lecture

Linear classifiers

Step 2. Pick the surrogate loss

perceptron loss `perceptron(z) = max{0,−z} (used in Perceptron)

hinge loss `hinge(z) = max{0, 1− z}(used in SVM and many others)

logistic loss `logistic(z) = log(1+ exp(−z)) (used in logistic regression)
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Review of Last Lecture

Linear classifiers

Step 3. Find empirical risk minimizer (ERM):

w∗ = argmin
w∈RD

F (w) = argmin
w∈RD

1

N

N∑
n=1

`(ynw
Txn)

using

GD: w ← w − η∇F (w)

SGD: w ← w − η∇̃F (w) (E[∇̃F (w)] = ∇F (w))

Newton: w ← w −
(
∇2F (w)

)−1∇F (w)
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Review of Last Lecture

Convergence guarantees of GD/SGD

GD/SGD converges to a stationary point

for convex objectives, this is all we need

for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

“good” saddle points “bad” saddle points
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Review of Last Lecture

Perceptron and logistic regression

Initialize w = 0 or randomly.

Repeat:

pick a data point xn uniformly at random (common trick for SGD)

update parameter:

w ← w +

{
I[ynwTxn ≤ 0]ynxn (Perceptron)

ησ(−ynwTxn)ynxn (logistic regression)
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Review of Last Lecture

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

w∗ = argmin
w

N∑
n=1

`logistic(ynw
Txn) = argmax

w

N∏
n=1

P(yn | xn;w)

where

P(y | x;w) = σ(ywTx) =
1

1 + e−ywTx
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Multiclass Classification

Classification

Recall the setup:

input (feature vector): x ∈ RD

output (label): y ∈ [C] = {1, 2, · · · ,C}
goal: learn a mapping f : RD → [C]

Examples:

recognizing digits (C = 10) or letters (C = 26 or 52)

predicting weather: sunny, cloudy, rainy, etc

predicting image category: ImageNet dataset (C ≈ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?

Note: a linear model for binary tasks (switching from {−1,+1} to {1, 2})

f(x) =

{
1 if wTx ≥ 0

2 if wTx < 0

can be written as

f(x) =

{
1 if wT

1 x ≥ wT
2 x

2 if wT
2 x > w

T
1 x

= argmax
k∈{1,2}

wT
k x

for any w1,w2 s.t. w = w1 −w2

Think of wT
k x as a score for class k.
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w = (32 ,
1
6) = w1 −w2

w1 = (1,−1
3)

w2 = (−1
2 ,−

1
2)

Blue class:
{x : wTx ≥ 0}
{x : 1 = argmaxkw

T
k x}

Orange class:
{x : wTx < 0}
{x : 2 = argmaxkw

T
k x}
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Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w1 = (1,−1
3)

w2 = (−1
2 ,−

1
2)

w3 = (0, 1)

Blue class:
{x : 1 = argmaxkw

T
k x}

Orange class:
{x : 2 = argmaxkw

T
k x}

Green class:
{x : 3 = argmaxkw

T
k x}
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Multiclass Classification Multinomial logistic regression

Linear models for multiclass classification

F =

{
f(x) = argmax

k∈[C]
wT

k x | w1, . . . ,wC ∈ RD

}

=

{
f(x) = argmax

k∈[C]
(Wx)k |W ∈ RC×D

}

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss
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Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w1 −w2:

P(y = 1 | x;w) = σ(wTx) =
1

1 + e−wTx
=

ew
T
1 x

ew
T
1 x + ew

T
2 x
∝ ewT

1 x

Naturally, for multiclass:

P(y = k | x;W ) =
ew

T
k x∑

k′∈[C] e
wT

k′x
∝ ewT

k x

This is called the softmax function.

17 / 51

Multiclass Classification Multinomial logistic regression

Applying MLE again

Maximize probability of seeing labels y1, . . . , yN given x1, . . . ,xN

P (W ) =
N∏

n=1

P(yn | xn;W ) =
N∏

n=1

ew
T
yn

xn∑
k∈[C] e

wT
k xn

By taking negative log, this is equivalent to minimizing

F (W ) =

N∑
n=1

ln

(∑
k∈[C] e

wT
k xn

ew
T
ynxn

)
=

N∑
n=1

ln

1 +
∑
k 6=yn

e(wk−wyn )
Txn


This is the multiclass logistic loss, a.k.a. cross-entropy loss.

When C = 2, this is the same as binary logistic loss.
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Multiclass Classification Multinomial logistic regression

Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W ) = ln

1 +
∑
k′ 6=yn

e(wk′−wyn )
Txn

?

It’s a C× D matrix. Let’s focus on the k-th row:

If k 6= yn:

∇wT
k
Fn(W ) =

e(wk−wyn )
Txn

1 +
∑

k′ 6=yn
e(wk′−wyn )

Txn
xT
n = P(k | xn;W )xT

n

else:

∇wT
k
Fn(W ) =

−
(∑

k′ 6=yn
e(wk′−wyn )

Txn

)
1 +

∑
k′ 6=yn

e(wk′−wyn )
Txn

xT
n = (P(yn | xn;W )− 1)xT

n
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Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

1 pick n ∈ [N] uniformly at random

2 update the parameters

W ←W − η


P(y = 1 | xn;W )

...
P(y = yn | xn;W )− 1

...
P(y = C | xn;W )

x
T
n

Think about why the algorithm makes sense intuitively.
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Multiclass Classification Multinomial logistic regression

A note on prediction

Having learned W , we can either

make a deterministic prediction argmaxk∈[C] w
T
k x

make a randomized prediction according to P(k | x;W ) ∝ ewT
k x

In either case, (expected) mistake is bounded by logistic loss

deterministic

I[f(x) 6= y] ≤ log2

1 +
∑
k 6=y

e(wk−wy)Tx


randomized

E [I[f(x) 6= y]] = 1− P(y | x;W ) ≤ − lnP(y | x;W )
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Multiclass Classification Reduction to binary classification

Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.

one-versus-all (one-versus-rest, one-against-all, etc.)

one-versus-one (all-versus-all, etc.)

Error-Correcting Output Codes (ECOC)

tree-based reduction
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Multiclass Classification Reduction to binary classification

One-versus-all (OvA) (picture credit: link)

Idea: train C binary classifiers to learn “is class k or not?” for each k.

Training: for each class k ∈ [C],

relabel examples with class k as +1, and all others as −1
train a binary classifier hk using this new dataset
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Multiclass Classification Reduction to binary classification

One-versus-all (OvA)

Prediction: for a new example x

ask each hk: does this belong to class k? (i.e. hk(x))

randomly pick among all k’s s.t. hk(x) = +1.

Issue: will (probably) make a mistake as long as one of hk errs.

24 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf


Multiclass Classification Reduction to binary classification

One-versus-one (OvO) (picture credit: link)

Idea: train
(C
2

)
binary classifiers to learn “is class k or k′?”.

Training: for each pair (k, k′),

relabel examples with class k as +1 and examples with class k′ as −1
discard all other examples

train a binary classifier h(k,k′) using this new dataset
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Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example x

ask each classifier h(k,k′) to vote for either class k or k′

predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

26 / 51

Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC) (picture credit: link)

Idea: based on a code M ∈ {−1,+1}C×L, train L binary classifiers to
learn “is bit b on or off”.

Training: for each bit b ∈ [L]

relabel example xn as Myn,b

train a binary classifier hb using
this new dataset.
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Multiclass Classification Reduction to binary classification

Error-correcting output codes (ECOC)

Prediction: for a new example x

compute the predicted code c = (h1(x), . . . , hL(x))
T

predict the class with the most similar code: k = argmaxk(Mc)k

How to design the code M?

the more dissimilar the codes, the more robust

if any two codes are d bits away, then prediction can tolerate about d/2
errors

random code is often a good choice
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Multiclass Classification Reduction to binary classification

Tree based method

Idea: train ≈ C binary classifiers to learn “belongs to which half?”.

Training: see pictures

Prediction is also natural, but is very fast! (think ImageNet where
C ≈ 20K)
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Multiclass Classification Reduction to binary classification

Comparisons

Reduction
training

time
prediction

time
remark

OvA CN C not robust

OvO (C− 1)N O(C2) can achieve very small training error

ECOC LN L need diversity when designing code

Tree O((log2 C)N) O(log2 C) good for “extreme classification”

training time: how many

training points are created

prediction time: how many
binary predictions are made
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Neural Nets Definition

Linear models are not always adequate

We can use a nonlinear mapping as discussed:

φ(x) : x ∈ RD → z ∈ RM

But what kind of nonlinear mapping φ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets
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Neural Nets Definition

Linear model as a one-layer neural net

h(a) = a for linear model

To create non-linearity, can use

Rectified Linear Unit (ReLU): h(a) = max{0, a}
sigmoid function: h(a) = 1

1+e−a

TanH: h(a) = ea−e−a

ea+e−a

many more
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Neural Nets Definition

More output nodes

W ∈ R4×3, h : R4 → R4 so h(a) = (h1(a1), h2(a2), h3(a3), h4(a4))

Can think of this as a nonlinear mapping: φ(x) = h(Wx)
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Neural Nets Definition

More layers

Becomes a network:

each node is called a neuron

h is called the activation function
can use h(a) = 1 for one neuron in each layer to incorporate bias term
output neuron can use h(a) = a

#layers refers to #hidden layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, residual nets, recurrent nets, etc.)
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Neural Nets Definition

How powerful are neural nets?

Universal approximation theorem (Cybenko, 89; Hornik, 91):

A feedforward neural net with a single hidden layer can approximate any
continuous functions.

It might need a huge number of neurons though, and depth helps!

Designing network architecture is important and very complicated

for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.
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Neural Nets Definition

Math formulation

An L-layer neural net can be written as

f(x) = hL (WLhL−1 (WL−1 · · ·h1 (W1x)))

To ease notation, for a given input x, define recursively

o0 = x, a` =W`o`−1, o` = h`(a`) (` = 1, . . . , L)

where

W` ∈ RD`×D`−1 is the weights between layer `− 1 and `

D0 = D,D1, . . . ,DL are numbers of neurons at each layer

a` ∈ RD` is input to layer `

o` ∈ RD` is output of layer `

h` : RD` → RD` is activation functions at layer `
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Neural Nets Definition

Learning the model

No matter how complicated the model is, our goal is the same: minimize

F (W1, . . . ,WL) =
1

N

N∑
n=1

Fn(W1, . . . ,WL)

where

Fn(W1, . . . ,WL) =

{
‖f(xn)− yn‖22 for regression

ln
(
1 +

∑
k 6=yn

ef(xn)k−f(xn)yn

)
for classification
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Neural Nets Backpropagation

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.

What is the gradient of this complicated function?

Chain rule is the only secret:

for a composite function f(g(w))

∂f

∂w
=
∂f

∂g

∂g

∂w

for a composite function f(g1(w), . . . , gd(w))

∂f

∂w
=

d∑
i=1

∂f

∂gi

∂gi
∂w

the simplest example f(g1(w), g2(w)) = g1(w)g2(w)

39 / 51

Neural Nets Backpropagation

Computing the derivative

Drop the subscript ` for layer for simplicity.

Find the derivative of Fn w.r.t. to wij

∂Fn

∂wij
=
∂Fn

∂ai

∂ai
∂wij

=
∂Fn

∂ai

∂(wijoj)

∂wij
=
∂Fn

∂ai
oj

∂Fn

∂ai
=
∂Fn

∂oi

∂oi
∂ai

=

(∑
k

∂Fn

∂ak

∂ak
∂oi

)
h′i(ai) =

(∑
k

∂Fn

∂ak
wki

)
h′i(ai)
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Neural Nets Backpropagation

Computing the derivative

Adding the subscript for layer:

∂Fn

∂w`,ij
=
∂Fn

∂a`,i
o`−1,j

∂Fn

∂a`,i
=

(∑
k

∂Fn

∂a`+1,k
w`+1,ki

)
h′`,i(a`,i)

For the last layer, for square loss

∂Fn

∂aL,i
=
∂(hL,i(aL,i)− yn,i)2

∂aL,i
= 2(hL,i(aL,i)− yn,i)h′L,i(aL,i)

Exercise: try to do it for logistic loss yourself.
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Neural Nets Backpropagation

Computing the derivative

Using matrix notation greatly simplifies presentation and implementation:

∂Fn

∂W`
=
∂Fn

∂a`
oT`−1 ∈ RD`×D`−1

∂Fn

∂a`
=

{(
WT

`+1
∂Fn
∂a`+1

)
◦ h′`(a`) if ` < L

2(hL(aL)− yn) ◦ h′L(aL) else

where v1 ◦ v2 = (v11v21, · · · , v1Dv2D) is the element-wise product (a.k.a.
Hadamard product).

Verify yourself!
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Neural Nets Backpropagation

Putting everything into SGD

The backpropagation algorithm (Backprop)

Initialize W1, . . . ,WL randomly. Repeat:

1 randomly pick one data point n ∈ [N]

2 forward propagation: for each layer ` = 1, . . . , L
compute a` =W`o`−1 and o` = h`(a`) (o0 = xn)

3 backward propagation: for each ` = L, . . . , 1
compute

∂Fn

∂a`
=

{(
WT

`+1
∂Fn

∂a`+1

)
◦ h′`(a`) if ` < L

2(hL(aL)− yn) ◦ h′L(aL) else

update weights

W` ←W` − η
∂Fn

∂W`
=W` − η

∂Fn

∂a`
oT`−1

(Important: should W` be overwritten immediately in the last step?)
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Neural Nets Backpropagation

More tricks to optimize neural nets

Many variants based on Backprop

mini-batch: randomly sample a batch of examples to form a
stochastic gradient (common batch size: 32, 64, 128, etc.)

batch normalization: normalize the inputs of each neuron over the
mini-batch (to zero-mean and one-variance; c.f. Lec 1)

momentum: make use of previous gradients (taking inspiration from
physics)

· · ·
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Neural Nets Backpropagation

SGD with momentum (a simple version)

Initialize w0 and velocity v = 0

For t = 1, 2, . . .

form a stochastic gradient gt

update velocity v ← αv + gt for some discount factor α ∈ (0, 1)

update weight wt ← wt−1 − ηv

Updates for first few rounds:

w1 = w0 − ηg1
w2 = w1 − αηg1 − ηg2
w3 = w2 − α2ηg1 − αηg2 − ηg3
· · ·
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Neural Nets Preventing overfitting

Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation

regularization

dropout

early stopping

· · ·
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Neural Nets Preventing overfitting

Data augmentation

Data: the more the better. How do we get more data?

Exploit prior knowledge to add more training data
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Neural Nets Preventing overfitting

Regularization

L2 regularization: minimize

F ′(W1, . . . ,WL) = F (W1, . . . ,WL) + λ
L∑

`=1

‖W`‖22

Simple change to the gradient:

∂F ′

∂wij
=

∂F

∂wij
+ 2λwij

Introduce weight decaying effect
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Neural Nets Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

Very effective, makes training faster as well
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Neural Nets Preventing overfitting

Early stopping

Stop training when the performance on validation set stops improvingCHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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Figure 7.3: Learning curves showing how the negative log-likelihood loss changes over
time (indicated as number of training iterations over the dataset, or epochs). In this
example, we train a maxout network on MNIST. Observe that the training objective
decreases consistently over time, but the validation set average loss eventually begins to
increase again, forming an asymmetric U-shaped curve.

greatly improved (in proportion with the increased number of examples for the
shared parameters, compared to the scenario of single-task models). Of course this
will happen only if some assumptions about the statistical relationship between
the different tasks are valid, meaning that there is something shared across some
of the tasks.

From the point of view of deep learning, the underlying prior belief is the
following: among the factors that explain the variations observed in the data

associated with the different tasks, some are shared across two or more tasks.

7.8 Early Stopping

When training large models with sufficient representational capacity to overfit
the task, we often observe that training error decreases steadily over time, but
validation set error begins to rise again. See figure 7.3 for an example of this
behavior. This behavior occurs very reliably.

This means we can obtain a model with better validation set error (and thus,
hopefully better test set error) by returning to the parameter setting at the point in
time with the lowest validation set error. Every time the error on the validation set
improves, we store a copy of the model parameters. When the training algorithm
terminates, we return these parameters, rather than the latest parameters. The

246

Early stopping
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Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

are hugely popular, achieving best performance on many problems

do need a lot of data to work well

take a lot of time to train (need GPUs for massive parallel computing)

take some work to select architecture and hyperparameters

are still not well understood in theory
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