CSCI567 Machine Learning (Fall 2021)

Administration

Prof. Haipeng Luo

U of Southern California

Sep 16, 2021

Outline

© Review of Last Lecture

© Multiclass Classification

© Neural Nets

HW1 is being graded. Will discuss solutions today.

HW?2 will be released after this lecture. Due on 9/28.

1/51

Review of Last Lecture

Outline

© Review of Last Lecture

3/51

2/51

4 /51

Review of Last Lecture Review of Last Lecture

Linear classifiers Linear classifiers
Linear models for binary classification: Step 2. Pick the surrogate loss
Step 1. Model is the set of separating hyperplanes 20
F ={f(z) =sgn(w'z) | w e RP} \1
=Y N
° Cperceptron(z) = max{0, —z} (used in Perceptron)
° lhinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss £jogistic(2) = log(1 4 exp(—=z)) (used in logistic regression)

5/ 51 6 /51

Review of Last Lecture Review of Last Lecture

Linear classifiers Convergence guarantees of GD/SGD

e GD/SGD converges to a stationary point
Step 3. Find empirical risk minimizer (ERM): o for convex objectives, this is all we need

N e for nonconvex objectives, can get stuck at local minimizers or “bad”

w* = argmin F(w) = argmini Ze(yanmn) saddle points (random initialization escapes “good” saddle points)
weRP werp IV n=1
using
e GD: w +— w —nVF(w)
e SGD: w <+ w — nVF(w) (E[VF(w)] = VF(w))

o Newton: w + w — (V2F(w))_1 VF(w)

“good” saddle points “bad” saddle points

7/51 8 /51

Perceptron and logistic regression

Initialize w = 0 or randomly.

Repeat:
@ pick a data point x,, uniformly at random (common trick for SGD)
@ update parameter:

H[yn'wacn < O]ynxn

no(—ynw @,) yna,

wa (Perceptron)
w — w
(logistic regression)

9 /51
Outline
© Multiclass Classification
@ Multinomial logistic regression
@ Reduction to binary classification
11 /51

A Probabilistic view of logistic regression

Minimizing logistic loss = MLE for the sigmoid model

N N
w* = argmin Z €|ogi5tic(yanwn) = argmax H P(yn | @n;w)
w n=1 n=1
where

1
. — Tp) = __
Ply | @iw) = olyw’e) = ——

0.9
08
0.7]
0.6
0.5
0.4]
03
0.2
0.1

10 / 51

Classification

Recall the setup:
e input (feature vector): = € RP
e output (label): y € [C] ={1,2,--- ,C}
@ goal: learn a mapping f : RP — [C]

Examples:
e recognizing digits (C = 10) or letters (C = 26 or 52)
@ predicting weather: sunny, cloudy, rainy, etc

e predicting image category: ImageNet dataset (C ~ 20K)

Nearest Neighbor Classifier naturally works for arbitrary C.

12 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

Step 1: What should a linear model look like for multiclass tasks?
Note: a linear model for binary tasks (switching from {—1,+1} to {1,2})

1 ifwlxz>0
2 ifwle<0

/()

can be written as
f(@) 1 if'wlT:czwg:c
€T =
2 ifwix>wlx

= argmax ’lUEZL'
ke{1,2}

for any w1, ws s.t. w = wi — wo

Think of wgw as a score for class k.

13 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

w) = (l.—%)

@ Blue class:

[] {x: 1 = argmax, w; z}
° :
1 {x: 2 = argmax, w; z}
° :
ohy ,1 . ! {x: 3 = argmax, w; z}

15 / 51

Multiclass Classification Multinomial logistic regression

Linear models: from binary to multiclass

_ @ Blue class:
T |6ad

{x: 1 = argmax, w; z}

14 / 51
Lwow 2 Uy

Linear models for multiclass classification

F =1 f(x) = argmax wiz|wi,..., wc € RP
ke(C]

= {f(w) = argmax (Ww)k: ’ W ¢ RCXD}

ke[C]

Step 2: How do we generalize perceptron/hinge/logistic loss?

This lecture: focus on the more popular logistic loss

16 / 51

Multiclass Classification Multinomial logistic regression

Multinomial logistic regression: a probabilistic view

Observe: for binary logistic regression, with w = w; — wo:

T
1 e ?® T
IF’(y:1|a:;w):J(wTa:): — = — — oxe?t?®
1_|_€—'w €T €w1m+6w2m
Naturally, for multiclass:
Wi T T
Ply=k|x;W) = — x eWr®

w. ., T
Zk’e[C] e

This is called the softmax function.

17 / 51

Multinomisl logisic regresson
Step 3: Optimization

Apply SGD: what is the gradient of

Fn(W) - ln 1 + Z e(wk’_wyn)chn 7

k' #yn

It's a C x D matrix. Let's focus on the k-th row:

If k # yp:

e(wk —Wyp,)Tm’ﬂ

Vet Fn(W) = z, =Pk | x,; W)z,

1+ Zk,ﬂ e(wy—wy,) Ten "
else:
T
— (Zk‘/#y e(wk'_wyn) $n>
o n T . - T
VwEFn(W) =1t S Swop—wy) Ta T = (P(yp | xp; W) — 1) @

19 / 51

R A
Applying MLE again

Maximize probability of seeing labels v, .

.., UN given Ty, ..., TN

N N ewl,
PW) =[] P |z W) =[]
n=1

wle,
n=1 Zke[c] ek

By taking negative log, this is equivalent to minimizing
n Zke[C] ewi®
Z T

This is the multiclass logistic loss, a.k.a. cross-entropy loss.

Ln

Zln 1 3 elwrmwn) e

k#yn

When C = 2, this is the same as binary logistic loss.

Multiclass Classification Multinomial logistic regression

SGD for multinomial logistic regression

Initialize W = 0 (or randomly). Repeat:

@ pick n € [N] uniformly at random
@ update the parameters

Ply=1|x,; W)

W« W—y W)—1 [z}

n

P(y = Yn | Tn;
P(y =C | Ln; W)

Think about why the algorithm makes sense intuitively.

18 / 51

20 / 51

gl g sticleasesion
A note on prediction

Having learned W, we can either

® make a deterministic prediction argmaxycic; wga:

@ make a randomized prediction according to P(k | x; W) Wi ®

In either case, (expected) mistake is bounded by logistic loss

@ deterministic

I[f(x) #y] <logy, | 1+ Ze(wrwy)Tm
k#y

@ randomized
E[llf(z) #y]l =1-Py|x; W) < —InP(y | z; W)

21 / 51

Reduction to binary classification
One-versus-all (OvA)

(picture credit: link)
Idea: train C binary classifiers to learn “is class k& or not?" for each k.

Training: for each class k € [C],
@ relabel examples with class k as +1, and all others as —1

@ train a binary classifier hy using this new dataset

[[
X1 X1 X1 + | X1 X1
x> N X2 X X + | X2
X3 = || X3 X3 X3 X3 +
X4 X4 X4 —+ X4 X4
X5 | X5 + | X5 X5 X5
\ \ \ \
h h h3 ha

23 / 51

Reduction to binary classification
Reduce multiclass to binary

Is there an even more general and simpler approach to derive multiclass
classification algorithms?

Given a binary classification algorithm (any one, not just linear methods),
can we turn it to a multiclass algorithm, in a black-box manner?

Yes, there are in fact many ways to do it.
e one-versus-all (one-versus-rest, one-against-all, etc.)
@ one-versus-one (all-versus-all, etc.)
e Error-Correcting Output Codes (ECOC)

o tree-based reduction

22 / 51

Reduction to binary classification
One-versus-all (OvA)

Prediction: for a new example x
@ ask each hy: does this belong to class k7 (i.e. hi(x))

e randomly pick among all k's s.t. hy(x) = +1.

Issue: will (probably) make a mistake as long as one of hy, errs.

24 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

(picture credit: link)

Idea: train (g) binary classifiers to learn “is class k or k'?".

Training: for each pair (k, k'),

o relabel examples with class k as +1 and examples with class k&’ as —1

@ discard all other examples

e train a binary classifier i /) using this new dataset

M vs. Mvs. W | Wvs. VS. M vs. M vs.
X1 X1 X1 X1
xo N X2 Xy + X2 +
X3 X3 X3 + | X3
X4 X4 X4 X4
x; W X5 + | X5 + X5 +

U U U U U U
h(])) ’L(Lg) }1,(3_,4) h(4,2) h(1,4) h,<3yz)

25 / 51

Reduction to binary classification
Error-correcting output codes (ECOC)

(picture credit: link)

|dea: based on a code M € {—1,+1}°*L, train L binary classifiers to
learn “is bit b on or off".

Training: for each bit b € [L]

o relabel example z,,

M|1 3 4 5
as My, p m |+ + +
+ o+ +
@ train a binary classifier hy using |+
this new dataset. + + +
1 2 3 4 5
X1 X1 X1 X1 + | X1 X1+
X X2 + | X2 +|X X2 X2
X3 = ||x3 +|x3 +|x3 +|X3 X3
X4 X4 X4 X4 + X4 X4 +
X5 X5 + | Xg X5 + | X5 X5
Y Y U U U
hy ho h3 hy hs

27 / 51

Multiclass Classification Reduction to binary classification

One-versus-one (OvO)

Prediction: for a new example
e ask each classifier i 1) to vote for either class k or K

@ predict the class with the most votes (break tie in some way)

More robust than one-versus-all, but slower in prediction.

Reduction to binary classification
Error-correcting output codes (ECOC)

Prediction: for a new example

o compute the predicted code ¢ = (hi(x),..., A (x))T

@ predict the class with the most similar code: k£ = argmax;, (M c);

How to design the code M?

@ the more dissimilar the codes, the more robust

26 / 51

o if any two codes are d bits away, then prediction can tolerate about d/2

€rrors

@ random code is often a good choice

28 / 51

http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf
http://www.cs.princeton.edu/~schapire/talks/ecoc-icml10.pdf

Multiclass Classification Reduction to binary classification

Tree based method

Idea: train = C binary classifiers to learn “belongs to which half?".

Training: see pictures

|y |

| S | G h].

X1 X1+ X [.|

xo N X2 Xo

X3 = || %3 X3 \

Xa X4+ | X4

|

X5 X5 4+ | X5 ho h3
ll(U U’ . 'S . 'S
hy ha hs

Prediction is also natural, but is very fast! (think ImageNet where

C ~ 20K)

29 / 51

Neural Nets

Outline

© Neural Nets
@ Definition
@ Backpropagation
@ Preventing overfitting

31 /51

Multiclass Classification Reduction to binary classification

Comparisons
Reduction tra.ining preqiction remark
time time
OvA CN C not robust
OvO (C—1)N 0(C?) can achieve very small training error
ECOC LN L need diversity when designing code
Tree O((loga C)N) | O(log, C) good for “extreme classification”

beo=
30 / 51
Ay A2 A2 A2 T | A2
X3 = || X3 X3 X3 X3 +
Xa X4 X4 + | Xa X4
v m ve v V- v

o fitan
Linear models are not always adequate

e
FELEL Sk att
! MR S 8
;
+ *?*#i* A
LRI TS I
o b W
+
o ‘,,,,:{ t?’ »; fwﬁ*fﬁt*“
R S e TR
MO S 4 %z:" + 1

We can use a nonlinear mapping as discussed:

d(x):xeRP —» 2 e RM

But what kind of nonlinear mapping ¢ should be used? Can we actually
learn this nonlinear mapping?

THE most popular nonlinear models nowadays: neural nets

32 /51

Linear model as a one-layer neural net More output nodes

h(a) = a for linear model I
T2 o=h(Wx)
T3
To create non-linearity, can use Q
@ Rectified Linear Unit (ReLU): h(a) = max{0,a} W

e sigmoid function: h(a) = -1

1+e—@
Y 4x3 p . o4 4 _
o TanH: h(a) _ Zalz_a W eR ,h:R* — R*so h(a) (hl(al), hQ(ag), h3(a3), h4(a4))
@ many more Can think of this as a nonlinear mapping: ¢(x) = h(Wx)
33 /51 34 / 51
More layers How powerful are neural nets?
Universal approximation theorem (Cybenko, 89; Hornik, 91):
A feedforward neural net with a single hidden layer can approximate any
Becomes a network: continuous functions.
Y each node iS Ca”ed a neuron input layer hidden layer 1 hidden layer 2 output layer

It might need a huge number of neurons though, and depth helps!
@ h is called the activation function

e can use h(a) =1 for one neuron in each layer to incorporate bias term o) o)
o output neuron can use h(a) = a Designing network architecture is important and very complicated

o for feedforward network, need to decide number of hidden layers,
number of neurons at each layer, activation functions, etc.

#layers refers to #hidden_layers (plus 1 or 2 for input/output layers)

deep neural nets can have many layers and millions of parameters

this is a feedforward, fully connected neural net, there are many
variants (convolutional nets, residual nets, recurrent nets, etc.)

35 / 51 36 / 51

Definition
Math formulation

An L-layer neural net can be written as

f(x)=hL(WrhL1 (WL hi (Wiz)))

input layer hidden layer 1 hidden layer 2 output layer
To ease notation, for a given input @, define recursively

o) =z, a; = Wyop_1, or = hy(ay)

where

o W, € RPrxPe-1 is the weights between layer £ — 1 and ¢
Do =D,Dq,...,DL are numbers of neurons at each layer
a, € RP? is input to layer ¢
oy € RP? is output of layer ¢
hy : RP¢ — RP¢ is activation functions at layer ¢

37 / 51

How to optimize such a complicated function?

Same thing: apply SGD! even if the model is nonconvex.
What is the gradient of this complicated function?

Chain rule is the only secret:

e for a composite function f(g(w))

of _9f9g
ow 0g dw

e for a composite function f(g1(w), ..., gq(w))

9f _ 5~ 08 09
ow dg; Ow

=1

the simplest example f(g1(w), g2(w)) = g1(w)ga(w)

39 / 51

T
Learning the model

No matter how complicated the model is, our goal is the same: minimize

N

1
F(Wy,.... W)= =Y F,(W,...,W)

for regression

_ 2
Fu(Wi,.. W) = {”ﬂwn) uall

In <1 + D ket ef(m“)k*f(“"")yn) for classification

38 / 51

Computing the derivative

Drop the subscript ¢ for layer for simplicity.

Find the derivative of F, w.r.t. to w;;

8Fn - 8Fn 8ai . 6Fn 8(wij0j) . (9Fn0'
8wij N 8ai Gwij - 8(11' 8wij - 8ai J

8Fn_5Fn60i_ %% b OF, | o
da; Oo; Da; (; day, 801> hi(ai) = (; day, wkz) hi(a;)

40 / 51

Computing the derivative Computing the derivative

Adding the subscript for layer:] . . o)])
Using matrix notation greatly simplifies presentation and implementation:

oF, 0OF,
610@72']' 8&@71'

i | heilaei
8au (Z 3a£+1kw€+1,k) vilaes)

For the last layer, for square loss

Op—1,5 8Fn . 8Fn T

DyxDg_
= 0o, € R¥7He1
an aa551

oF, _[(Whifi)ohia) ife<L
da; 2(h(aL) — yn) o bl (ay) else

here v o v = (v11v21, -+ ,V1pU2D) is the element-wise product (a.k.a.
OF, O(h i(aL;)2 w R
n_ Olhuilan:) = yns) = 2(hpi(aL) — yna) b ;(aLs) Hadamard product).

8a|_,i - aau

Verify yourself!
Exercise: try to do it for logistic loss yourself.

41 /51 42/ 51
CEREIERE EER IR
Putting everything into SGD More tricks to optimize neural nets

The backpropagation algorithm (Backprop)

o Many variants based on Backprop
Initialize W1, ..., W randomly. Repeat:

@ randomly pick one data point n € [N] @ mini-batch: randomly sample a batch of examples to form a
@ forward propagation: for each layer £ = 1,...,L stochastic gradient (common batch size: 32, 64, 128, etc.)
o compute a; = Wyo,_1 and oy = hy(ay) (00 = xy)

@ batch normalization: normalize the inputs of each neuron over the

© backward propagation: for each £ =L,...,1 mini-batch (to zero-mean and one-variance; c.f. Lec 1)

e compute

OF, _ (WzTH Bac) ohy(ag) ifl<L e momentum: make use of previous gradients (taking inspiration from
day 2(hi(aL) —yn)ohl(aL) else physics)
e update weights
OF, OF,
no_ W, — Yin T
Tow, = """ "9a, O
(Important: should W, be overwritten immediately in the last step?)

Wg<—Wg—

43 / 51 44 / 51

GG
SGD with momentum (a simple version)

Initialize wy and velocity v =0
Fort=1,2,...
@ form a stochastic gradient gy
@ update velocity v < av + g¢ for some discount factor « € (0, 1)

@ update weight w; < wy_1 — nv

Updates for first few rounds:

@ w1 = wo — Ng1

0 w2 = w1 —angi — Ng2

o w3 =wy — a’ng — angs — ngs
° P

45 / 51
Data augmentation
Data: the more the better. How do we get more data?
Exploit prior knowledge to add more training data
Affine . Elastic
.) Noise .
Distortion Deformation
Horizontal Rando .
: . Hue Shift
flip Translation
47 / 51

Overfitting

Overfitting is very likely since neural nets are too powerful.

Methods to overcome overfitting:

data augmentation
regularization
dropout

early stopping

46 / 51

Regularization

L2 regularization: minimize

L
F'(Wy,..., W) = F(Wh,..., W) + A |Wif3
/=1

Simple change to the gradient:

OF OF
awij N awij

Introduce weight decaying effect

48 / 51

Neural Nets

Preventing overfitting

Dropout

Independently delete each neuron with a fixed probability (say 0.5),
during each iteration of Backprop (only for training, not for testing)

Very effective, makes training faster as well

49 / 51

Neural Nets Preventing overfitting

Conclusions for neural nets

Deep neural networks

@ are hugely popular, achieving best performance on many problems

@ do need a ot of data to work well

@ take a /ot of time to train (need GPUs for massive parallel computing)
@ take some work to select architecture and hyperparameters

@ are still not well understood in theory

51 / 51

AT
Early stopping

Stop training when the performance on validation set stops improving

/ Early stopping
0.20

e—e Training set loss

0.15 — Validation set loss H

Loss (negative log-likelihood)

0 50 100 150 200 250
Time (epochs)

50 / 51

	Review of Last Lecture
	Multiclass Classification
	Neural Nets

