CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo
U of Southern California

Sep 30, 2021

Administration

HW2 grade will be released by $10 / 06$. Solutions will be discussed today.

Quiz 1 logistics (10/07, 5:00-7:30pm):

- online via zoom, can take it wherever you want (SGM 123 is available)
- join the regular lecture zoom 10 minutes earlier (link available on course/DEN website; remember to sign in!), with your camera on
- we will assign you to a breakout room, proctored by a TA/grader
- we will use Crowdmark: app.crowdmark.com/sign-in/usc (try it before the quiz). A bit before 5 pm , Crowdmark will send you the quiz.
- open-book/note, but no collaboration or consultation
- make a private Piazza post if you have clarification questions
- duration is 2.5 hours, which includes the time for scanning/uploading.

More on Quiz 1

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6
Five problems in total

- one problem of 15 multiple-choice multiple-answer questions
- 0.5 point for selecting (not selecting) each correct (incorrect) answer
- "which of the following is correct?" does not imply one correct answer
- four other homework-like problems, each has a couple sub-problems
- can solve each one "independently" using conclusions from earlier sub-problems (c.f. HW1 Problem 3)
- not ordered by difficulty, budget your time carefully!
- in total, upload five scanned pdf/jpg/png's, one for each problem
- each can have multiple pages

Tips: expect to see variants of questions from discussion/homework

Outline

(1) Review of last lecture
(2) Support vector machines (primal formulation)
(3) A detour of Lagrangian duality

4 Support vector machines (dual formulation)

Outline

(1) Review of last lecture
(2) Support vector machines (primal formulation)
(3) A detour of Lagrangian duality
(4) Support vector machines (dual formulation)

Convolutional Neural Nets

Typical architecture for CNNs:

 Input $\rightarrow\left[[\text { Conv } \rightarrow \text { ReLU }]^{*} \mathrm{~N} \rightarrow \text { Pool? }\right]^{*} \mathrm{M} \rightarrow[\mathrm{FC} \rightarrow \text { ReLU }]^{*} \mathrm{Q} \rightarrow \mathrm{FC}$2D Convolution

MAX POOLING

Kernel functions

Definition: a function $k: \mathbb{R}^{\mathrm{D}} \times \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}$ is called a kernel function if there exists a function $\phi: \mathbb{R}^{\mathrm{D}} \rightarrow \mathbb{R}^{\mathrm{M}}$ so that for any $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{\mathrm{D}}$,

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}^{\prime}\right)
$$

Examples we have seen

$$
\begin{aligned}
& k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}^{\prime}\right)^{2} \\
& k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sum_{d=1}^{\mathrm{D}} \frac{\sin \left(2 \pi\left(x_{d}-x_{d}^{\prime}\right)\right)}{x_{d}-x_{d}^{\prime}} \\
& k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}^{\prime}+c\right)^{d} \\
& k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=e^{-\frac{\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

(polynomial kernel)
(Gaussian/RBF kernel)

Kernelizing ML algorithms

Feasible as long as only inner products are required:

- regularized linear regression (dual formulation)

$$
\boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{w}^{*}=\boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\Phi}^{\mathrm{T}}(\boldsymbol{K}+\lambda \boldsymbol{I})^{-1} \boldsymbol{y} \quad\left(\boldsymbol{K}=\boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathrm{T}} \text { is kernel matrix }\right)
$$

- nearest neighbor, Perceptron, logistic regression, SVM, ...

Outline

(1) Review of last lecture

(2) Support vector machines (primal formulation)
(3) A detour of Lagrangian duality
(4) Support vector machines (dual formulation)

Support vector machines (SVM)

- one of the most commonly used classification algorithms
- works well with the kernel trick
- strong theoretical guarantees

We focus on binary classification here.

Primal formulation

In one sentence: linear model with L2 regularized hinge loss. Recall

- perceptron loss $\ell_{\text {perceptron }}(z)=\max \{0,-z\} \rightarrow$ Perceptron
- logistic loss $\ell_{\text {logistic }}(z)=\log (1+\exp (-z)) \rightarrow$ logistic regression
- hinge loss $\ell_{\text {hinge }}(z)=\max \{0,1-z\} \rightarrow \mathbf{S V M}$

Primal formulation

For a linear model (\boldsymbol{w}, b), this means

$$
\min _{\boldsymbol{w}, b} \sum_{n} \max \left\{0,1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)\right\}+\frac{\lambda}{2}\|\boldsymbol{w}\|_{2}^{2}
$$

- recall $y_{n} \in\{-1,+1\}$
- a nonlinear mapping ϕ is applied
- the bias/intercept term b is used explicitly (think about why after this lecture)

So why L2 regularized hinge loss?

Geometric motivation: separable case

When data is linearly separable, there are infinitely many hyperplanes with zero training error:

So which one should we choose?

Intuition

The further away from data points the better.

How to formalize this intuition?

Distance to hyperplane

What is the distance from a point \boldsymbol{x} to a hyperplane $\left\{\boldsymbol{x}: \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b=0\right\}$?
Assume the projection is $\boldsymbol{x}-\ell \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}$, then

$$
0=\boldsymbol{w}^{\mathrm{T}}\left(\boldsymbol{x}-\ell \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}}\right)+b=\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}-\ell\|\boldsymbol{w}\|+b
$$

and thus $\ell=\frac{\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b}{\|\boldsymbol{w}\|_{2}}$.
Therefore the distance is

$$
\frac{\left|\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b\right|}{\|\boldsymbol{w}\|_{2}}
$$

For a hyperplane that correctly classifies (\boldsymbol{x}, y), the distance becomes

$$
\frac{y\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}+b\right)}{\|\boldsymbol{w}\|_{2}}
$$

Maximizing margin

Margin: the smallest distance from all training points to the hyperplane

$$
\text { MARGIN OF }(\boldsymbol{w}, b)=\min _{n} \frac{y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)}{\|\boldsymbol{w}\|_{2}}
$$

The intuition "the further away the better" translates to solving

$$
\max _{\boldsymbol{w}, b} \min _{n} \frac{y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)}{\|\boldsymbol{w}\|_{2}}=\max _{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|_{2}} \min _{n} y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)
$$

Rescaling

Note: rescaling (\boldsymbol{w}, b) does not change the hyperplane at all.

We can thus always scale (\boldsymbol{w}, b) s.t. $\min _{n} y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)=1$

The margin then becomes

$$
\begin{aligned}
& \text { MARGIN OF }(\boldsymbol{w}, b) \\
& =\frac{1}{\|\boldsymbol{w}\|_{2}} \min _{n} y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \\
& =\frac{1}{\|\boldsymbol{w}\|_{2}}
\end{aligned}
$$

Summary for separable data

For a separable training set, we aim to solve

$$
\max _{\boldsymbol{w}, b} \frac{1}{\|\boldsymbol{w}\|_{2}} \quad \text { s.t. } \quad \min _{n} y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)=1
$$

This is equivalent to

$$
\begin{aligned}
\min _{\boldsymbol{w}, b} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \geq 1, \quad \forall n
\end{aligned}
$$

SVM is thus also called max-margin classifier. The constraints above are called hard-margin constraints.

General non-separable case

If data is not linearly separable, the previous constraint

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \geq 1, \quad \forall n
$$

is obviously not feasible.

To deal with this issue, we relax them to soft-margin constraints:

$$
y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \geq 1-\xi_{n}, \quad \forall n
$$

where we introduce slack variables $\xi_{n} \geq 0$.

SVM Primal formulation

We want ξ_{n} to be as small as possible too. The objective becomes

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{n}\right\}} & \frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}+C \sum_{n} \xi_{n} \\
\text { s.t. } & y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \geq 1-\xi_{n}, \quad \forall n \\
& \xi_{n} \geq 0, \quad \forall n
\end{aligned}
$$

where C is a hyperparameter to balance the two goals.

Equivalent form

Formulation

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{n}\right\}} & C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & 1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \leq \xi_{n}, \quad \forall n \\
& \xi_{n} \geq 0, \quad \forall n
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{n}\right\}} & C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & \max \left\{0,1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)\right\}=\xi_{n}, \quad \forall n
\end{aligned}
$$

Equivalent form

$$
\begin{aligned}
\min _{\left.\boldsymbol{w},,, \xi_{n}\right\}} & C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & \max \left\{0,1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)\right\}=\xi_{n}, \quad \forall n
\end{aligned}
$$

is equivalent to

$$
\min _{\boldsymbol{w}, b} C \sum_{n} \max \left\{0,1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)\right\}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}
$$

and

$$
\min _{\boldsymbol{w}, b} \sum_{n} \max \left\{0,1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)\right\}+\frac{\lambda}{2}\|\boldsymbol{w}\|_{2}^{2}
$$

with $\lambda=1 / C$. This is exactly minimizing $L 2$ regularized hinge loss!

Optimization

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{n}\right\}} & C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & 1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \leq \xi_{n}, \quad \forall n \\
& \xi_{n} \geq 0, \quad \forall n
\end{aligned}
$$

- It is a convex (quadratic in fact) problem
- thus can apply any convex optimization algorithms, e.g. SGD
- there are more specialized and efficient algorithms
- but usually we apply kernel trick, which requires solving the dual problem

Outline

(1) Review of last lecture
(2) Support vector machines (primal formulation)
(3) A detour of Lagrangian duality
(4) Support vector machines (dual formulation)

Lagrangian duality

Extremely important and powerful tool in analyzing optimizations

We will introduce basic concepts and derive the KKT conditions

- the derivation is not required for this course
- but the application of KKT conditions is required

Applying it to SVM reveals an important aspect of the algorithm

Primal problem

Suppose we want to solve

$$
\min _{\boldsymbol{w}} F(\boldsymbol{w}) \quad \text { s.t. } h_{j}(\boldsymbol{w}) \leq 0 \quad \forall j \in[\mathrm{~J}]
$$

where functions $h_{1}, \ldots, h_{\boldsymbol{J}}$ define J constraints.

SVM primal formulation is clearly of this form with $\mathrm{J}=2 \mathrm{~N}$ constraints:

$$
\begin{aligned}
F\left(\boldsymbol{w}, b,\left\{\xi_{n}\right\}\right) & =C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
h_{n}\left(\boldsymbol{w}, b,\left\{\xi_{n}\right\}\right) & =1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)-\xi_{n} \quad \forall n \in[\mathrm{~N}] \\
h_{\mathrm{N}+n}\left(\boldsymbol{w}, b,\left\{\xi_{n}\right\}\right) & =-\xi_{n} \quad \forall n \in[\mathrm{~N}]
\end{aligned}
$$

Lagrangian

The Lagrangian of the previous problem is defined as:

$$
L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right)=F(\boldsymbol{w})+\sum_{j=1}^{\mathrm{J}} \lambda_{j} h_{j}(\boldsymbol{w})
$$

where $\lambda_{1}, \ldots, \lambda_{\mathrm{J}} \geq 0$ are called Lagrangian multipliers.
Note that

$$
\max _{\left\{\lambda_{j}\right\} \geq 0} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right)= \begin{cases}F(\boldsymbol{w}) & \text { if } h_{j}(\boldsymbol{w}) \leq 0 \quad \forall j \in[J] \\ +\infty & \text { else }\end{cases}
$$

and thus,

$$
\min _{\boldsymbol{w}} \max _{\left\{\lambda_{j}\right\} \geq 0} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right) \Longleftrightarrow \min _{\boldsymbol{w}} F(\boldsymbol{w}) \text { s.t. } h_{j}(\boldsymbol{w}) \leq 0 \quad \forall j \in[\mathrm{~J}]
$$

Duality

We define the dual problem by swapping the min and max:

$$
\max _{\left\{\lambda_{j}\right\} \geq 0} \min _{\boldsymbol{w}} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right)
$$

How are the primal and dual connected? Let \boldsymbol{w}^{*} and $\left\{\lambda_{j}^{*}\right\}$ be the primal and dual solutions respectively, then

$$
\begin{aligned}
\max _{\left\{\lambda_{j}\right\} \geq 0} \min _{\boldsymbol{w}} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right) & =\min _{\boldsymbol{w}} L\left(\boldsymbol{w},\left\{\lambda_{j}^{*}\right\}\right) \leq L\left(\boldsymbol{w}^{*},\left\{\lambda_{j}^{*}\right\}\right) \\
& \leq \max _{\left\{\lambda_{j}\right\} \geq 0} L\left(\boldsymbol{w}^{*},\left\{\lambda_{j}\right\}\right)=\min _{\boldsymbol{w}} \max _{\left\{\lambda_{j}\right\} \geq 0} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right)
\end{aligned}
$$

This is called "weak duality".

Strong duality

When F, h_{1}, \ldots, h_{J} are convex, under some mild conditions:

$$
\min _{\boldsymbol{w}} \max _{\left\{\lambda_{j}\right\} \geq 0} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right)=\max _{\left\{\lambda_{j}\right\} \geq 0} \min _{\boldsymbol{w}} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right)
$$

This is called "strong duality".

Deriving the Karush-Kuhn-Tucker (KKT) conditions

Observe that if strong duality holds:

$$
\begin{aligned}
& F\left(\boldsymbol{w}^{*}\right)=\min _{\boldsymbol{w}} \max _{\left\{\lambda_{j}\right\} \geq 0} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right)=\max _{\left\{\lambda_{j}\right\} \geq 0} \min _{\boldsymbol{w}} L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right) \\
& =\min _{\boldsymbol{w}} L\left(\boldsymbol{w},\left\{\lambda_{j}^{*}\right\}\right) \leq L\left(\boldsymbol{w}^{*},\left\{\lambda_{j}^{*}\right\}\right)=F\left(\boldsymbol{w}^{*}\right)+\sum_{j=1}^{J} \lambda_{j}^{*} h_{j}\left(\boldsymbol{w}^{*}\right) \leq F\left(\boldsymbol{w}^{*}\right)
\end{aligned}
$$

Implications:

- all inequalities above have to be equalities!
- last equality implies $\lambda_{j}^{*} h_{j}\left(\boldsymbol{w}^{*}\right)=0$ for all $j \in[\mathrm{~J}]$
- equality $\min _{\boldsymbol{w}} L\left(\boldsymbol{w},\left\{\lambda_{j}^{*}\right\}\right)=L\left(\boldsymbol{w}^{*},\left\{\lambda_{j}^{*}\right\}\right)$ implies \boldsymbol{w}^{*} is a minimizer of $L\left(\boldsymbol{w},\left\{\lambda_{j}^{*}\right\}\right)$ and thus has zero gradient:

$$
\nabla_{\boldsymbol{w}} L\left(\boldsymbol{w}^{*},\left\{\lambda_{j}^{*}\right\}\right)=\nabla F\left(\boldsymbol{w}^{*}\right)+\sum_{j=1}^{\mathrm{J}} \lambda_{j}^{*} \nabla h_{j}\left(\boldsymbol{w}^{*}\right)=\mathbf{0}
$$

The Karush-Kuhn-Tucker (KKT) conditions

If \boldsymbol{w}^{*} and $\left\{\lambda_{j}^{*}\right\}$ are the primal and dual solution respectively, then:
Stationarity:

$$
\nabla_{\boldsymbol{w}} L\left(\boldsymbol{w}^{*},\left\{\lambda_{j}^{*}\right\}\right)=\nabla F\left(\boldsymbol{w}^{*}\right)+\sum_{j=1}^{J} \lambda_{j}^{*} \nabla h_{j}\left(\boldsymbol{w}^{*}\right)=\mathbf{0}
$$

Complementary slackness:

$$
\lambda_{j}^{*} h_{j}\left(\boldsymbol{w}^{*}\right)=0 \quad \text { for all } j \in[\mathrm{~J}]
$$

Feasibility:

$$
h_{j}\left(\boldsymbol{w}^{*}\right) \leq 0 \quad \text { and } \quad \lambda_{j}^{*} \geq 0 \quad \text { for all } j \in[\mathrm{~J}]
$$

These are necessary conditions. They are also sufficient when F is convex and $h_{1}, \ldots, h_{\mathrm{J}}$ are continuously differentiable convex functions.

Outline

(1) Review of last lecture

(2) Support vector machines (primal formulation)
(3) A detour of Lagrangian duality

4 Support vector machines (dual formulation)

Writing down the Lagrangian

Recall the primal formulation

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{n}\right\}} & C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & 1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \leq \xi_{n}, \quad \forall n \\
& \xi_{n} \geq 0, \quad \forall n
\end{aligned}
$$

Lagrangian is

$$
\begin{aligned}
L\left(\boldsymbol{w}, b,\left\{\xi_{n}\right\},\left\{\alpha_{n}\right\},\left\{\lambda_{n}\right\}\right) & =C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}-\sum_{n} \lambda_{n} \xi_{n} \\
& +\sum_{n} \alpha_{n}\left(1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)-\xi_{n}\right)
\end{aligned}
$$

where $\alpha_{1}, \ldots, \alpha_{\mathrm{N}} \geq 0$ and $\lambda_{1}, \ldots, \lambda_{\mathrm{N}} \geq 0$ are Lagrangian multipliers.

Applying the stationarity condition

$$
L=C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}-\sum_{n} \lambda_{n} \xi_{n}+\sum_{n} \alpha_{n}\left(1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)-\xi_{n}\right)
$$

\exists primal and dual variables $\boldsymbol{w}, b,\left\{\xi_{n}\right\},\left\{\alpha_{n}\right\},\left\{\lambda_{n}\right\}$ s.t. $\nabla_{\boldsymbol{w}, b,\left\{\xi_{n}\right\}} L=\mathbf{0}$, which means

$$
\begin{aligned}
& \frac{\partial L}{\partial \boldsymbol{w}}=\boldsymbol{w}-\sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)=\mathbf{0} \quad \Longrightarrow \quad \boldsymbol{w}=\sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \\
& \frac{\partial L}{\partial b}=-\sum_{n} \alpha_{n} y_{n}=0 \quad \text { and } \quad \frac{\partial L}{\partial \xi_{n}}=C-\lambda_{n}-\alpha_{n}=0, \quad \forall n
\end{aligned}
$$

Rewrite the Lagrangian in terms of dual variables

Replacing \boldsymbol{w} by $\sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)$ in the Lagrangian gives

$$
\begin{aligned}
L= & C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2}-\sum_{n} \lambda_{n} \xi_{n}+\sum_{n} \alpha_{n}\left(1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)-\xi_{n}\right) \\
= & C \sum_{n} \xi_{n}+\frac{1}{2}\left\|\sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right\|_{2}^{2}-\sum_{n} \lambda_{n} \xi_{n}+ \\
& \sum_{n} \alpha_{n}\left(1-y_{n}\left(\left(\sum_{m} y_{m} \alpha_{m} \boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right)-\xi_{n}\right) \\
= & \sum_{n} \alpha_{n}+\frac{1}{2}\left\|\sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)\right\|_{2}^{2}-\sum_{m, n} \alpha_{n} \alpha_{m} y_{m} y_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \\
= & \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{m, n} \alpha_{n} \alpha_{m} y_{m} y_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)
\end{aligned}
$$

The dual formulation

To find the dual solutions, it amounts to solving

$$
\begin{aligned}
\max _{\left\{\alpha_{n}\right\},\left\{\lambda_{n}\right\}} & \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{m, n} y_{m} y_{n} \alpha_{m} \alpha_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \\
\text { s.t. } & \sum_{n} \alpha_{n} y_{n}=0 \\
& C-\lambda_{n}-\alpha_{n}=0, \alpha_{n} \geq 0, \lambda_{n} \geq 0, \quad \forall n
\end{aligned}
$$

Note the last three constraints can be written as $0 \leq \alpha_{n} \leq C$ for all n. So the final dual formulation of SVM is:

$$
\begin{aligned}
\max _{\left\{\alpha_{n}\right\}} & \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{m, n} y_{m} y_{n} \alpha_{m} \alpha_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \\
\text { s.t. } & \sum_{n} \alpha_{n} y_{n}=0 \quad \text { and } \quad 0 \leq \alpha_{n} \leq C, \quad \forall n
\end{aligned}
$$

Kernelizing SVM

Now it is clear that with a kernel function k for the mapping ϕ, we can kernelize SVM as:

$$
\begin{aligned}
\max _{\left\{\alpha_{n}\right\}} & \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{m, n} y_{m} y_{n} \alpha_{m} \alpha_{n} k\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{n}\right) \\
\text { s.t. } & \sum_{n} \alpha_{n} y_{n}=0 \quad \text { and } \quad 0 \leq \alpha_{n} \leq C, \quad \forall n
\end{aligned}
$$

Again, no need to compute $\phi(\boldsymbol{x})$. It is a quadratic program and many efficient optimization algorithms exist.

Recover the primal solution

But how do we predict given the dual solution $\left\{\alpha_{n}^{*}\right\}$? Need to figure out the primal solution \boldsymbol{w}^{*} and b^{*}.

Based on previous observation,

$$
\boldsymbol{w}^{*}=\sum_{n} \alpha_{n}^{*} y_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)=\sum_{n: \alpha_{n}^{*}>0} \alpha_{n}^{*} y_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)
$$

A point with $\alpha_{n}^{*}>0$ is called a "support vector". Hence the name SVM.

To identify b^{*}, we need to apply complementary slackness.

Applying complementary slackness

For all n we should have

$$
\lambda_{n}^{*} \xi_{n}^{*}=0, \quad \alpha_{n}^{*}\left(1-\xi_{n}^{*}-y_{n}\left(\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b^{*}\right)\right)=0
$$

For any support vector $\boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)$ with $0<\alpha_{n}^{*}<C, \lambda_{n}^{*}=C-\alpha_{n}^{*}>0$ holds.

- first condition implies $\xi_{n}^{*}=0$.
- second condition implies $1=y_{n}\left(\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b^{*}\right)$ and thus

$$
b^{*}=y_{n}-\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)=y_{n}-\sum_{m} \alpha_{m}^{*} y_{m} k\left(\boldsymbol{x}_{m}, \boldsymbol{x}_{n}\right)
$$

Usually average over all n with $0<\alpha_{n}^{*}<C$ to stabilize computation.
The prediction on a new point \boldsymbol{x} is therefore

$$
\operatorname{SGN}\left(\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}(\boldsymbol{x})+b^{*}\right)=\operatorname{SGN}\left(\sum_{m} \alpha_{m}^{*} y_{m} k\left(\boldsymbol{x}_{m}, \boldsymbol{x}\right)+b^{*}\right)
$$

Geometric interpretation of support vectors

A support vector satisfies $\alpha_{n}^{*} \neq 0$ and

$$
1-\xi_{n}^{*}-y_{n}\left(\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b^{*}\right)=0
$$

When

- $\xi_{n}^{*}=0, y_{n}\left(\boldsymbol{w}^{* \mathrm{~T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b^{*}\right)=1$ and thus the point is $1 /\left\|\boldsymbol{w}^{*}\right\|_{2}$ away from the hyperplane.
- $\xi_{n}^{*}<1$, the point is classified correctly but does not satisfy the large margin constraint.
- $\xi_{n}^{*}>1$, the point is misclassified.

Support vectors (circled with the orange line) are the only points that matter!

An example

One drawback of kernel method: non-parametric, need to keep all training points potentially

For SVM, very often \#support vectors $\ll N$

Summary

SVM: max-margin linear classifier
Primal (equivalent to minimizing L2 regularized hinge loss):

$$
\begin{aligned}
\min _{\boldsymbol{w}, b,\left\{\xi_{n}\right\}} & C \sum_{n} \xi_{n}+\frac{1}{2}\|\boldsymbol{w}\|_{2}^{2} \\
\text { s.t. } & 1-y_{n}\left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right)+b\right) \leq \xi_{n}, \quad \forall n \\
& \xi_{n} \geq 0, \quad \forall n
\end{aligned}
$$

Dual (kernelizable, reveals what training points are support vectors):

$$
\begin{array}{ll}
\max _{\left\{\alpha_{n}\right\}} & \sum_{n} \alpha_{n}-\frac{1}{2} \sum_{m, n} y_{m} y_{n} \alpha_{m} \alpha_{n} \boldsymbol{\phi}\left(\boldsymbol{x}_{m}\right)^{\mathrm{T}} \boldsymbol{\phi}\left(\boldsymbol{x}_{n}\right) \\
\text { s.t. } & \sum_{n} \alpha_{n} y_{n}=0 \quad \text { and } \quad 0 \leq \alpha_{n} \leq C, \quad \forall n
\end{array}
$$

Summary

Typical steps of applying Lagrangian duality

- start with a primal problem
- write down the Lagrangian (one dual variable per constraint)
- apply KKT conditions to find the connections between primal and dual solutions
- eliminate primal variables and arrive at the dual formulation
- maximize the Lagrangian with respect to dual variables
- recover the primal solutions from the dual solutions

