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Review of last lecture

Naive Bayes

Assume: conditioning on a label, features are independent

p(x, y) = p(y)p(x | y) = p(y)

D∏
d=1

p(xd | y = c)

For a label c ∈ [C],

p(y = c) =
|{n : yn = c}|

N

For each possible value k of a discrete feature d,

p(xd = k | y = c) =
|{n : xnd = k, yn = c}|
|{n : yn = c}|
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Review of last lecture

Naive Bayes: continuous features

If the feature is continuous, we can do

parametric estimation, e.g. via a Gaussian

p(xd = x | y = c) =
1√

2πσcd
exp

(
−(x− µcd)2

2σ2cd

)

where µcd and σ2cd are the empirical mean and variance of feature d
among all examples with label c.

or nonparametric estimation, e.g. via a Kernel K and bandwidth h:

p(xd = x | y = c) =
1

|{n : yn = c}|
∑

n:yn=c

Kh(x− xnd)
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Review of last lecture

PCA

Input: a dataset represented as X, #components p we want

Step 1 Center the data by subtracting the mean

Step 2 Find the top p eigenvectors (with unit norm) of the covariance
matrix XTX, denoted by V ∈ RD×p

Step 3 Construct the new compressed dataset XV ∈ RN×p
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Review of last lecture

KPCA

Input: a dataset X, #components p we want, a kernel fucntion k

Step 1 Compute the Gram matrix K and the centered Gram matrix

K̄ = K −EK −KE +EKE (implicitly centering Φ)

Step 2 Find the top p eigenvectors of K̄ with the appropriate scaling,
denoted by A ∈ RN×p

(implicitly finding unit eigenvectors of Φ̄TΦ̄: V = Φ̄TA ∈ RM×p)

Step 3 Construct the new dataset K̄A ∈ RN×p

(implicitly/equivalently computing Φ̄V = Φ̄Φ̄TA)
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(Hidden) Markov models

Markov Models

Markov models are powerful probabilistic tools to analyze sequential data:

text or speech data

stock market data

gene data

· · ·
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(Hidden) Markov models Markov chain

Definition

A Markov chain is a stochastic process with Markov property:

a
sequence of random variables Z1, Z2, · · · s.t.

P (Zt+1 | Z1:t) = P (Zt+1 | Zt) (Markov property)

i.e. the current state only depends on the most recent state (notation Z1:t

denotes the sequence Z1, . . . , Zt).

We only consider the following case:

All Zt’s take value from the same discrete set {1, . . . , S}

P (Zt+1 = s′ | Zt = s) = as,s′ , known as transition probability

P (Z1 = s) = πs

({πs}, {as,s′}) = (π,A) are parameters of the model
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(Hidden) Markov models Markov chain

Examples

Example 1 (Language model)

States [S] represent a dictionary of words,

aice,cream = P (Zt+1 = cream | Zt = ice)

is an example of the transition probability.

Example 2 (Weather)

States [S] represent weather at each day

asunny,rainy = P (Zt+1 = rainy | Zt = sunny)
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(Hidden) Markov models Markov chain

High-order Markov chain

Is the Markov assumption reasonable?

Not completely for the language
model for example.

Higher order Markov chains make it more reasonable, e.g.

P (Zt+1 | Z1:t) = P (Zt+1 | Zt, Zt−1) (second-order Markov)

i.e. the current word only depends on the last two words.

Learning higher order Markov chains is similar, but more expensive.

We only consider standard Markov chains.
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(Hidden) Markov models Markov chain

Graph Representation picture from Wikipedia

It is intuitive to represent a Markov model as a graph
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(Hidden) Markov models Markov chain

Learning from examples

Now suppose we have observed N sequences of examples:

z1,1, . . . , z1,T

· · ·
zn,1, . . . , zn,T

· · ·
zN,1, . . . , zN,T

where

for simplicity we assume each sequence has the same length T

lower case zn,t represents the value of the random variable Zn,t

From these observations how do we learn the model parameters (π,A)?
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(Hidden) Markov models Markov chain

Finding the MLE

Same story, find the MLE.

The log-likelihood of a sequence z1, . . . , zT is

lnP (Z1:T = z1:T )

=

T∑
t=1

lnP (Zt = zt | Z1:t−1 = z1:t−1) (always true)

=

T∑
t=1

lnP (Zt = zt | Zt−1 = zt−1) (Markov property)

= lnπz1 +

T∑
t=2

ln azt−1,zt

=
∑
s

I[z1 = s] lnπs +
∑
s,s′

(
T∑
t=2

I[zt−1 = s, zt = s′]

)
ln as,s′
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(Hidden) Markov models Markov chain

Finding the MLE

So MLE is

argmax
π,A

∑
s

(#initial states with value s) lnπs

+
∑
s,s′

(#transitions from s to s′) ln as,s′

We have seen this many times. The solution is:

πs ∝ #initial states with value s

as,s′ ∝ #transitions from s to s′

17 / 47
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(Hidden) Markov models Markov chain

Example

Suppose we observed the following 2 sequences of length 5

sunny, sunny, rainy, rainy, rainy

rainy, sunny, sunny, sunny, rainy

MLE is the following model
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(Hidden) Markov models Hidden Markov Model

Markov Model with outcomes

Now suppose each state Zt also “emits” some outcome Xt ∈ [O] based
on the following model

P (Xt = o | Zt = s) = bs,o (emission probability)

independent of anything else.

For example, in the language model, Xt is the speech signal for the
underlying word Zt (very useful for speech recognition).

Now the model parameters are ({πs}, {as,s′}, {bs,o}) = (π,A,B).
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(Hidden) Markov models Hidden Markov Model

Another example picture from Wikipedia

On each day, we also observe Bob’s activity: walk, shop, or clean,
which only depends on the weather of that day.
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(Hidden) Markov models Hidden Markov Model

Joint likelihood

The joint log-likelihood of a state-outcome sequence z1, x1, . . . , zT , xT is

lnP (Z1:T = z1:T , X1:T = x1:T )

= lnP (Z1:T = z1:T ) + lnP (X1:T = x1:T | Z1:T = z1:T ) (always true)

=

T∑
t=1

lnP (Zt = zt | Zt−1 = zt−1) +

T∑
t=1

lnP (Xt = xt | Zt = zt)

(due to all the independence)

= lnπz1 +
T∑
t=2

ln azt−1,zt +
T∑
t=1

ln bzt,xt
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(Hidden) Markov models Hidden Markov Model

Learning the model

If we observe N state-outcome sequences: zn,1, xn,1, . . . , zn,T , xn,T for
n = 1, . . . , N , the MLE is again very simple (verify yourself):

πs ∝ #initial states with value s

as,s′ ∝ #transitions from s to s′

bs,o ∝ #state-outcome pairs (s, o)
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(Hidden) Markov models Hidden Markov Model

Learning the model

However, most often we do not observe the states!

Think about the
speech recognition example.

This is called Hidden Markov Model (HMM), widely used in practice

How to learn HMMs? Roadmap:

first discuss how to infer when the model is known (key: dynamic
programming)

then discuss how to learn the model (key: EM)
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(Hidden) Markov models Inferring HMMs

What can we infer about an HMM?

Knowing the parameter of an HMM, we can infer

the probability of observing some sequence

P (X1:T = x1:T )

e.g. prob. of observing Bob’s activities “walk, walk, shop, clean, walk,
shop, shop” for one week

the state at some point, given an observation sequence

P (Zt = s | X1:T = x1:T )

e.g. given Bob’s activities for one week, how was the weather like on
Wed?
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(Hidden) Markov models Inferring HMMs

What can we infer for a known HMM?

Knowing the parameter of an HMM, we can infer

the transition at some point, given an observation sequence

P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

e.g. given Bob’s activities for one week, how was the weather like on
Wed and Thu?

most likely hidden states path, given an observation sequence

argmax
z1:T

P (Z1:T = z1:T | X1:T = x1:T )

e.g. given Bob’s activities for one week, what’s the most likely
weather for this week?
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(Hidden) Markov models Inferring HMMs

Forward and backward messages

The key to infer all these is to compute two things:

forward messages: for each s and t

αs(t) = P (Zt = s,X1:t = x1:t)

backward messages: for each s and t

βs(t) = P (Xt+1:T = xt+1:T | Zt = s)
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(Hidden) Markov models Inferring HMMs

Computing forward messages

Key: establish a recursive formula

αs(t)

= P (Zt = s,X1:t = x1:t)

= P (Xt = xt | Zt = s,X1:t−1 = x1:t−1)P (Zt = s,X1:t−1 = x1:t−1)

= bs,xt

∑
s′

P (Zt = s, Zt−1 = s′, X1:t−1 = x1:t−1) (marginalizing)

= bs,xt

∑
s′

P (Zt = s|Zt−1 = s′, X1:t−1 = x1:t−1)P (Zt−1 = s′, X1:t−1 = x1:t−1)

= bs,xt

∑
s′

as′,sαs′(t− 1) (recursive form!)

Base case: αs(1) = P (Z1 = s,X1 = x1) = πsbs,x1
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(Hidden) Markov models Inferring HMMs

Forward procedure

Forward procedure

For all s ∈ [S], compute αs(1) = πsbs,x1 .

For t = 2, . . . , T

for each s ∈ [S], compute

αs(t) = bs,xt

∑
s′

as′,sαs′(t− 1)

It takes O(S2T ) time and O(ST ) space.
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(Hidden) Markov models Inferring HMMs

Computing backward messages

Again establish a recursive formula

βs(t)

= P (Xt+1:T = xt+1:T | Zt = s)

=
∑
s′

P (Xt+1:T = xt+1:T , Zt+1 = s′ | Zt = s) (marginalizing)

=
∑
s′

P (Zt+1 = s′ | Zt = s)P (Xt+1:T = xt+1:T | Zt+1 = s′, Zt = s)

=
∑
s′

as,s′P (Xt+1 = xt+1 | Zt+1 = s′)P (Xt+2:T = xt+2:T | Zt+1 = s′)

=
∑
s′

as,s′bs′,xt+1βs′(t+ 1) (recursive form!)

Base case: βs(T ) = 1
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(Hidden) Markov models Inferring HMMs

Backward procedure

Backward procedure

For all s ∈ [S], set βs(T ) = 1.

For t = T − 1, . . . , 1

for each s ∈ [S], compute

βs(t) =
∑
s′

as,s′bs′,xt+1βs′(t+ 1)

Again it takes O(S2T ) time and O(ST ) space.
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(Hidden) Markov models Inferring HMMs

Using forward and backward messages

With forward and backward messages, we can easily infer many things,

e.g.

γs(t) = P (Zt = s | X1:T = x1:T )

∝ P (Zt = s,X1:T = x1:T )

= P (Zt = s,X1:t = x1:t)P (Xt+1:T = xt+1:T | Zt = s,X1:t = x1:t)

= αs(t)βs(t)

What constant are we omitting in “∝”? It is exactly

P (X1:T = x1:T ) =
∑
s

αs(t)βs(t),

the probability of observing the sequence x1:T .

This is true for any t; a good way to check correctness of your code.
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(Hidden) Markov models Inferring HMMs

Using forward and backward messages

Another example: the conditional probability of transition s to s′ at time t

ξs,s′(t)

= P (Zt = s, Zt+1 = s′ | X1:T = x1:T )

∝ P (Zt = s, Zt+1 = s′, X1:T = x1:T )

= P (Zt = s,X1:t = x1:t)P (Zt+1 = s′, Xt+1:T = xt+1:T | Zt = s,X1:t = x1:t)

= αs(t)P (Zt+1 = s′ | Zt = s)P (Xt+1:T = xt+1:T | Zt+1 = s′)

= αs(t)as,s′P (Xt+1 = xt+1 | Zt+1 = s′)P (Xt+2:T = xt+2:T | Zt+1 = s′)

= αs(t)as,s′bs′,xt+1βs′(t+ 1)

The normalization constant is in fact again P (X1:T = x1:T )
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(Hidden) Markov models Inferring HMMs

Finding the most likely path

Though can’t use forward and backward messages directly to find the
most likely path, it is very similar to the forward procedure.

Key: compute

δs(t) = max
z1:t−1

P (Zt = s, Z1:t−1 = z1:t−1, X1:t = x1:t)

the probability of the most likely path for time 1 : t ending at state s
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(Hidden) Markov models Inferring HMMs

Computing δs(t)

Observe

δs(t) = max
z1:t−1

P (Zt = s, Z1:t−1 = z1:t−1, X1:t = x1:t)

= max
s′

max
z1:t−2

P (Zt = s, Zt−1 = s′, Z1:t−2 = z1:t−2, X1:t = x1:t)

= max
s′

P (Zt = s | Zt−1 = s′)P (Xt = xt | Zt = s)·

max
z1:t−2

P (Zt−1 = s′, Z1:t−2 = z1:t−2, X1:t−1 = x1:t−1)

= bs,xt max
s′

as′,sδs′(t− 1) (recursive form!)

Base case: δs(1) = P (Z1 = s,X1 = x1) = πsbs,x1

Exactly the same as forward messages except replacing “sum” by “max”!
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(Hidden) Markov models Inferring HMMs

Viterbi Algorithm (!)

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1),

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T ).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .

35 / 47



(Hidden) Markov models Inferring HMMs

Viterbi Algorithm (!)

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1),

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T ).

For each t = T, . . . , 2: set z∗t−1 = ∆z∗t
(t).

Output the most likely path z∗1 , . . . , z
∗
T .

35 / 47



(Hidden) Markov models Inferring HMMs

Viterbi Algorithm (!)

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1),

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T ).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .

35 / 47



(Hidden) Markov models Inferring HMMs

Viterbi Algorithm (!)

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1),

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T ).

For each t = T, . . . , 2: set z∗t−1 = ∆z∗t
(t).

Output the most likely path z∗1 , . . . , z
∗
T .

35 / 47



(Hidden) Markov models Inferring HMMs

Viterbi Algorithm (!)

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1),

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T ).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .

35 / 47



(Hidden) Markov models Inferring HMMs

Viterbi Algorithm (!)

Viterbi Algorithm

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) = bs,xt max
s′

as′,sδs′(t− 1),

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T ).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .

35 / 47



(Hidden) Markov models Inferring HMMs

Example

Arrows represent the “argmax”, i.e. ∆s(t).

The most likely path is “rainy, rainy, sunny, sunny”.
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(Hidden) Markov models Inferring HMMs

Exercise 1

What is the most likely sequence z∗1:T0
given x1:T0 for some T0 < T?

Is it the first T0 outputs of the Viterbi algorithm (with all data)?

No. It should be

z∗T0
= argmaxs δs(T0)

for each t = T0, . . . , 2: z∗t−1 = ∆z∗t
(t)

The answer for T0 = 3 is: “sunny, sunny, rainy”.
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(Hidden) Markov models Inferring HMMs

Exercise 2

What is the most likely sequence z∗1:T0
given x1:T for some T0 < T?

Is it the same as Exercise 1?

Is it the first T0 outputs of the Viterbi algorithm (with all data)?

Neither. It should be

z∗T0
= argmaxs δs(T0)βs(T0)

for each t = T0, . . . , 2: z∗t−1 = ∆z∗t
(t)
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(Hidden) Markov models Inferring HMMs

Exercise 2 (cont.)

Reasoning:

z∗T0
= argmax

s
max
z1:T0−1

P (ZT0 = s, Z1:T0−1 = z1:T0−1, X1:T = x1:T )

= argmax
s

max
z1:T0−1

P (ZT0 = s, Z1:T0−1 = z1:T0−1, X1:T0 = x1:T0)·

P (XT0+1,T = xT0+1:T | ZT0 = s, Z1:T0−1 = z1:T0−1, X1:T0 = x1:T0)

= argmax
s

(
max
z1:T0−1

P (ZT0 = s, Z1:T0−1 = z1:T0−1, X1:T0 = x1:T0)

)
·

P (XT0+1,T = xT0+1:T | ZT0 = s)

= argmax
s

δs(T0)βs(T0)
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(Hidden) Markov models Inferring HMMs

Exercise 3

What is the most likely sequence z∗1:T given x1:T0 for some T0 < T?

Is it the same as the Viterbi algorithm (with all data)?

Are the first T0 states the same as Exercise 1?

Again, neither is true.
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(Hidden) Markov models Inferring HMMs

Exercise 3 (cont.)

Viterbi Algorithm with partial data x1:T0

For each s ∈ [S], compute δs(1) = πsbs,x1 .

For each t = 2, . . . , T ,

for each s ∈ [S], compute

δs(t) =

{
bs,xt maxs′ as′,sδs′(t− 1) if t ≤ T0

maxs′ as′,sδs′(t− 1) else

∆s(t) = argmax
s′

as′,sδs′(t− 1).

Backtracking: let z∗T = argmaxs δs(T ).
For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .
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For each t = T, . . . , 2: set z∗t−1 = ∆z∗t

(t).

Output the most likely path z∗1 , . . . , z
∗
T .
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(Hidden) Markov models Learning HMMs

Learning the parameters of an HMM

All previous inferences depend on knowing the parameters (π,A,B).

How do we learn the parameters based on N observation sequences
xn,1, . . . , xn,T for n = 1, . . . , N?

MLE is intractable due to the hidden variables Zn,t’s (similar to GMMs)

Need to apply EM again! Known as the Baum–Welch algorithm.
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(Hidden) Markov models Learning HMMs

Applying EM: E-Step

Recall in the E-Step we fix the parameters and find the posterior
distributions q of the hidden states (for each sample n),

which leads to
the complete log-likelihood:

Ez1:T∼q [ln(Z1:T = z1:T , X1:T = x1:T )]

= Ez1:T∼q

[
lnπz1 +

T−1∑
t=1

ln azt,zt+1 +

T∑
t=1

ln bzt,xt

]

=
∑
s

γs(1) lnπs +

T−1∑
t=1

∑
s,s′

ξs,s′(t) ln as,s′ +

T∑
t=1

∑
s

γs(t) ln bs,xt

We have discussed how to compute

γs(t) = P (Zt = s | X1:T = x1:T )

ξs,s′(t) = P (Zt = s, Zt+1 = s′ | X1:T = x1:T )
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(Hidden) Markov models Learning HMMs

Applying EM: M-Step

The maximizer of complete log-likelihood is simply doing weighted
counting (compared to the unweighted counting on Slide 22):

πs ∝
∑
n

γ(n)s (1) = Eq [ #initial states with value s]

as,s′ ∝
∑
n

T−1∑
t=1

ξ
(n)
s,s′(t) = Eq

[
#transitions from s to s′

]
bs,o ∝

∑
n

∑
t:xt=o

γ(n)s (t) = Eq [ #state-outcome pairs (s, o)]

where

γ(n)s (t) = P (Zn,t = s | Xn,1:T = xn,1:T )

ξ
(n)
s,s′(t) = P (Zn,t = s, Zn,t+1 = s′ | Xn,1:T = xn,1:T )
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(Hidden) Markov models Learning HMMs

Baum–Welch algorithm

Step 0 Initialize the parameters (π,A,B)

Step 1 (E-Step) Fixing the parameters, compute forward and backward

messages for all sample sequences, then use these to compute γ
(n)
s (t) and

ξ
(n)
s,s′(t) for each n, t, s, s′ (see Slides 31 and 32).

Step 2 (M-Step) Update parameters:

πs ∝
∑
n

γ(n)s (1), as,s′ ∝
∑
n

T−1∑
t=1

ξ
(n)
s,s′(t), bs,o ∝

∑
n

∑
t:xt=o

γ(n)s (t)

Step 3 Return to Step 1 if not converged
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(Hidden) Markov models Learning HMMs

Summary

Very important models: Markov chains, hidden Markov models

Several algorithms:

forward and backward procedures

inferring HMMs based on forward and backward messages

Viterbi algorithm

Baum–Welch algorithm
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