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Administrative stuff

Please enroll in Piazza (still missing some of you).

HW1 to be released today.

Programming project:
@ invitation to enroll is out
@ all six tasks available now, with detailed description

@ collaboration not allowed, for questions talk to graders
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Outline

@ Review of last lecture
© Linear regression
© Linear regression with nonlinear basis

@ Overfitting and preventing overfitting
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Review of last lecture

Multi-class classification

Training data (set)
e N samples/instances: D™AN = {(x1,y1), (x2,y2), - , (N, UN) }
e Each x,, € RP is called a feature vector.
e Each y, € [C] ={1,2,---,C} is called a label/class/category.
@ They are used to learn f : RP — [C] for future prediction.

Special case: binary classification
@ Number of classes: C =2
e Conventional labels: {0,1} or {—1,+1}

K-NNC: predict the majority label within the K-nearest neighbor set
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Datasets

Training data

o N samples/instances: D™ = {(x1,y1), (x2,y2), -, (N, UN) }
@ They are used to learn f(-)

Test data
e M samples/instances: D™ = {(x1,v1), (z2,42), - , (M, ym) }

@ They are used to evaluate how well f(-) will do.

Development/Validation data

oL samples/instances: DPEY = {($1a y1)7 (m2>y2)7 ) (xLayL>}
@ They are used to optimize hyper-parameter(s).

These three sets should not overlap!
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S-fold Cross-validation

What if we do not have a development set?

@ Split the training data into S
equal parts.

@ Use each part in turn as a
development dataset and use
the others as a training dataset.

@ Choose the hyper-parameter
leading to best average
performance.

S = 5: 5-fold cross validation

Special case: S = N, called leave-one-out.

754



High level picture

Typical steps of developing a machine learning system:
@ Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

@ Evaluate using the test data and report performance.

@ Use the model to predict future/make decisions.
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High level picture

Typical steps of developing a machine learning system:
@ Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

@ Evaluate using the test data and report performance.
@ Use the model to predict future/make decisions.

How to do the red part exactly?

Today: from a simple example to a general recipe
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Outline

© Linear regression
@ Motivation
@ Setup and Algorithm
@ Discussions
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Regression

Predicting a continuous outcome variable using past observations
@ Predicting future temperature (last lecture)
@ Predicting the amount of rainfall
@ Predicting the demand of a product
@ Predicting the sale price of a house
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Regression

Predicting a continuous outcome variable using past observations
@ Predicting future temperature (last lecture)
@ Predicting the amount of rainfall
@ Predicting the demand of a product
@ Predicting the sale price of a house

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

@ lead to quite different learning algorithms.

Linear Regression: regression with linear models
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Motivation

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)
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Motivation

Features used to predict
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Correlation between square footage and sale price
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Possibly linear relationship

Sale price =~ price_per_sqft x square_footage + fixed_expense
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Possibly linear relationship

Sale price =~ price_per_sqft x square_footage + fixed_expense
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How to learn the unknown parameters?

How to measure error for one prediction?

@ The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.
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How to learn the unknown parameters?

How to measure error for one prediction?

@ The classification error (0-1 loss, i.e. right or wrong) is inappropriate
for continuous outcomes.

@ We can look at

o absolute error: | prediction - sale price |

e or squared error: (prediction - sale price)>  (most common)

Goal: pick the model (unknown parameters) that minimizes the
average/total prediction error, but on what set?

o test set, ideal but we cannot use test set while training

@ training set v/
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MOtivation

Example

Predicted price = price_per_sqft x square_footage + fixed_expense

one model: price_per_sqft = 0.3K, fixed_expense = 210K

sqft | sale price (K) | prediction (K) | squared error

2000 | 810 810 0

2100 | 907 840 677

1100 | 312 540 2282

5500 | 2,600 1,860 7402

Total 0+ 67 + 2282 4+ 7402 + - -

Adjust price_per_sqft and fixed_expense such that the total squared error is
minimized.
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Formal setup for linear regression

Input: x € RP (features, covariates, context, predictors, etc)
Output: y € R (responses, targets, outcomes, etc)
Training data: D = {(x,,yn),n =1,2,...,N}
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Input: x € RP (features, covariates, context, predictors, etc)
Output: y € R (responses, targets, outcomes, etc)
Training data: D = {(x,,yn),n =1,2,...,N}

Linear model: f : RP — R, with flx) =wo + 2(11):1 WeTg= wo + wrex
(superscript 7' stands for transpose), i.e. a hyper-plane parametrized by

o w=[w; wy --- wp]’ (weights, weight vector, parameter vector, etc)
@ bias wy

NOTE: for notation convenience, very often we
@ append 1 to each z as the first feature: & = [1 21 29 ... xp]T
o let w = [wg wi wy --- wp]T, a concise representation of all D + 1
parameters
@ the model becomes simply f(x) = w
z,

T
@ sometimes just use w,x, D for w,x,D + 1
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Setup and Algorithm
Goal

Minimize total squared error

o Residual Sum of Squares (RSS), a function of w

RSS(w) = Y (f(mn) —yn)> =D _(Zh1b — yn)?

n n

e find w* = argmin RSS(w), i.e. least squares solution (more
weRP+1
generally called empirical risk minimizer)

@ reduce machine learning to optimization

@ in principle can apply any optimization algorithm, but linear
regression admits a closed-form solution
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e
Warm-up: D=0

Only one parameter wp: constant prediction f(z) = wq
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f is a horizontal line, where should it be?
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e
Warm-up: D=0

Optimization objective becomes

RSS(wp) = Z(wo —yn)? (it's a quadratic aw} + bwg + c)

n

20 / 54



e
Warm-up: D=0

Optimization objective becomes

RSS(wp) = Z(wo —yn)? (it's a quadratic aw} + bwg + c)

n

= Nwi —2 (Zyn> wo + cnt.
n

20 / 54



e
Warm-up: D=0

Optimization objective becomes
RSS(wp) = Z(wo —yn)? (it's a quadratic aw} + bwg + c)
n

= Nwi —2 (Zyn> wo + cnt.
n
) 2
=N (wo - Nzn:yn> + cnt.

20 / 54



e
Warm-up: D=0

Optimization objective becomes

RSS(wp) = Z(wo —yn)? (it's a quadratic aw} + bwg + c)

n

= Nwi —2 (Zyn> wo + cnt.
n
) 2
=N (wo - Nzn:yn> + cnt.

It is clear that wg = % > n Yn, i.e. the average

20 / 54



e
Warm-up: D=0

Optimization objective becomes

RSS(wp) = Z(wg —yn)? (it's a quadratic aw} + bwg + c)

n

= Nwi —2 (Zyn> wo + cnt.
n
) 2
=N (wo - Nzn:yn> + cnt.

It is clear that wg = % > n Yn, i.e. the average

Exercise: what if we use absolute error instead of squared error?
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Warm-up: D =1

Optimization objective becomes

RSS(w) = 3 (wo + wizy — y)?
n
General approach: find stationary points, i.e., points with zero gradient

ORSS(w
761”( ) — N o (wo +wizy, — yn) =0
) 0 Zn(wﬂ + wixy — yn)xn =0

Nwo+wi ), Tn => . Un
Wo Zn Tn + w1 Zn ‘T%L = Zn YnTn

(o Ea ) ()= (&)

(a linear system)

)
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L east square solution for D = 1

= ()= (s, §><szyy>

(assuming the matrix is invertible)

22 / 54



L east square solution for D = 1

= ()= (s, §><szyy>

(assuming the matrix is invertible)

Are stationary points minimizers?

22 / 54



L east square solution for D = 1

= ()= (s, §><szyy>

(assuming the matrix is invertible)

Are stationary points minimizers?

@ yes for convex objectives (RSS is convex in w)

22 / 54



L east square solution for D = 1

= ()= (s, §><szyy>

(assuming the matrix is invertible)

Are stationary points minimizers?
@ yes for convex objectives (RSS is convex in w)

@ not true in general
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General least square solution
Objective
RSS(®) = Y (&n® — yn)*

n
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n
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General least square solution

Objective
RSS(w) = D (Z,0 — yn)”

n

Again, find stationary points (multivariate calculus)

VRSS(W) =2 &n(Tp® — yn) (Z 5:@2) W~ Enyn

=(X"X)w-XTy=0
where _
a:lT Y1
Ty Y2
X: 2 ERNX(D+1), y= . ERN

=T
4aN; YN
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General least square solution

(XTX)yw - XTy=0 = uo'=X"X)"'XTy

assuming X T X (covariance matrix) is invertible for now.
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(X™X)w-XTy=0 = & =(X"X)'X"Ty
assuming X T X (covariance matrix) is invertible for now.

Again by convexity w* is the minimizer of RSS.

Verify the solution when D = 1:

1 T
XTX’:<1 1 .- 1) 1 :< N an,;)
:1:1 1‘2 e ‘/BN e an‘n an‘n

1 TN

when D = 0: (XTX)"! = . XTy =3 un
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e
Another approach

RSS is a quadratic, so let's complete the square:

RSS(w) = > (6" % — yn)® = | X @ — g3
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e
Another approach

RSS is a quadratic, so let's complete the square:

RSS(w) = > (6" % — yn)® = | X @ — g3

n
~ T ~
-~ (%0-)" (%0 )
DT XTXw — y" X — 0" X Ty + ent.

_ (a; (XTX)IXT ) (XTX') (ﬁ; - (X'TX)*XTy) + ent.

~ ~ T - ~
Note: uT (XTX> u = (Xu) Xu=|Xul2>0andis0if u=0.
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e
Another approach

RSS is a quadratic, so let's complete the square:

RSS(w) = > (6" % — yn)® = | X @ — g3

= (X'ﬁ) — y)T (X’lb - y)

=w' X" X —y"Xw—w" Xy + cnt.

= (- (XTX)'X"y) (X7X) (8- (X"X) ' XTy) +ent
Note: uT (XTX> u = (Xu)Tf(u = || Xu||2>0andis 0 if u=0.
So w* = (XT X)X Ty is the minimizer.

25 / 54



DESCUSSiOnS

Computational complexity

Bottleneck of computing
N
W = (X X) XTy
is to invert the matrix XTX ¢ R(P+1)x(D+1)

e naively need O(D?) time
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Computational complexity

Bottleneck of computing
N
W = (X X) XTy
is to invert the matrix XTX ¢ R(P+1)x(D+1)

e naively need O(D?) time

@ there are many faster approaches (such as conjugate gradient)
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Discussions
What if XT X is not invertible

What does that imply?
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Discussions
What if XT X is not invertible

What does that imply?

Recall (X'TX') w* = X'Ty. If XTX not invertible, this equation has
@ no solution (= RSS has no minimizer? X)

@ or infinitely many solutions (= infinitely many minimizers v')
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Discussions
What if XT X is not invertible

Why would that happen?

One situation: N < D+ 1, i.e. not enough data to estimate all parameters.

Example: D=N=1

sqft | sale price
1000 | 500K

Any line passing this single point is a minimizer of RSS.
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DESCUSSiOnS

How about the following?

D=1,N=2

sgft | sale price
1000 500K
1000 600K
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DESCUSSionS

How about the following?

D=1,N=2

sgft | sale price

1000 500K

1000 600K

Any line passing the average is a minimizer of RSS

D=2N=3?

sqft | #bedroom | sale price
1000 2 500K
1500 3 700K
2000 4 800K

Again infinitely many minimizers.

29 / 54



DESCUSSionS

How to resolve this issue?

Intuition: what does inverting XTX do?

A O

0 X
eigendecomposition: XTX =U" : :
0 -+ Ap
0 - 0

where A\ > Ao > - Ap41 > 0 are eigenvalues.
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Discussions
How to resolve this issue?

Intuition: what does inverting XTX do?

A O .- 0
0 Xy - 0
eigendecomposition: XTX =U" : : : : U
0 AD 0
| 0 0 Ap+1
where A\ > Ao > - Ap41 > 0 are eigenvalues.
- .
x 0o --- 0
0 )%2 o 0
inverse: (XTX)'=UT| : : : U
0 x 0
0o --- 0 -
L AD41 |

i.e. just invert the eigenvalues
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DESCUSSiOnS

How to solve this problem?

Non-invertible = some eigenvalues are 0.
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DESCUSSionS

How to solve this problem?

Non-invertible = some eigenvalues are 0.

One natural fix: add something positive

XTX + A\ =U"T

—)\1+)\ 0
0 Ao+ A
0
0

where A > 0 and I is the identity matrix.

AD + A
0

0

AD+1 + A |
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DESCUSSionS

How to solve this problem?

Non-invertible = some eigenvalues are 0.

One natural fix: add something positive

[ AL+ A 0 0 i
0 Ao+ A 0
XTX 4+ [ =U" : : : : U
0 AD + A 0
L 0 0 AD+1 + A i
where A > 0 and I is the identity matrix. Now it is invertible:
- -
A1+ ? O
0 = 0
(XTX + )t =U" ; ' : U
1
0 )\D+/\ (1)
I 0 0 Xor A

31/ 54



B
Fix the problem

The solution becomes

~ ~ -1 -
W = (XTX n AI) XTy
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@ = (XTX +A1) Xy
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B
Fix the problem

The solution becomes

~ o~ -1 -
@ = (XTX +A1) Xy

@ not a minimizer of the original RSS

e more than an arbitrary hack (as we will see soon)

A is a hyper-parameter, can be tuned by cross-validation.
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B
Comparison to NNC

Non-parametric versus Parametric

@ Non-parametric methods: the size of the model grows with the size
of the training set.

e e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.
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B
Comparison to NNC

Non-parametric versus Parametric

@ Non-parametric methods: the size of the model grows with the size
of the training set.
e e.g. NNC, the training set itself needs to be kept in order to predict.
Thus, the size of the model is the size of the training set.

o Parametric methods: the size of the model does not grow with the

size of the training set N.
e e.g. linear regression, D 4+ 1 parameters, independent of N.

33 /54



Linear regression with nonlinear basis
Outline

© Linear regression with nonlinear basis
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Linear regression with nonlinear basis

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data

6 O
6)@ o) (o]
o d%p
05 Mol %o
(% &o
) ng
of o &
9 o
o
o
05 %@@ mo@
0. Sl
B B 8)0
w
-1 05 0 05 1
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Linear regression with nonlinear basis

Solution: nonlinearly transformed features

1. Use a nonlinear mapping
dx):xcRP = 2 e RY

to transform the data to a more complicated feature space
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2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).
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Solution: nonlinearly transformed features

1. Use a nonlinear mapping

dx):xcRP = 2 e RY

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for
the new feature space).

1

Q O
90 o
%o Od%p 3 06
05 ? o
[0} (@ o) 3
o) >
p: g OW  os ©
00 o ‘0
0 fe) * %% o
g8 0.2 N
) : o Soo
(o]
O% So ‘%C%o%o o
-05 0 0 @g 0 &
oo P ° 05
06
1 o 0.4
-1 05 0 05 1 05 0.2
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Linear regression with nonlinear basis

Regression with nonlinear basis

Model: f(x) = w'¢(x) where w € RM
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Linear regression with nonlinear basis

Regression with nonlinear basis

Model: f(x) = w'¢(x) where w € RM
Objective:

RSS(w) = Z (ngb(azn) — yn)2

n
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Linear regression with nonlinear basis

Regression with nonlinear basis

Model: f(x) = w'¢(x) where w € RM

Objective:
RSS(w) = Z (wrg(zn) — yn)2
Similar least square solution:
¢(901)$
w* = (<I>T'I>)_1 ®Ty where &= ¢(m:2) e RVM
Slan)T
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Linear regression with nonlinear basis

Example

Polynomial basis functions for D =1

1
Z M
o(x) = a? = f(x) =wo+ Z W™
. m=1
N
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Linear regression with nonlinear basis

Example

Polynomial basis functions for D =1

1
z M
o(x) = ? = f(x) =wo+ Z W™
. m=1
i

Learning a linear model in the new space
= learning an M -degree polynomial model in the original space
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Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0,1, or 3):

1 o0 M=0

-1

39 / 54



Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0,1, or 3):

1 o0 M=0 1 o0 M=1
0O, O,

t t

o o

o o
0 \° o 9
CIS ° o
Q. Q.

1 -1

0 1 0 1
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Linear regression with nonlinear basis

Example

Fitting a noisy sine function with a polynomial (M = 0,1, or 3):

1 oo M=0 1 oo M=1
0O, O,
t t
o o
(o} o
0 \° 0 ©
° o ° o
Q. Q.
-1 -1
) 1 ) 1
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Why nonlinear?

Can | use a fancy linear feature map?

1 — X2

3334 — I3

d(@) = | 20 4 2y + a5 | = Az for some A € RMxP
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Why nonlinear?

Can | use a fancy linear feature map?

Tr1 — X2
33?4 — I3
MxD
(x) = 2%y + T4 + T5 = Ax for some A € RV~
No, it basically does nothing since
: T 2 o . ( /T )2
min w Az, — = min w' T, —
wERM < ( n yn) wElm(AT)CRD Z n— Yn
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Why nonlinear?

Can | use a fancy linear feature map?

1 — X2

33?4 — I3
o(x) = 0y + a4+ 25 | = Az for some A € RM*P

No, it basically does nothing since

. 2 . T 2
min (wTA:I:n - yn) = min Z (w’ T, — yn>
weRM - w’€lm(AT)CRD

We will see more nonlinear mappings soon.

40 / 54



Overfitting and preventing overfitting
Outline

@ Overfitting and preventing overfitting
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Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

1 oo M=0 1 oo M=1
0O, O,
t t
o o
(o} o
0 \° 0 ©
° o ° o
Q. Q.
-1 -1
) 1 ) 1
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Overfitting and preventing overfitting

Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:

1 O—o0 M=0

-1
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Underfitting and Overfitting

M < 2 is underfitting the data ©— Training
—©— Test

@ large training error

2]
@ large test error £ 05
53]

M > 9 is overfitting the data

@ small training error

©o(

o large test error 0 S m 6
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Underfitting and Overfitting

M < 2 is underfitting the data
@ large training error

@ large test error

M > 9 is overfitting the data
@ small training error

o large test error

More complicated models = larger gap between training and test error

—©— Training

—Oo— Test

©o(
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Underfitting and Overfitting

M < 2 is underfitting the data ©— Training
—©— Test

@ large training error

@ large test error

M > 9 is overfitting the data

@ small training error

o large test error 0 S m ©

©o(

More complicated models = larger gap between training and test error

How to prevent overfitting?
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Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier

| MJ
t
0
-1
0 . 1
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Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier

| MJ
t
0
-1
0 . 1

N =100
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Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier

N =100

More data = smaller gap between training and test error

44 / 54



Overfitting and preventing overfitting

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

@ use cross-validation to pick hyper-parameter M
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Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

@ use cross-validation to pick hyper-parameter M

When M or in general @ is fixed, are there still other ways to control
complexity?
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Magnitude of weights

Least square solution for the polynomial example:

M=0 M=1 M=3 M=9
wo | 019 082 031 0.35
wy 127 7.99 232.37
Wy -25.43 -5321.83
ws 17.37 48568.31
m -231639.30
ws 640042.26
we -1061800.52
wr 1042400.18
ws -557682.99
w 125201.43
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Magnitude of weights

Least square solution for the polynomial example:

M=0 M=1 M=3 M=9
wo 0.19 0.82 0.31 0.35
w1 -1.27 7.99 232.37
Wy -25.43 -5321.83
w3 17.37 48568.31
Wy -231639.30
ws 640042.26
We -1061800.52
wy 1042400.18
wg -557682.99
Wy 125201.43

Intuitively, large weights = more complex model
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Overfitting and preventing overfitting

How to make w small?

Regularized linear regression: new objective
E(w) = RSS(w) + AR(w)

Goal: find w* = argmin,, £(w)

47 / 54



Overfitting and preventing overfitting
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Regularized linear regression: new objective
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Goal: find w* = argmin,, £(w)

o R:RP — Rt is the regularizer

e measure how complex the model w is, penalize complex models

e common choices: ||w]|3, |

w||1, etc.
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Overfitting and preventing overfitting

How to make w small?

Regularized linear regression: new objective
E(w) = RSS(w) + AR(w)
Goal: find w* = argmin,, £(w)

o R:RP — Rt is the regularizer

e measure how complex the model w is, penalize complex models

e common choices: ||w]|3, |

w||1, etc.

@ A\ > 0 is the regularization coefficient

e A =0, no regularization
o A — 400, w — argmin,, R(w)

e i.e. control trade-off between training error and complexity
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The effect of \

when we increase regularization coefficient A

InA\=-00 InA=-18 InA=0
wo 0.35 0.35 0.13
w1 232.37 474 -0.05
wo -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.06
wy | -231639.30 -3.89 -0.03
ws 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wy | 1042400.18 -45.95 -0.00
wg | -557682.99 -91.53 0.00
Wy 125201.43 72.68 0.01
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Overfitting and preventing overfitting

The trade-off

when we increase regularization coefficient A

M=9
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Overfitting and preventing overfitting

The trade-off

when we increase regularization coefficient A

M=9

1 oo InA=0
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Overfitting and preventing overfitting

The trade-off

when we increase regularization coefficient A

1 M=9 1 oo InA=0
°
' '
o
° o
4 of TN ———
° o
o
-1 -1
0 1 0 1 [ 1
1
Training
Test
£ 05
) /_kJ

-35 =30 .\ 725
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Overfitting and preventing overfitting

How to solve the new objective?

Simple for R(w) = ||w||3:

E(w) = RSS(w) + A|w| = [|[@w — y|3 + Alwll3
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Overfitting and preventing overfitting

How to solve the new objective?

Simple for R(w) = ||w||3:
E(w) = RSS(w) + A|w| = [|[@w — y|3 + Alwll3

VE(w) = 2(dTdw — ®Ty) + 20w =0
= (2Te+ M) w=2"y
= w' = (8T® + A1) BTy

Note the same form as in the fix when X TX is not invertible!
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Overfitting and preventing overfitting

How to solve the new objective?

Simple for R(w) = ||w||3:
&(w) = RSS(w) + Al|jwll3 = |®w — y||5 + A wlf3
VE(w) =2(®Tdw — dTy) + 20w =0
= (2Te+ M) w=2"y
= w' = (8T® + A1) BTy
Note the same form as in the fix when X TX is not invertible!

For other regularizers, as long as it's convex, standard optimization
algorithms can be applied.
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Overfitting and preventing overfitting

Equivalent form

Regularization is also sometimes formulated as

argmin RSS(w)  subject to R(w) <

where (3 is some hyper-parameter.
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Overfitting and preventing overfitting

Equivalent form

Regularization is also sometimes formulated as
argmin RSS(w)  subject to R(w) <
w
where (3 is some hyper-parameter.
Finding the solution becomes a constrained optimization problem.

Choosing either A or 3 can be done by cross-validation.

51/ 54



Overfitting and preventing overfitting

Summary

w* = (BT® + A1) dTy
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Overfitting and preventing overfitting

Summary

w* = (BT® + A1) dTy

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization
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Recall the question

Typical steps of developing a machine learning system:
@ Collect data, split into training, development, and test sets.

@ Train a model with a machine learning algorithm. Most often we
apply cross-validation to tune hyper-parameters.

o Evaluate using the test data and report performance.
@ Use the model to predict future/make decisions.

How to do the red part exactly?
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Overfitting and preventing overfitting

General idea to derive ML algorithms

1. Pick a set of models F
o eg F={f(x)=wlz|weRP}
oeg F={f(x)=w"®(x)|wecRM}
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oeg F={f(x)=w"®(x)|wecRM}

2. Define error/loss L(y,y)

3. Find empirical risk minimizer (ERM):

N
f* = argmin Z L(f(xn), Yn)

fer

n=1
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Overfitting and preventing overfitting

General idea to derive ML algorithms
1. Pick a set of models F

oeg F={f(x)=wrz|weRP}
o eg F={f(x)=w"®()|weR"}

2. Define error/loss L(y,y)

3. Find empirical risk minimizer (ERM):

f* = argmin Z L(f Yn)

fer

n=1

or regularized empirical risk minimizer:

f* = argmin Z L(f(xn),yn) + AR(f)

VIS ——
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Overfitting and preventing overfitting

General idea to derive ML algorithms

1. Pick a set of models F
oeg F={f(x)=w"z|wecRP}
o eg F={f(z)=w'®(x)|weRM}

2. Define error/loss L(y',y)
3. Find empirical risk minimizer (ERM):
ff=argmin » L(f Yn)
s 41
or regularized empirical risk minimizer:

f* = argmin Z L(f(xn),yn) + AR(f)

VIS ——

ML becomes optimization
54 / 54
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