CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

U of Southern California

Sep 2, 2021

HW1 to be released today.

HW1 to be released today.

Programming project:

• invitation to enroll is out

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now, with detailed description

HW1 to be released today.

Programming project:

- invitation to enroll is out
- all six tasks available now, with detailed description
- collaboration not allowed, for questions talk to graders

Outline

- Review of last lecture
- 2 Linear regression
- 3 Linear regression with nonlinear basis
- Overfitting and preventing overfitting

Outline

Review of last lecture

Linear regression

Linear regression with nonlinear basis

Overfitting and preventing overfitting

Multi-class classification

Training data (set)

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- Each $x_n \in \mathbb{R}^{\mathsf{D}}$ is called a feature vector.
- Each $y_n \in [C] = \{1, 2, \cdots, C\}$ is called a label/class/category.
- They are used to learn $f : \mathbb{R}^{D} \to [C]$ for future prediction.

Special case: binary classification

- Number of classes: C = 2
- \bullet Conventional labels: $\{0,1\}$ or $\{-1,+1\}$

K-NNC: predict the majority label within the K-nearest neighbor set

Datasets

Training data

- N samples/instances: $\mathcal{D}^{\text{TRAIN}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_N, y_N)\}$
- They are used to learn $f(\cdot)$

Test data

- M samples/instances: $\mathcal{D}^{\text{TEST}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{M}}, y_{\mathsf{M}})\}$
- They are used to evaluate how well $f(\cdot)$ will do.

Development/Validation data

- L samples/instances: $\mathcal{D}^{\text{DEV}} = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \cdots, (\boldsymbol{x}_{\mathsf{L}}, y_{\mathsf{L}})\}$
- They are used to optimize hyper-parameter(s).

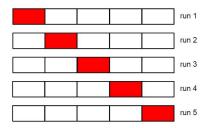
These three sets should *not* overlap!

S-fold Cross-validation

What if we do not have a development set?

- Split the training data into S equal parts.
- Use each part *in turn* as a development dataset and use the others as a training dataset.
- Choose the hyper-parameter leading to best *average* performance.

S = 5: 5-fold cross validation



Special case: S = N, called leave-one-out.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- *Train a model with a machine learning algorithm.* Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- *Train a model with a machine learning algorithm.* Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

High level picture

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- *Train a model with a machine learning algorithm*. Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

Today: from a simple example to a general recipe

Outline

Review of last lecture

2 Linear regression

- Motivation
- Setup and Algorithm
- Discussions

Linear regression with nonlinear basis

Overfitting and preventing overfitting

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Regression

Predicting a continuous outcome variable using past observations

- Predicting future temperature (last lecture)
- Predicting the amount of rainfall
- Predicting the demand of a product
- Predicting the sale price of a house
- ...

Key difference from classification

- continuous vs discrete
- measure *prediction errors* differently.
- lead to quite different learning algorithms.

Linear Regression: regression with linear models

Ex: Predicting the sale price of a house

Retrieve historical sales records (training data)

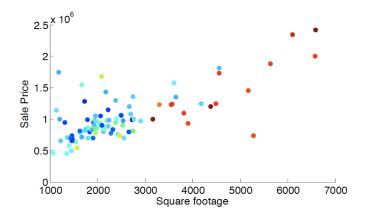
Features used to predict

Property Details for 3620 South BUDLONG, Los Angeles, CA 90007

etails provided by i-Tech MLS and may not match the public record. Learn Mon

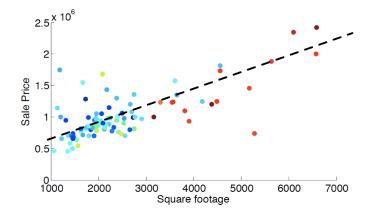
Interior Features		
Interior Peatures		
Kitchen Information • Remodeled • Oven, Range	Laundry Information Inside Laundry	Heating & Cooling • Wall Cooling Unit(s)
Multi-Unit Information		
Community Features • Units in Comprise (Total): 5 Multi-Family Information • # Jealer: 3 • Johns Pays Water • Tenter Pays Becntarty, Tenant Pays Bas Unit Information • # of Bahs: 1 • Units/Pays Ed. 200	Unit 2 Information • # of Bods: 3 • # of Bats: 1 • Unitaristand • Nontry Name: \$ 2550 Unit 3 Information • Unitaristand Unit 4 Information • # of Baths: 1 • Unitaristed	Monthly Rest: \$2,360 Units of Information # of Betrs: 3 # of Betrs: 3 # of Betrs: 2 Unturnited Monthly Rest: \$2,225 Units of Information # of Betrs: 1 # of Betrs: 1 Monthly Rest: \$2,250
Property / Lot Details		
Property Features Automatic Cate, Card/Code Access Lot Information Lot Size (Sor, FL): 9,849 Lot Size (Acres): 0.2215 Lot Size Source: Public Records	Autometic Gate, Lawn, Sidewalks Comer Lot, Near Public Transit Property Information Update/Perroded Square Foctage Source: Public Records	Tax Parcel Number: 5040017019
Parking / Garage, Exterior Features, Utilities &	Financing	
Parking Information • If of Parking Spaces (Total: 12 • Parking Space • Gated Building Information • Total Floors: 2	Utility Information • Green Certification Rating: 0.00 • Green Loadion: Transportation, Walkability • Green Walk Score: 0 • Green Year Certified: 0	Financial Information Capitalization Rate (%): 6.25 Actual Annual Gross Rent: \$126,331 Gross Rent Multiplier: 11.29
Location Details, Misc. Information & Listing In	formation	
Location Information • Cross Streets: W 38th Pl	Expense Information • Operating: \$37,664	Usting Information Usting Terms: Cash, Cash To Existing Lo Buver Financing: Cash

Correlation between square footage and sale price

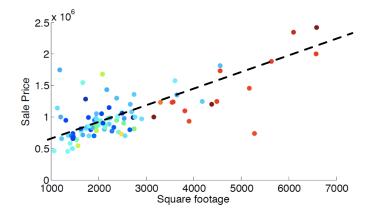


Possibly linear relationship

Sale price \approx price_per_sqft \times square_footage + fixed_expense



Possibly linear relationship



How to learn the unknown parameters?

How to measure error for one prediction?

• The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *absolute* error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *absolute* error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error,

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - absolute error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *absolute* error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

• test set, ideal but we cannot use test set while training

How to learn the unknown parameters?

How to measure error for one prediction?

- The classification error (0-1 loss, i.e. *right* or *wrong*) is *inappropriate* for continuous outcomes.
- We can look at
 - *absolute* error: | prediction sale price |
 - or *squared* error: (prediction sale price)² (most common)

Goal: pick the model (unknown parameters) that minimizes the average/total prediction error, but *on what set*?

- test set, ideal but we cannot use test set while training
- training set √

Example

 $\label{eq:predicted price} {\sf Predicted price} = {\sf price_per_sqft} \times {\sf square_footage} + {\sf fixed_expense}$

one model: price_per_sqft = 0.3K, fixed_expense = 210K

sqft	sale price (K)	prediction (K)	squared error
2000	810	810	0
2100	907	840	67^2
1100	312	540	228^2
5500	2,600	1,860	740^2
•••		•••	
Total			$0 + 67^2 + 228^2 + 740^2 + \cdots$

Adjust price_per_sqft and fixed_expense such that the total squared error is minimized.

Input: $x \in \mathbb{R}^{\mathsf{D}}$ (features, covariates, context, predictors, etc)

Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, \mathsf{N}\}$

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{\mathsf{D}} \to \mathbb{R}$, with $f(x) = w_0 + \sum_{d=1}^{D} w_d x_d$

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, \mathsf{N}\}$

Linear model: $f : \mathbb{R}^{\mathsf{D}} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_0 + \sum_{d=1}^{D} w_d x_d = w_0 + \boldsymbol{w}^{\mathsf{T}} \boldsymbol{x}$ (superscript T stands for transpose),

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) **Output**: $y \in \mathbb{R}$ (responses, targets, outcomes, etc)

Training data: $\mathcal{D} = \{(\boldsymbol{x}_n, y_n), n = 1, 2, \dots, N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

NOTE: for notation convenience, very often we

• append 1 to each x as the first feature: $\tilde{x} = [1 \ x_1 \ x_2 \ \dots \ x_D]^T$

Formal setup for linear regression

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$
- let $\tilde{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters

Formal setup for linear regression

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$
- let $\tilde{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters
- the model becomes simply $f(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^{\mathbf{T}} \tilde{\boldsymbol{x}}$

Formal setup for linear regression

Input: $x \in \mathbb{R}^{D}$ (features, covariates, context, predictors, etc) Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc) Training data: $\mathcal{D} = \{(x_n, y_n), n = 1, 2, ..., N\}$

Linear model: $f : \mathbb{R}^{D} \to \mathbb{R}$, with $f(\boldsymbol{x}) = w_{0} + \sum_{d=1}^{D} w_{d}x_{d} = w_{0} + \boldsymbol{w}^{T}\boldsymbol{x}$ (superscript T stands for transpose), i.e. a *hyper-plane* parametrized by • $\boldsymbol{w} = [w_{1} \ w_{2} \ \cdots \ w_{D}]^{T}$ (weights, weight vector, parameter vector, etc) • bias w_{0}

NOTE: for notation convenience, very often we

- append 1 to each x as the first feature: $\tilde{\boldsymbol{x}} = [1 \ x_1 \ x_2 \ \dots \ x_{\mathsf{D}}]^{\mathrm{T}}$
- let $\tilde{w} = [w_0 \ w_1 \ w_2 \ \cdots \ w_D]^T$, a concise representation of all D+1 parameters
- the model becomes simply $f(\boldsymbol{x}) = \tilde{\boldsymbol{w}}^{\mathbf{T}} \tilde{\boldsymbol{x}}$
- sometimes just use ${m w}, {m x}, {\sf D}$ for ${m ilde w}, {m ilde x}, {\sf D}+1!$

Minimize total squared error

$$\sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

Minimize total squared error

• Residual Sum of Squares (RSS), a function of $ilde{w}$

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_{n}) - y_{n})^{2} = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

• find $\tilde{w}^* = \underset{\tilde{w} \in \mathbb{R}^{D+1}}{\operatorname{argmin}} \operatorname{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)

Minimize total squared error

• Residual Sum of Squares (RSS), a function of \tilde{w}

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_n) - y_n)^2 = \sum_{n} (\tilde{\boldsymbol{x}}_n^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_n)^2$$

- find $\tilde{w}^* = \underset{\tilde{w} \in \mathbb{R}^{D+1}}{\operatorname{argmin}} \operatorname{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization

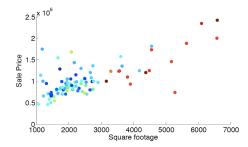
Minimize total squared error

• Residual Sum of Squares (RSS), a function of $ilde{w}$

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (f(\boldsymbol{x}_{n}) - y_{n})^{2} = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

- find $\tilde{w}^* = \underset{\tilde{w} \in \mathbb{R}^{D+1}}{\operatorname{argmin}} \operatorname{RSS}(\tilde{w})$, i.e. least squares solution (more generally called empirical risk minimizer)
- reduce machine learning to optimization
- in principle can apply any optimization algorithm, but linear regression admits a *closed-form solution*

Only one parameter w_0 : constant prediction $f(x) = w_0$



f is a horizontal line, where should it be?

$$\operatorname{RSS}(w_0) = \sum_n (w_0 - y_n)^2$$

(it's a *quadratic*
$$aw_0^2 + bw_0 + c$$
)

$$\begin{aligned} \operatorname{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad \text{(it's a quadratic } aw_0^2 + bw_0 + c)} \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \operatorname{cnt.} \end{aligned}$$

$$\begin{aligned} \operatorname{RSS}(w_0) &= \sum_n (w_0 - y_n)^2 \qquad (\text{it's a } quadratic } aw_0^2 + bw_0 + c) \\ &= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.} \\ &= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.} \end{aligned}$$

Optimization objective becomes

$$RSS(w_0) = \sum_n (w_0 - y_n)^2 \quad (\text{it's a } quadratic } aw_0^2 + bw_0 + c)$$
$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$
$$= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Optimization objective becomes

$$RSS(w_0) = \sum_n (w_0 - y_n)^2 \quad (\text{it's a } quadratic \ aw_0^2 + bw_0 + c)$$
$$= Nw_0^2 - 2\left(\sum_n y_n\right)w_0 + \text{cnt.}$$
$$= N\left(w_0 - \frac{1}{N}\sum_n y_n\right)^2 + \text{cnt.}$$

It is clear that $w_0^* = \frac{1}{N} \sum_n y_n$, i.e. the average

Exercise: what if we use absolute error instead of squared error?

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

Optimization objective becomes

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{array}{c} \sum_n (w_0 + w_1 x_n - y_n) = 0\\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

Optimization objective becomes

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0\\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \sum_{n} (w_0 + w_1 x_n - y_n) = 0\\ \sum_{n} (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{ll} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad (a \text{ linear system})$$

Optimization objective becomes

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (w_0 + w_1 x_n - y_n)^2$$

General approach: find stationary points, i.e., points with zero gradient

$$\begin{cases} \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_0} = 0 \\ \frac{\partial \text{RSS}(\tilde{\boldsymbol{w}})}{\partial w_1} = 0 \end{cases} \Rightarrow \begin{array}{c} \sum_n (w_0 + w_1 x_n - y_n) = 0 \\ \sum_n (w_0 + w_1 x_n - y_n) x_n = 0 \end{cases}$$

$$\Rightarrow \begin{array}{l} Nw_0 + w_1 \sum_n x_n &= \sum_n y_n \\ w_0 \sum_n x_n + w_1 \sum_n x_n^2 &= \sum_n y_n x_n \end{array} \quad \text{(a linear system)} \\ \Rightarrow \left(\begin{array}{c} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array} \right) \left(\begin{array}{c} w_0 \\ w_1 \end{array} \right) = \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array} \right) \end{array}$$

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

Are stationary points minimizers?

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

Are stationary points minimizers?

• yes for **convex** objectives (RSS is convex in \tilde{w})

$$\Rightarrow \left(\begin{array}{c} w_0^* \\ w_1^* \end{array}\right) = \left(\begin{array}{cc} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{array}\right)^{-1} \left(\begin{array}{c} \sum_n y_n \\ \sum_n x_n y_n \end{array}\right)$$

(assuming the matrix is invertible)

Are stationary points minimizers?

• yes for **convex** objectives (RSS is convex in \tilde{w})

• not true in general

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$abla ext{RSS}(ilde{m{w}}) = 2\sum_n ilde{m{x}}_n (ilde{m{x}}_n^{ ext{T}} ilde{m{w}} - y_n)$$

Setup and Algorithm

General least square solution

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2\sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}}\right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$

Setup and Algorithm

General least square solution

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}} \right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y}$$

where

$$\tilde{\boldsymbol{X}} = \begin{pmatrix} \tilde{\boldsymbol{x}}_1^{\mathrm{T}} \\ \tilde{\boldsymbol{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N} \times (D+1)}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{\mathsf{N}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N}}$$

Setup and Algorithm

General least square solution

Objective

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{x}}_{n}^{\mathrm{T}} \tilde{\boldsymbol{w}} - y_{n})^{2}$$

Again, find stationary points (multivariate calculus)

$$\nabla \text{RSS}(\tilde{\boldsymbol{w}}) = 2 \sum_{n} \tilde{\boldsymbol{x}}_{n} (\tilde{\boldsymbol{x}}_{n}^{\text{T}} \tilde{\boldsymbol{w}} - y_{n}) \propto \left(\sum_{n} \tilde{\boldsymbol{x}}_{n} \tilde{\boldsymbol{x}}_{n}^{\text{T}} \right) \tilde{\boldsymbol{w}} - \sum_{n} \tilde{\boldsymbol{x}}_{n} y_{n}$$
$$= (\tilde{\boldsymbol{X}}^{\text{T}} \tilde{\boldsymbol{X}}) \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\text{T}} \boldsymbol{y} = \boldsymbol{0}$$

where

$$\tilde{\boldsymbol{X}} = \begin{pmatrix} \tilde{\boldsymbol{x}}_1^{\mathrm{T}} \\ \tilde{\boldsymbol{x}}_2^{\mathrm{T}} \\ \vdots \\ \tilde{\boldsymbol{x}}_{\mathsf{N}}^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N} \times (D+1)}, \quad \boldsymbol{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{\mathsf{N}} \end{pmatrix} \in \mathbb{R}^{\mathsf{N}}$$

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})\tilde{\boldsymbol{w}} - \tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{0} \quad \Rightarrow \quad \tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$$

assuming $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ (covariance matrix) is invertible for now.

Again by convexity $ilde{w}^*$ is the minimizer of RSS.

Verify the solution when D = 1:

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_{\mathsf{N}} \end{pmatrix} \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \cdots & \cdots \\ 1 & x_{\mathsf{N}} \end{pmatrix} = \begin{pmatrix} N & \sum_n x_n \\ \sum_n x_n & \sum_n x_n^2 \end{pmatrix}$$

when $\mathsf{D} = 0$: $(\tilde{\bm{X}}^{\mathrm{T}}\tilde{\bm{X}})^{-1} = \frac{1}{N}$, $\tilde{\bm{X}}^{\mathrm{T}}\bm{y} = \sum_n y_n$

$$\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2}$$

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \end{aligned}$$

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \end{aligned}$$

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.} \end{aligned}$$

$$\begin{aligned} &\operatorname{RSS}(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2} \\ &= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right) \\ &= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \operatorname{cnt.} \\ &= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \operatorname{cnt.} \end{aligned}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$$
 and is 0 if $\boldsymbol{u} = 0$.

Another approach

RSS is a quadratic, so let's complete the square:

$$RSS(\tilde{\boldsymbol{w}}) = \sum_{n} (\tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{x}}_{n} - y_{n})^{2} = \|\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\|_{2}^{2}$$
$$= \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}\right)$$
$$= \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \boldsymbol{y}^{\mathrm{T}} \tilde{\boldsymbol{X}} \tilde{\boldsymbol{w}} - \tilde{\boldsymbol{w}}^{\mathrm{T}} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y} + \text{cnt.}$$
$$= \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right)^{\mathrm{T}} \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}}\right) \left(\tilde{\boldsymbol{w}} - (\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}})^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}\right) + \text{cnt.}$$

Note:
$$\boldsymbol{u}^{\mathrm{T}}\left(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}}\right)\boldsymbol{u} = \left(\tilde{\boldsymbol{X}}\boldsymbol{u}\right)^{\mathrm{T}}\tilde{\boldsymbol{X}}\boldsymbol{u} = \|\tilde{\boldsymbol{X}}\boldsymbol{u}\|_{2}^{2} \geq 0$$
 and is 0 if $\boldsymbol{u} = 0$.
So $\tilde{\boldsymbol{w}}^{*} = (\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1}\tilde{\boldsymbol{X}}^{\mathrm{T}}\boldsymbol{y}$ is the minimizer.

Computational complexity

Bottleneck of computing

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{ ext{T}} oldsymbol{y}$$

is to invert the matrix $\tilde{\bm{X}}^{\mathrm{T}}\tilde{\bm{X}}\in\mathbb{R}^{(\mathsf{D}+1)\times(\mathsf{D}+1)}$

 \bullet naively need $O(\mathsf{D}^3)$ time

Computational complexity

Bottleneck of computing

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{ ext{T}} ilde{oldsymbol{X}}
ight)^{-1} ilde{oldsymbol{X}}^{ ext{T}} oldsymbol{y}$$

is to invert the matrix $ilde{m{X}}^{\mathrm{T}} ilde{m{X}} \in \mathbb{R}^{(\mathsf{D}+1) imes (\mathsf{D}+1)}$

- naively need $O(\mathsf{D}^3)$ time
- there are many faster approaches (such as conjugate gradient)

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

What does that imply?

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

What does that imply?

$$\mathsf{Recall}\,\left(ilde{m{X}}^{\mathrm{T}} ilde{m{X}}
ight)m{w}^{*}= ilde{m{X}}^{\mathrm{T}}m{y}.$$

What if $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ is not invertible

What does that imply?

Recall
$$\left(ilde{X}^{\mathrm{T}} ilde{X}
ight)w^* = ilde{X}^{\mathrm{T}}y$$
. If $ilde{X}^{\mathrm{T}} ilde{X}$ not invertible, this equation has
• no solution

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

What does that imply?

Recall
$$\left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{ ext{T}}m{y}$$
. If $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ not invertible, this equation has

no solution

• or infinitely many solutions

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

What does that imply?

Recall
$$\left(ilde{m{X}}^{ ext{T}} ilde{m{X}}
ight)m{w}^* = ilde{m{X}}^{ ext{T}}m{y}$$
. If $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ not invertible, this equation has

• no solution (\Rightarrow RSS has no minimizer? \checkmark)

• or infinitely many solutions (\Rightarrow infinitely many minimizers \checkmark)

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft	sale price
1000	500K

What if $ilde{m{X}}^{\mathrm{T}} ilde{m{X}}$ is not invertible

Why would that happen?

One situation: N < D + 1, i.e. not enough data to estimate all parameters.

Example: D = N = 1

sqft	sale price
1000	500K

Any line passing this single point is a minimizer of RSS.

$\mathsf{D}=1,\mathsf{N}=2$

sqft	sale price
1000	500K
1000	600K

D = 1, N = 2

sqft	sale price
1000	500K
1000	600K

Any line passing the average is a minimizer of RSS.

D = 1, N = 2

sqft	sale price
1000	500K
1000	600K

Any line passing **the average** is a minimizer of RSS. D = 2, N = 3?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

D = 1, N = 2

sqft	sale price
1000	500K
1000	600K

Any line passing **the average** is a minimizer of RSS. D = 2, N = 3?

sqft	#bedroom	sale price
1000	2	500K
1500	3	700K
2000	4	800K

Again infinitely many minimizers.

How to resolve this issue?

Intuition: what does inverting $ilde{X}^{\mathrm{T}} ilde{X}$ do?

eigendecomposition:
$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathrm{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathrm{D}+1} \end{bmatrix} \boldsymbol{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are eigenvalues.

How to resolve this issue?

Intuition: what does inverting $ilde{m{X}}^{ ext{T}} ilde{m{X}}$ do?

eigendecomposition:
$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathrm{D}} & 0 \\ 0 & \cdots & 0 & \lambda_{\mathrm{D}+1} \end{bmatrix} \boldsymbol{U}$$

where $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_{D+1} \geq 0$ are eigenvalues.

inverse:
$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1}} & 0 & \cdots & 0\\ 0 & \frac{1}{\lambda_{2}} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & \frac{1}{\lambda_{\mathrm{D}}} & 0\\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathrm{D}+1}} \end{bmatrix} \boldsymbol{U}$$

i.e. just invert the eigenvalues

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathsf{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathsf{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix.

How to solve this problem?

Non-invertible \Rightarrow some eigenvalues are 0.

One natural fix: add something positive

$$\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \lambda_{1} + \lambda & 0 & \cdots & 0 \\ 0 & \lambda_{2} + \lambda & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & \lambda_{\mathrm{D}} + \lambda & 0 \\ 0 & \cdots & 0 & \lambda_{\mathrm{D}+1} + \lambda \end{bmatrix} \boldsymbol{U}$$

where $\lambda > 0$ and \boldsymbol{I} is the identity matrix. Now it is invertible:

$$(\tilde{\boldsymbol{X}}^{\mathrm{T}}\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I})^{-1} = \boldsymbol{U}^{\mathrm{T}} \begin{bmatrix} \frac{1}{\lambda_{1}+\lambda} & 0 & \cdots & 0\\ 0 & \frac{1}{\lambda_{2}+\lambda} & \cdots & 0\\ \vdots & \vdots & \vdots & \vdots\\ 0 & \cdots & \frac{1}{\lambda_{\mathsf{D}}+\lambda} & 0\\ 0 & \cdots & 0 & \frac{1}{\lambda_{\mathsf{D}+1}+\lambda} \end{bmatrix} \boldsymbol{U}$$

Fix the problem

The solution becomes

$$ilde{oldsymbol{w}}^* = \left(ilde{oldsymbol{X}}^{\mathrm{T}} ilde{oldsymbol{X}} + \lambda oldsymbol{I}
ight)^{-1} ilde{oldsymbol{X}}^{\mathrm{T}} oldsymbol{y}$$

Fix the problem

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} \right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

• not a minimizer of the original RSS

Fix the problem

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} \right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)

Fix the problem

The solution becomes

$$\tilde{\boldsymbol{w}}^* = \left(\tilde{\boldsymbol{X}}^{\mathrm{T}} \tilde{\boldsymbol{X}} + \lambda \boldsymbol{I} \right)^{-1} \tilde{\boldsymbol{X}}^{\mathrm{T}} \boldsymbol{y}$$

- not a minimizer of the original RSS
- more than an arbitrary hack (as we will see soon)
- λ is a *hyper-parameter*, can be tuned by cross-validation.

Comparison to NNC

Non-parametric versus Parametric

- Non-parametric methods: the size of the model *grows* with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.

Comparison to NNC

Non-parametric versus Parametric

- Non-parametric methods: the size of the model *grows* with the size of the training set.
 - e.g. NNC, the training set itself needs to be kept in order to predict. Thus, the size of the model is the size of the training set.
- **Parametric methods**: the size of the model does *not grow* with the size of the training set N.
 - $\bullet\,$ e.g. linear regression, $\mathsf{D}+1$ parameters, independent of N.

Outline

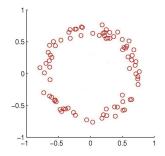
2 Linear regression

3 Linear regression with nonlinear basis

Overfitting and preventing overfitting

What if linear model is not a good fit?

Example: a straight line is a bad fit for the following data



Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D} ooldsymbol{z}\in\mathbb{R}^{M}$$

to transform the data to a more complicated feature space

Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D} ooldsymbol{z}\in\mathbb{R}^{M}$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).

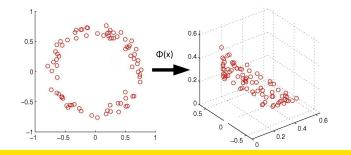
Solution: nonlinearly transformed features

1. Use a nonlinear mapping

$$oldsymbol{\phi}(oldsymbol{x}):oldsymbol{x}\in\mathbb{R}^{D} ooldsymbol{z}\in\mathbb{R}^{M}$$

to transform the data to a more complicated feature space

2. Then apply linear regression (hope: linear model is a better fit for the new feature space).



Regression with nonlinear basis

Model: $f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$ where $\boldsymbol{w} \in \mathbb{R}^M$

Regression with nonlinear basis

Model:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$
 where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$ext{RSS}(oldsymbol{w}) = \sum_n \left(oldsymbol{w}^{ ext{T}} oldsymbol{\phi}(oldsymbol{x}_n) - y_n
ight)^2$$

Regression with nonlinear basis

Model:
$$f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x})$$
 where $\boldsymbol{w} \in \mathbb{R}^{M}$

Objective:

$$\operatorname{RSS}(\boldsymbol{w}) = \sum_{n} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_{n}) - y_{n} \right)^{2}$$

Similar least square solution:

$$oldsymbol{w}^* = ig(oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{\Phi}ig)^{-1}oldsymbol{\Phi}^{\mathrm{T}}oldsymbol{y} \;\;\;\; extbf{where} \;\;\; oldsymbol{\Phi} = egin{pmatrix} oldsymbol{\phi}(oldsymbol{x}_2)^{\mathrm{T}} \ oldsymbol{\phi}(oldsymbol{x}_2)^{\mathrm{T}} \ dots \ oldsymbol{\phi}(oldsymbol{x}_N)^{\mathrm{T}} \end{pmatrix} \in \mathbb{R}^{N imes M}$$

Example

Polynomial basis functions for $\mathsf{D}=1$

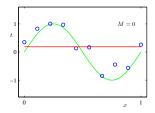
$$\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \implies f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

Polynomial basis functions for D = 1

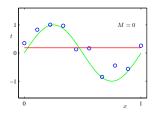
$$\boldsymbol{\phi}(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^M \end{bmatrix} \quad \Rightarrow \quad f(x) = w_0 + \sum_{m=1}^M w_m x^m$$

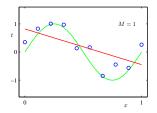
Learning a linear model in the new space = learning an *M*-degree polynomial model in the original space

Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):

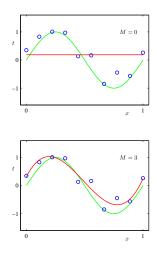


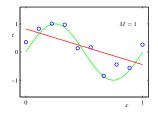
Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):





Fitting a noisy sine function with a polynomial (M = 0, 1, or 3):





Why nonlinear?

Can I use a fancy linear feature map?

$$\boldsymbol{\phi}(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$\boldsymbol{\phi}(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

No, it basically *does nothing* since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathsf{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w}'^{\mathsf{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

Why nonlinear?

Can I use a fancy linear feature map?

$$\boldsymbol{\phi}(\boldsymbol{x}) = \begin{bmatrix} x_1 - x_2 \\ 3x_4 - x_3 \\ 2x_1 + x_4 + x_5 \\ \vdots \end{bmatrix} = \boldsymbol{A}\boldsymbol{x} \quad \text{for some } \boldsymbol{A} \in \mathbb{R}^{\mathsf{M} \times \mathsf{D}}$$

No, it basically does nothing since

$$\min_{\boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}} \sum_{n} \left(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}_{n} - y_{n} \right)^{2} = \min_{\boldsymbol{w}' \in \mathsf{Im}(\boldsymbol{A}^{\mathrm{T}}) \subset \mathbb{R}^{\mathsf{D}}} \sum_{n} \left(\boldsymbol{w}'^{\mathrm{T}} \boldsymbol{x}_{n} - y_{n} \right)^{2}$$

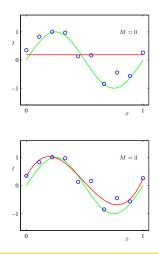
We will see more nonlinear mappings soon.

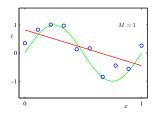
Outline

Overfitting and preventing overfitting

Should we use a very complicated mapping?

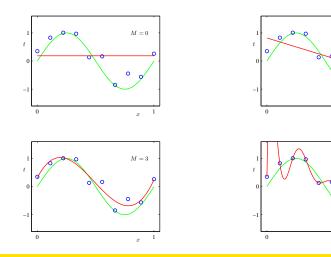
Ex: fitting a noisy sine function with a polynomial:





Should we use a very complicated mapping?

Ex: fitting a noisy sine function with a polynomial:



M = 1

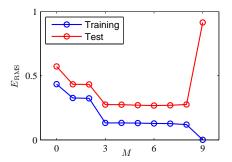
x

M = 9

x

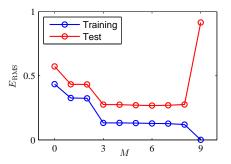
Underfitting and Overfitting

- $M \leq 2$ is underfitting the data
 - large training error
 - large test error
- $M\geq 9$ is overfitting the data
 - small training error
 - large test error



Underfitting and Overfitting

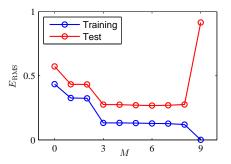
- $M \leq 2$ is underfitting the data
 - large training error
 - large test error
- $M\geq 9$ is overfitting the data
 - small training error
 - large test error



More complicated models \Rightarrow larger gap between training and test error

Underfitting and Overfitting

- $M \leq 2$ is underfitting the data
 - large training error
 - large test error
- $M\geq 9$ is overfitting the data
 - small training error
 - large test error

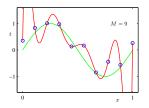


More complicated models \Rightarrow larger gap between training and test error

How to prevent overfitting?

Method 1: use more training data

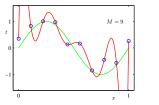
The more, the merrier

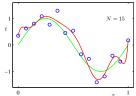


Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier

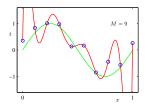


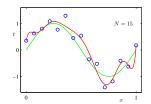


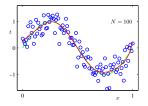
Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier



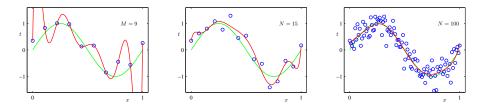




Overfitting and preventing overfitting

Method 1: use more training data

The more, the merrier



More data \Rightarrow smaller gap between training and test error

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

• use cross-validation to pick hyper-parameter M

Method 2: control the model complexity

For polynomial basis, the degree M clearly controls the complexity

• use cross-validation to pick hyper-parameter M

When M or in general Φ is fixed, are there still other ways to control complexity?

Magnitude of weights

Least square solution for the polynomial example:

	M = 0	M = 1	M=3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Magnitude of weights

Least square solution for the polynomial example:

	M = 0	M = 1	M=3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

Intuitively, large weights \Rightarrow more complex model

How to make w small?

Regularized linear regression: new objective

$$\mathcal{E}(\boldsymbol{w}) = \operatorname{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$$

Goal: find $\boldsymbol{w}^* = \operatorname{argmin}_w \mathcal{E}(\boldsymbol{w})$

How to make w small?

Regularized linear regression: new objective

 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

Goal: find $\boldsymbol{w}^* = \operatorname{argmin}_w \mathcal{E}(\boldsymbol{w})$

- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model w is, penalize complex models
 - common choices: $\|m{w}\|_2^2$, $\|m{w}\|_1$, etc.

How to make w small?

Regularized linear regression: new objective

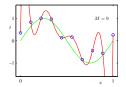
 $\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda R(\boldsymbol{w})$

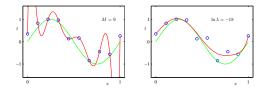
Goal: find $\boldsymbol{w}^* = \operatorname{argmin}_w \mathcal{E}(\boldsymbol{w})$

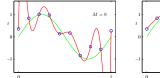
- $R: \mathbb{R}^{\mathsf{D}} \to \mathbb{R}^+$ is the *regularizer*
 - ullet measure how complex the model w is, penalize complex models
 - common choices: $\|m{w}\|_2^2$, $\|m{w}\|_1$, etc.
- $\lambda > 0$ is the *regularization coefficient*
 - $\lambda = 0$, no regularization
 - $\lambda \to +\infty$, $oldsymbol{w} \to \operatorname{argmin}_w R(oldsymbol{w})$
 - i.e. control trade-off between training error and complexity

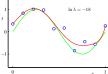
The effect of λ

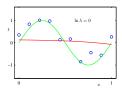
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
w_0	0.35	0.35	0.13
w_1	232.37	4.74	-0.05
w_2	-5321.83	-0.77	-0.06
w_3	48568.31	-31.97	-0.06
w_4	-231639.30	-3.89	-0.03
w_5	640042.26	55.28	-0.02
w_6	-1061800.52	41.32	-0.01
w_7	1042400.18	-45.95	-0.00
w_8	-557682.99	-91.53	0.00
w_9	125201.43	72.68	0.01

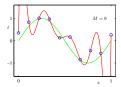


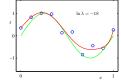


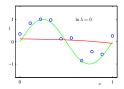


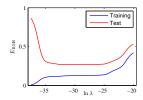












Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \mathrm{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

Simple for $R(w) = ||w||_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

Simple for $R(w) = ||w||_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Simple for $R(w) = ||w||_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$

$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} \boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$

$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

$$\Rightarrow \boldsymbol{w}^{*} = (\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda\boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda\boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda\boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Note the same form as in the fix when $X^T X$ is not invertible!

Simple for $R(\boldsymbol{w}) = \|\boldsymbol{w}\|_2^2$:

$$\mathcal{E}(\boldsymbol{w}) = \text{RSS}(\boldsymbol{w}) + \lambda \|\boldsymbol{w}\|_2^2 = \|\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{y}\|_2^2 + \lambda \|\boldsymbol{w}\|_2^2$$
$$\nabla \mathcal{E}(\boldsymbol{w}) = 2(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi}\boldsymbol{w} - \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}) + 2\lambda \boldsymbol{w} = 0$$
$$\Rightarrow (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}) \boldsymbol{w} = \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$
$$\Rightarrow \boldsymbol{w}^* = (\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I})^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Note the same form as in the fix when $X^T X$ is not invertible!

For other regularizers, as long as it's **convex**, standard optimization algorithms can be applied.

Equivalent form

Regularization is also sometimes formulated as

 $\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$

where β is some hyper-parameter.

Equivalent form

Regularization is also sometimes formulated as

$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Equivalent form

Regularization is also sometimes formulated as

$\underset{\boldsymbol{w}}{\operatorname{argmin}} \operatorname{RSS}(w) \quad \text{ subject to } R(\boldsymbol{w}) \leq \beta$

where β is some hyper-parameter.

Finding the solution becomes a *constrained optimization problem*.

Choosing either λ or β can be done by cross-validation.

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I}
ight)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{\Phi} + \lambda \boldsymbol{I} \right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}} \boldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

$$\boldsymbol{w}^* = \left(\boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^{\mathrm{T}}\boldsymbol{y}$$

Important to understand the derivation than remembering the formula

Overfitting: small training error but large test error

Preventing Overfitting: more data + regularization

Recall the question

Typical steps of developing a machine learning system:

- Collect data, split into training, development, and test sets.
- *Train a model with a machine learning algorithm.* Most often we apply cross-validation to tune hyper-parameters.
- Evaluate using the test data and report performance.
- Use the model to predict future/make decisions.

How to do the *red part* exactly?

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

2. Define **error/loss** L(y', y)

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

- 2. Define error/loss L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

- 2. Define error/loss L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

1. Pick a set of models \mathcal{F}

• e.g.
$$\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{D}}\}$$

• e.g. $\mathcal{F} = \{f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{\Phi}(\boldsymbol{x}) \mid \boldsymbol{w} \in \mathbb{R}^{\mathsf{M}}\}$

- 2. Define error/loss L(y', y)
- 3. Find empirical risk minimizer (ERM):

$$f^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n)$$

or regularized empirical risk minimizer:

$$\boldsymbol{f}^* = \operatorname*{argmin}_{f \in \mathcal{F}} \sum_{n=1}^{N} L(f(x_n), y_n) + \lambda R(f)$$

ML becomes optimization