CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

U of Southern California

Sep 9, 2021

1/53

Administration

e HW 1 is due on Tue, 9/14.

2/53

Administration

e HW 1 is due on Tue, 9/14.

@ recall the late day policy: 3 in total, at most 1 for each homework

2/53

Outline

@ Review of Last Lecture

@ Linear Classifiers and Surrogate Losses

© A Detour of Numerical Optimization Methods
@ Perceptron

© Logistic Regression

3/53

Outline

@ Review of Last Lecture

4 /53

Review of Last Lecture

Regression

Predicting a continuous outcome variable using past observations

@ temperature, amount of rainfall, house price, etc.

Key difference from classification
@ continuous vs discrete
@ measure prediction errors differently.

@ lead to quite different learning algorithms.

Linear Regression: regression with linear models: f(x) = w'a

5/ 53

Review of Last Lecture

Least square solution

w* = argmin RSS(w) x] Y1
w T
L2 Y2
= argmin | Xw — y||3 X = : Y= :
w .
wﬁ YN

— (XTx) "' xTy

Two approaches to find the minimum:

o find stationary points by setting gradient = 0

o “complete the square”

6 /53

Review of Last Lecture

Regression with nonlinear basis

o
§0° o
g0 ® Od%o)
05 R o
&o
g % ox) o
0% °
0 OO #
S ;i
o
2, o
-05 &, o 002;
5 o & o
i
-1 05 0 05 1

Model: f(x) = wT¢(x) where w € RM

Similar least square solution: w* = ((I'Tq))_l Ty

Underfitting and Overfitting

1
M < 2is underfitting the data ©— Training
—— Test
@ large training error
@ large test error Z 05
9

M > 9 is overfitting the data

@ small training error o

o large test error 0 S m ® 9

How to prevent overfitting? more data + regularization

w* = argmin (RSS(w) + Aw[3) = (7@ + AI) ' &Ty

8 /53

Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
o eg F={f(x) = w's | w e RO}
o eg F={f(z)=w"®(x)|weR"}

Step 2. Define error/loss L(y',y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

f* = argmin Z L(f(zn),yn) + AR(f)

feFr

n=1

ML becomes optimization

9/53

Review of Last Lecture

General idea to derive ML algorithms

Step 1. Pick a set of models F
o eg F={f(x) = w's | w e RO}
o eg F={f(z)=w"®(x)|weR"}

Step 2. Define error/loss L(y',y)

Step 3. Find (regularized) empirical risk minimizer (ERM):

f* = argmin Z L(f(n), yn) + AR(f)

feFr

n=1

ML becomes optimization

Today: another exercise of this recipe + a closer look at Step 3

9/53

Outline

© Linear Classifiers and Surrogate Losses

10 / 53

Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

11/ 53

Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

11/ 53

Linear Classifiers and Surrogate Losses

Classification

Recall the setup:
e input (feature vector): x € RP
e output (label): y € [C] ={1,2,---,C}
e goal: learn a mapping f : RP — [C]

This lecture: binary classification
@ Number of classes: C =2

@ Labels: {—1,+1} (cat or dog, fraud or not, price up or down...)

We have discussed nearest neighbor classifier:
@ require carrying the training set

@ more like a heuristic

11/ 53

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:

Step 1. Pick a set of models F.

12 / 53

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

12 / 53

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

12 / 53

Linear Classifiers and Surrogate Losses

Deriving classification algorithms

Let's follow the recipe:
Step 1. Pick a set of models F.

Again try linear models, but how to predict a label using wTx?

Sign of wra predicts the label:

. T +1 ifwTz >0
SIgN(W'2) =\ 1 if T <

(Sometimes use sgn for sign too.)

12 / 53

Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:
F ={f(x) =sgn(wTx) | w € RP}

13 / 53

Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:
F ={f(x) =sgn(wTx) | w € RP}

Good choice for linearly separable data, i.e., Jw s.t.

sgn (men) = Yn

for all n € [N].

13 / 53

Linear Classifiers and Surrogate Losses

The models

The set of (separating) hyperplanes:
F ={f(x) =sgn(wTx) | w € RP}

Good choice for linearly separable data, i.e., Jw s.t.

sgn(wT:L'n) —y, OfF yYpw Ty >0

for all n € [N].

13 / 53

Linear Classifiers and Surrogate Losses

The models

Still makes sense for “almost” linearly separable data

14 / 53

Classifiers and Surrogate

The models

For clearly not linearly separable data,

L

5

15 / 53

The models

For clearly not linearly separable data,

v o+ + 20
dsp P g et
+ % RS
et LGy 1
PSS I I 0
Fapthd ENE S 10
e LA + 05| s
0
+ + + - " am
Fored el %) . s
R L . atn
* iy LI
S EF T FORRLEE 05| . -
tart P I = =
AP R R AL S 10
o CEEC AL 4
LR e e
15
4 2
a5 o 0 T T T 5 o 95 90 65 10 15 20

Again can apply a nonlinear mapping ®:
F={f(z) =sgn(w' ®(z)) | w € RM}

More discussions in the next two lectures.

15 / 53

0-1 Loss

Step 2. Define error/loss L(y',y).

16 / 53

0-1 Loss

Step 2. Define error/loss L(y',y).

Most natural one for classification: 0-1 loss L(y/,y) = Iy’ # y]

16 / 53

0-1 Loss

Step 2. Define error/loss L(y',y).
Most natural one for classification: 0-1 loss L(y/,y) = Iy’ # y]

For classification, more convenient to look at the loss as a function of
ywTx. That is, with
Eo_l(z) =]I[Z S 0]

L L
2 1 0 1 2

the loss for hyperplane w on example (x,y) is £o.1 (yw ')

16 / 53

Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

17 / 53

Linear Classifiers and Surrogate Losses

Minimizing 0-1 loss is hard

However, 0-1 loss is not convex.

r

Even worse, minimizing 0-1 loss is NP-hard in general.

17 / 53

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

18 / 53

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

° Lperceptron(2) = max{0, —z} (used in Perceptron)

18 / 53

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

15

2 1 0 1 2
° Lperceptron(2) = max{0, —z} (used in Perceptron)
° Chinge(2) = max{0,1 — z}(used in SVM and many others)

18 / 53

Linear Classifiers and Surrogate Losses

Surrogate Losses

Solution: find a convex surrogate loss

. >
N
N1
\\
g ~
S 1 2
° Lperceptron(2) = max{0, —z} (used in Perceptron)
° lhinge(z) = max{0,1 — z}(used in SVM and many others)

o logistic loss liogistic(2) = log(1 + exp(—z)) (used in logistic regression;
the base of log doesn’t matter)

18 / 53

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmanE Ypwlx,) = argmm— ZE Ypw)
weRP weRP

where £(-) can be perceptron/hinge/logistic loss

19 / 53

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmanE Ypwlx,) = argmm— ZE Ypw)
weRP weRP

where £(-) can be perceptron/hinge/logistic loss

@ no closed-form in general (unlike linear regression)

19 / 53

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:

N N
w* = argmanE Ypwlx,) = argmm— ZE Ypw)
weRP weRP

where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

19 / 53

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N N
w* = argmmZE Ypwlx,) = argmm— ZE Ypw)
weRP weRD
where £(-) can be perceptron/hinge/logistic loss

@ no closed-form in general (unlike linear regression)

@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense

19 / 53

Linear Classifiers and Surrogate Losses

ML becomes convex optimization

Step 3. Find ERM:
N N
w* = argmanE Ypwlx,) = argmm— ZE Ypw)
weRP weRP
where £(-) can be perceptron/hinge/logistic loss
@ no closed-form in general (unlike linear regression)
@ can apply general convex optimization methods

Note: minimizing perceptron loss does not really make sense (try w = 0),
but the algorithm derived from this perspective does.

19 / 53

Outline

© A Detour of Numerical Optimization Methods
@ First-order methods
@ Second-order methods

20 / 53

A Detour of Numerical Optimization Methods

Numerical optimization

Problem setup
e Given: a function F'(w)

e Goal: minimize F(w) (approximately)

21/ 53

A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

o Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

22 /53

A Detour of Numerical Optimization Methods First-order methods

First-order optimization methods

Two simple yet extremely popular methods
e Gradient Descent (GD): simple and fundamental

o Stochastic Gradient Descent (SGD): faster, effective for
large-scale problems

Gradient is sometimes referred to as first-order information of a function.
Therefore, these methods are called first-order methods.

22 /53

First-order methods
Gradient Descent (GD)

GD: keep moving in the negative gradient direction

23 / 53

A Detour of Numerical Optimization Methods First-order methods

Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some w(®. For t =0,1,2,...

w) — w® — pVF(w®)

where n > 0 is called step size or learning rate

23 / 53

A Detour of Numerical Optimization Methods First-order methods

Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some w(®. For t =0,1,2,...

w) — w® — pVF(w®)

where n > 0 is called step size or learning rate

@ in theory 77 should be set in terms of some parameters of F

23 / 53

A Detour of Numerical Optimization Methods First-order methods

Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some w(®. For t =0,1,2,...

w) — w® — pVF(w®)

where n > 0 is called step size or learning rate

@ in theory 77 should be set in terms of some parameters of F

@ in practice we just try several small values

23 / 53

A Detour of Numerical Optimization Methods First-order methods

Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some w(®. For t =0,1,2,...

w) — w® — pVF(w®)

where n > 0 is called step size or learning rate

@ in theory 77 should be set in terms of some parameters of F

@ in practice we just try several small values

@ might need to be changing over iterations (think F(w) = |w|)

23 / 53

First-order methods
Gradient Descent (GD)

GD: keep moving in the negative gradient direction

Start from some w(®. For t =0,1,2,...
w) — w® — pVF(w®)

where n > 0 is called step size or learning rate

@ in theory 77 should be set in terms of some parameters of F
@ in practice we just try several small values
@ might need to be changing over iterations (think F(w) = |w|)

@ adaptive and automatic step size tuning is an active research area

23 / 53

A Detour of Numerical Optimization Methods First-order methods

An example

Example: F(w) = 0.5(w? — wq)? + 0.5(w; — 1)%.

24 / 53

An example
Example: F(w) = 0.5(w? — w2)? + 0.5(w; — 1)2. Gradient is

or _
ow,

oF

2(w? — we)wy +wy — 1 B —(w? — ws)

24 / 53

G =
An example

Example: F(w) = 0.5(w? — w2)? + 0.5(w; — 1)2. Gradient is

OF

ow,

2(w% — wo)wy +wy — 1 B —(w% — w3)

GD:
(0)

o Initialize w;’ and w

go) (to be 0 or randomly), t =0

24 / 53

G =
An example

Example: F(w) = 0.5(w? — w2)? + 0.5(w; — 1)2. Gradient is

OF

ow,

2(w% — wo)wy +wy — 1 B —(w% — w3)

GD:
(0)

o Initialize w;’ and w

go) (to be 0 or randomly), t =0

e do
2
wgtﬂ) — w?) - {Q(wgt) - wg))wgt) + wgt) - 1}

2
™ e uff |l - o)

t—t+1

24 / 53

A Detour of Numerical Optimization Methods First-order methods

An example

Example: F(w) = 0.5(w? — w2)? + 0.5(w; — 1)2. Gradient is

oF oF
a—wlz2(w%—w2)w1+w1—1 Tw:—(w%—wg)
GD:
o Initialize wgo) and wgo) (to be 0 or randomly), t =0
e do

2
wgtﬂ) — w?) ./ {Q(wgt) — wg))wgt) + wgt) — 1}

2
™ e uff |l - o)
tt+1

o until F(w") does not change much or t reaches a fixed number

24 / 53

A Detour of Numerical Optimization Methods First-order methods

Intuition: by first-order Taylor approximation

F(w) =~ F('w(t)) + VF(w(t))T('w — w(t))

25 / 53

Why GD?
Intuition: by first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T(w — w®)
GD ensures

Fw"™) = Fw®) = gl|VE(w®)|3 < F(w")

25 / 53

Why GD?
Intuition: by first-order Taylor approximation

F(w) = F(w®) + VF(w®)T(w — w®)
GD ensures

Fw"™) = Fw®) = gl|VE(w®)|3 < F(w")

reasonable 7 decreases function value
25 / 53

A Detour of Numerical Optimization Methods [EISSSEEENRTINE
Why GD?
Intuition: by first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T(w — w®)

GD ensures

Fw"™) = Fw®) = gl|VE(w®)|3 < F(w")

reasonable 7 decreases function value but large n is unstable
25 / 53

First-order methods
Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction

SGD: keep moving in some noisy negative gradient direction

26 / 53

First-order methods
Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction
wt — w® — pVF(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

E [VF(w(t))} = VEF(w®) (unbiasedness)

26 / 53

First-order methods
Stochastic Gradient Descent (SGD)

GD: keep moving in the negative gradient direction
SGD: keep moving in some noisy negative gradient direction
wt — w® — pVF(w®)

where VF(w®) is a random variable (called stochastic gradient) s.t.

E [VF(w(t))} = VEF(w®) (unbiasedness)

Key point: it could be much faster to obtain a stochastic gradient!
(examples coming soon)

26 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.

27 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
They tell you how many iterations ¢ (in terms of €) needed to achieve

Fw®) - F(w*) < ¢

27 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
They tell you how many iterations ¢ (in terms of €) needed to achieve

Fw®) - F(w*) < ¢

@ usually SGD needs more iterations

27 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — convex objectives

Many for both GD and SGD on convex objectives.
They tell you how many iterations ¢ (in terms of €) needed to achieve

Fw®) - F(w*) < ¢

@ usually SGD needs more iterations

@ but then again each iteration takes less time

27 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve

IVE(w)] < e

28 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve

IVE(w)] < e

e that is, how close w(® is as an approximate stationary point

28 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve

IVE(w)] < e

e that is, how close w(® is as an approximate stationary point

@ for convex objectives, stationary point = global minimizer

28 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

Even for nonconvex objectives, some guarantees exist: e.g. how many
iterations ¢ (in terms of €) needed to achieve

IVE(w)] < e

e that is, how close w(® is as an approximate stationary point
@ for convex objectives, stationary point = global minimizer

@ for nonconvex objectives, what does it mean?

28 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer

29 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer or even a local/global
maximizer

29 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can be a local minimizer or even a local/global
maximizer (but the latter is not an issue for GD/SGD).

29 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

° f(w)=wi— w3

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

° f(w)=wi— w3

o Vf(w) = (2w, —2ws)

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

o f(w) = u? - u}

o Vf(w) = (2w, —2ws)

e so w = (0,0) is stationary

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

° f(w)=wi— w3

o Vf(w) = (2w, —2ws)

e so w = (0,0) is stationary

@ local max for blue direction (w; = 0)

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer!

° f(w)=wi— w3

o Vf(w) = (2w, —2ws)

e so w = (0,0) is stationary
@ local max for blue direction (w; = 0)

@ local min for green direction (wy = 0)

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer! This is called a saddle point.

e so w = (0,0) is stationary
@ local max for blue direction (w; = 0)

@ local min for green direction (wy = 0)

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer! This is called a saddle point.

e so w = (0,0) is stationary

local max for blue direction (w; = 0)

@ local min for green direction (wy = 0)

but GD gets stuck at (0,0) only if
initialized along the green direction

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

A stationary point can also be neither a local minimizer nor a local
maximizer! This is called a saddle point.

e so w = (0,0) is stationary
@ local max for blue direction (w; = 0)
@ local min for green direction (wg = 0)

@ but GD gets stuck at (0,0) only if
initialized along the green direction

@ so not a real issue especially when
initialized randomly

30 / 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...

31/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...

o f(w)=w}+ws

31/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...

o f(w)=w}+ws

o Vf(w)= (2wr,3w?)

31/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...
o f(w)=wi+w}
o Vf(w) = (2wy,3w3)

e so w = (0,0) is stationary

31/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...
o flw)=w?+wj
o Vf(w) = (2wy,3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction iy
(wl — O) \

31/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...
o flw)=w?+wj
o Vf(w) = (2wy,3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction iy
(wl — O) \

e GD gets stuck at (0,0) for any initial
point with we > 0 and small n

31/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees — nonconvex objectives

But not all saddle points look like a “saddle” ...
o f(w)= w% + wg’
o Vf(w) = (2wy,3w3)
e so w = (0,0) is stationary

@ not local min/max for blue direction iy
(w1 = O) AN

e GD gets stuck at (0,0) for any initial
point with we > 0 and small n

Even worse, distinguishing local min and saddle point is generally NP-hard.

31/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:

@ GD/SGD coverages to a stationary point

32/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:
@ GD/SGD coverages to a stationary point

o for convex objectives, this is all we need

32/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:
@ GD/SGD coverages to a stationary point
o for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

32/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:
@ GD/SGD coverages to a stationary point
o for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

@ recent research shows that many problems have no “bad” saddle
points or even “bad” local minimizers

32/ 53

A Detour of Numerical Optimization Methods First-order methods

Convergence guarantees

Summary:
@ GD/SGD coverages to a stationary point
o for convex objectives, this is all we need

@ for nonconvex objectives, can get stuck at local minimizers or “bad”
saddle points (random initialization escapes “good” saddle points)

@ recent research shows that many problems have no “bad” saddle
points or even “bad” local minimizers

justify the practical effectiveness of GD/SGD (default method to try)

32/ 53

A Detour of Numerical Optimization Methods [SIeehTRIE QST

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F(w®) + VF(w " (w — w®)

33 /53

A Detour of Numerical Optimization Methods [SIeehTRIE QST

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T (w — w®)

What if we look at second-order Taylor approximation?

Flw) ~ F(w®) + V() (w —w®) + | (w —w®) Hiw - w)

33 /53

A Detour of Numerical Optimization Methods [SIeehTRIE QST

Second-order methods

Recall the intuition of GD: we look at first-order Taylor approximation

F(w) ~ F(w®) + VF(w®)T (w — w®)

What if we look at second-order Taylor approximation?
1
F(w) = F(w®) + VF(w®)T (w — w®) + 5w = w)T Hy(w — w®)

where H; = V2F(w®) € RP*P is the Hessian of F at w, i.e.,

0?F (w)

tij =
" 6wi6wj w=w?)

(think “second derivative” when D = 1)

33 /53

A Detour of Numerical Optimization Methods [SIeehTRIE QST

Newton method
If we minimize the second-order approximation (via “complete the square”)
F(w)

(w®) + VF (w7 (w — w®) + %(w — wNTH, (w — w®)

F
1 T
3 (w —w® 4 Ht_IVF(w(t))) H, <w —w® 4 Ht_IVF(w(t))> + cnt

34 /53

A Detour of Numerical Optimization Methods [SIeehTRIE QST

Newton method

If we minimize the second-order approximation (via “complete the square”)

F(w)

~ F(w®) + VE(w) T (w — w®) + %(w — wNTH, (w — w®)
_1

2

T
(w —w® 4 Ht_IVF(w(t))) H, <w —w® 4 Ht_IVF(w(t))> + cnt

for convex F' (so Hy is positive semidefinite)
we obtain Newton method:

w) — w® — H'VF(w®)

34 /53

e
Comparing GD and Newton

w — w® — v F(w®) (GD)
w) — w® — H'WF(w®) (Newton)

Both are iterative optimization procedures,

35 /53

e
Comparing GD and Newton

w — w® — v F(w®) (GD)
w) — w® — H'WF(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 7 (so no tuning needed!)

35 /53

e
Comparing GD and Newton

w — w® — v F(w®) (GD)
w) — w® — H'WF(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 7 (so no tuning needed!)

@ converges super fast in terms of #iterations (for convex objectives)

35 /53

e
Comparing GD and Newton

w — w® — v F(w®) (GD)
w) — w® — H'WF(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 7 (so no tuning needed!)
@ converges super fast in terms of #iterations (for convex objectives)

e e.g. how many iterations needed when applied to a quadratic?

35/ 53

e
Comparing GD and Newton

w — w® — v F(w®) (GD)
w) — w® — H'WF(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 7 (so no tuning needed!)
@ converges super fast in terms of #iterations (for convex objectives)

e e.g. how many iterations needed when applied to a quadratic?

@ computing Hessian in each iteration is very slow though

35/ 53

e
Comparing GD and Newton

w — w® — v F(w®) (GD)
w) — w® — H'WF(w®) (Newton)

Both are iterative optimization procedures, but Newton method

@ has no learning rate 7 (so no tuning needed!)
@ converges super fast in terms of #iterations (for convex objectives)

e e.g. how many iterations needed when applied to a quadratic?

@ computing Hessian in each iteration is very slow though

@ does not really make sense for nonconvex objectives (but generally
Hessian can be useful for escaping saddle points)

35/ 53

Outline

@ Perceptron

36 / 53

Recall the perceptron loss

Z\H

max{0, —y,w x,}

Z\H

N

T
Z perceptron ynw xn)
N

37 /53

Recall the perceptron loss

Z\H

max{0, —y,w x,}

Z\H

N

T
Z perceptron ynw xn)
N

Let’s approximately minimize it with GD/SGD.

37 /53

Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}
n=1

38 /53

Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

[[ypw 'z, < 0)y,zn

||M2

(only misclassified examples contribute to the gradient)

38 /53

Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

N
Z [ynw" 2, < Olynzy,

(only misclassified examples contribute to the gradient)
GD update

N
w<—w+;\7fz:1]lynw z, < 0lynxy,
n=

38 /53

Applying GD to perceptron loss

Objective

N
1
F(w) = ¥ Z max{0, —y,w xz,}

Gradient (or really sub-gradient) is

N
Z [ynw" 2, < Olynzy,

(only misclassified examples contribute to the gradient)
GD update

N
w<—w+;\7fz:1]lynw z, < 0lynxy,
n=

Slow: each update makes one pass of the entire training set!

38 /53

Applying SGD to perceptron loss

How to construct a stochastic gradient?

39 / 53

Applying SGD to perceptron loss

How to construct a stochastic gradient?
One common trick: pick one example n € [N] uniformly at random, let
VE(w®) = ~Iy,w z, < 0)ynz,

clearly unbiased (convince yourself).

39 / 53

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yanmn < Olynxy

clearly unbiased (convince yourself).

SGD update:
w — w+ nH[yan:cn < Olynxy,

39 / 53

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olynxy

clearly unbiased (convince yourself).

SGD update:
w — w + nH[yan:cn < Olynxy,

Fast: each update touches only one data point!

39 /53

Applying SGD to perceptron loss

How to construct a stochastic gradient?

One common trick: pick one example n € [N] uniformly at random, let
@F(w(t)) = —]I[yana:n < Olynxy

clearly unbiased (convince yourself).

SGD update:
w — w + nH[yan:cn < Olynxy,

Fast: each update touches only one data point!

Conveniently, objective of most ML tasks is a finite sum (over each
training point) and the above trick applies!

39 /53

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

40 / 53

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:
@ Pick a data point x,, uniformly at random

o If sgn(wTx,) # y,
W <— W+ YTy

40 / 53

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:
@ Pick a data point x,, uniformly at random

o If sgn(wTx,) # y,
W <— W+ YTy

Note:

@ w is always a linear combination of the training examples

40 / 53

The Perceptron Algorithm

Perceptron algorithm is SGD with n = 1 applied to perceptron loss:

Repeat:
@ Pick a data point x,, uniformly at random

o If sgn(wTx,) # y,
W <— W+ YTy

Note:
@ w is always a linear combination of the training examples

@ why n =17 Does not really matter in terms of prediction of w

40 / 53

Why does it make sense?

If the current weight w makes a mistake

yanacn <0

41/ 53

Why does it make sense?

If the current weight w makes a mistake
yana:n <0

then after the update w’ = w + y,x, we have

T T
Ypw' " xy = ypw e, +yierx, > yw e,

41/ 53

Why does it make sense?

If the current weight w makes a mistake
yana:n <0

then after the update w’ = w + y,x, we have

T T
Ypw' " xy = ypw e, +yierx, > yw e,

Thus it is more likely to get it right after the update.

41/ 53

Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

42 / 53

Any theory?

(HW 1) If training set is linearly separable

@ Perceptron converges in a finite number
of steps

@ training error is 0

There are also guarantees when the data are not linearly separable.

42 / 53

Outline

© Logistic Regression
@ A probabilistic view
o Algorithms

43 / 53

Logistic Regression

A simple view

In one sentence: find the minimizer of

1
F(w) = N Zglogistic(yanwn)

n=1

1 _
NZ n(l 4 e vt

44 / 53

Logistic Regression

A simple view

In one sentence: find the minimizer of

1
F(w) = N Zglogistic(yanwn)

n=1

1 _
NZ n(l 4 e vt

Before optimizing it: why logistic loss? and why “regression”?

44 / 53

sy
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

45 / 53

sy
Predicting probability

Instead of predicting a discrete label, can we predict the probability of
each label? i.e. regress the probabilities

One way: sigmoid function 4 linear model
Ply =41 | z;w) = o(w"z)

where o is the sigmoid function:

0.9)
0.8|

1 o
o(z) = 1tez

0.4]
0.3]

0.2]

0.1

45 / 53

Logistic Regression A probabilistic view

Properties

1

Properties of sigmoid 0(2) = 1=

@ between 0 and 1 (good as probability) :

46 / 53

Logistic Regression A probabilistic view

Properties

1

Properties of sigmoid 0(2) = 1=

@ between 0 and 1 (good as probability)

o o(wTz) > 0.5 < wlx >0, consistent
with predicting the label with sgn(wTx)

3

0.9
0.8
0.7

05
04
0.3]
0.2]
01

46 / 53

Logistic Regression A probabilistic view

Properties

1

Properties of sigmoid 0(2) = 1=

@ between 0 and 1 (good as probability) :

0.9
0.8

o o(wTz) > 0.5 < wlx >0, consistent o7
with predicting the label with sgn(w™z) >

0.5
0.4

o larger whx = larger o(wTx) = higher 03

confidence in label 1 0

T

46 / 53

Logistic Regression A probabilistic view

Properties

1

Properties of sigmoid 0(2) = 1=

@ between 0 and 1 (good as probability) :

0.9
0.8

o o(wTz) > 0.5 < wlx >0, consistent o7
with predicting the label with sgn(w™z) >

0.5
0.4

o larger whx = larger o(wTx) = higher 03

confidence in label 1 0

T

@ 0(z)+o(—2z)=1forall z

46 / 53

Logistic Regression A probabilistic view

Properties

1

Properties of sigmoid 0(2) = 1=

@ between 0 and 1 (good as probability) :

o o(wTz) > 0.5 < wlx >0, consistent o7
with predicting the label with sgn(wTx)

o larger whx = larger o(wTx) = higher 03

confidence in label 1 0

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)

46 / 53

Logistic Regression A probabilistic view

Properties

1

Properties of sigmoid 0(2) = 1=

@ between 0 and 1 (good as probability) :

o o(wTz) > 0.5 < wlx >0, consistent o7
with predicting the label with sgn(wTx)

o larger whx = larger o(wTx) = higher 03

confidence in label 1 0

@ 0(z)+o(—2z)=1forall z
The probability of label —1 is naturally
1-Ply=+1|z;w)=1-o(w'e) =o(—w'x)
and thus

1
. — Tr) = ___
Ply | @iw) = ofyw’e) = —— o

46 / 53

Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.

47 / 53

Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

47 / 53

Logistic Regression A probabilistic view

How to regress with discrete labels?

What we observe are labels, not probabilities.
Take a probabilistic view
@ assume data is independently generated in this way by some w

e perform Maximum Likelihood Estimation (MLE)

Specifically, what is the probability of seeing label y1,--- ,y, given
i, - , Ty, as a function of some w?

N
P(w) = H]P)<yn ’ wn?“’)
n=1

MLE: find w* that maximizes the probability P(w)

47 / 53

A probabilstic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yy, | Tn;w)
w

w n=1

48 / 53

A probabilstic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yy, | Tn;w)
w

w n=1

N
= argmaxz InP(yy, | Tn;w)
w n=1

48 / 53

A probabilstic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yy, | Tn;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

48 / 53

A probabilstic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yy, | Tn;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N
= argmin Z In(1+ 6_y"me"’)
w n=1

48 / 53

A probabilstic view
The MLE solution

N
w* = argmax P(w) = argmax H P(yy, | Tn;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y"“’Tm") = argmin Z €|og;5tic(yn'men)

w n=1 w n=1

48 / 53

A probabilstic view
The MLE solution

N
w”* = argmax P(w) = argmax H P(yy, | Tn;w)
w

w n=1

N N
= argmaxz InP(yy, | n;w) = argminz —InP(y, | n; w)
w n=1 w n=1

N N
= argmin Z In(1+ e_y"“’Tm") = argmin Z €|0g;5tic(yn'men)
w n=1 w n=1

= argmin F'(w)
w

i.e. minimizing logistic loss is exactly doing MLE for the sigmoid model!

48 / 53

e
Let's apply SGD again

w +— w — nVF(w)

49 / 53

e
Let's apply SGD again

w +— w — nVF(w)
=w— nvwglogistic(yanxn> (n S [N] is drawn u.a_r.)

49 / 53

e
Let's apply SGD again

w +— w — nVF(w)

=w— nvwglogistic(yanxn> (TL S [N] is drawn u.a_r.)
. 8glogistic(z)
=w 77 < 8Z z:yanmn ynwn

49 / 53

e
Let's apply SGD again

w +— w — nVF(w)

=w— nvwglogistic(yanxn> (TL S [N] is drawn u.a_r.)
8glogistic(z)
= w — _ - €T
77< 0z z=ynwTae, Ynin
= w — x
" <1 +e % z:yanwn> Ynin

49 / 53

e
Let's apply SGD again

w +— w — nVF(w)

=w— nvwglogistic(yanxn> (TL S [N] is drawn u.a_r.)
8glogistic(z)
= w — _ - €T
77< 0z z=ynwTae, Ynin
= w — x
" <1 +e % z:yanwn> Ynin

w + UU(—yanﬂcn)ynan

49 / 53

e
Let's apply SGD again

w +— w — nVF(w)

=w— nvwglogistic(yanxn> (TL S [N] is drawn u.a_r.)
8glogistic(z)
=w n < 8Z z:yanmn Ynn
= w — n <1+€ Z |, yan:l)n) YnTn

Ynw wn)ynmn

(—
=w+ UP(Yn | $n;w)ynmn

49 / 53

e
Let's apply SGD again

w +— w — nVF(w)

=w— nvwglogistic(yanxn> (n S [N] is drawn u.a_r.)
aglogistic(z)
= w — -
77 < az z:yanmn ynmn
= w — n <1+€ Z |, yan:l:n> YnTn

Ynw wn)ynmn

(—
=w+ UP(Yn | wn;w)ynmn

This is a soft version of Perceptron!

P(—yp|€n; w) versus Iy, # sgn(wrx,)]

49 / 53

e
Applying Newton to logistic loss

vwglogistic(yn'men) = *U(*yn'men)ynmn

50 / 53

e
Applying Newton to logistic loss

vwglogistic(yn'men) = *U(*yanmn)ynmn

0o (z)
0z

vi;glogistic (yanfcn) = (

2 T
> ynmnmn

z=—ynwTax,

50 / 53

e
Applying Newton to logistic loss

vwglogistic(yn'men) = *U(*yanmn)ynmn

0o (z)
0z

vi;glogistic (yanfcn) = (

2 T
> ynmnmn

z=—ynwTax,

o
z=—ynwTax,

50 / 53

e
Applying Newton to logistic loss

vwglogistic(yn'men) = *U(*yanmn)ynmn

2 T
v £|OgIStIC ynw wn (T >ynwnmn
z=—ynwTa,

_ T
= Z _ T mnxn
1+e z=—ynwTax,
T

= o(ypw a:n) (1 — U(yan:cn)) Tnx,

50 / 53

e
Applying Newton to logistic loss

vwglogistic(yn'men) = *U(*yanmn)ynmn

2 T
V2 gloglstlc(yn’w wn (T >ynwnmn
z=—ynwTay,

_ T
= Z _ T mnxn
1+e z=—ynwTax,

= o(ypw a:n) (1 — U(yan:cn)) wnwg

Exercises:

@ why is the Hessian of logistic loss positive semidefinite?

50 / 53

e
Applying Newton to logistic loss

vwglogistic(yn'men) = *U(*yanmn)ynmn

2 T
V2 gloglstlc(yn’w wn (T >ynwnmn
z=—ynwTay,

_ T
= Z _ T mnxn
1+e z=—ynwTax,

= o(ypw a:n) (1 — U(yan:cn)) wnwg

Exercises:
@ why is the Hessian of logistic loss positive semidefinite?

@ can we apply Newton method to perceptron/hinge loss?

50 / 53

Logistic Regression Algorithms

Summary

Linear models for classification:
Step 1. Model is the set of separating hyperplanes

F={f(@) = sgn(w"z) | w € R}

51 /53

Logistic Regression Algorithms

Step 2. Pick the surrogate loss

\\\
P
R
~
2 1 0 1 2
° Lperceptron(z) = max{0, —z} (used in Perceptron)
° hinge(2) = max{0,1 — z}(used in SVM and many others)

o logistic loss logistic(2) = log(1 4 exp(—z)) (used in logistic regression)

52 / 53

Logistic Regression Algorithms

Step 3. Find empirical risk minimizer (ERM):

w* = argmin — ZE ypw ' x,)

weRDP
using
e GD: w < w — nVEF(w)
e SGD: w + w—nVF(w) (E[VF(w)] = VF(w))

e Newton: w + w — (VzF(w))_1 VF(w)

53 / 53

	Review of Last Lecture
	Linear Classifiers and Surrogate Losses
	A Detour of Numerical Optimization Methods
	Perceptron
	Logistic Regression

