CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

U of Southern California

Sep 30, 2021

HW2 grade will be released by 10/06. Solutions will be discussed today.

HW2 grade will be released by 10/06. Solutions will be discussed today.

Quiz 1 logistics (10/07, 5:00-7:30pm):

• online via zoom, can take it wherever you want (SGM 123 is available)

HW2 grade will be released by 10/06. Solutions will be discussed today.

- online via zoom, can take it wherever you want (SGM 123 is available)
- join the regular lecture zoom 10 minutes earlier (link available on course/DEN website; remember to sign in!), with your camera on

HW2 grade will be released by 10/06. Solutions will be discussed today.

- online via zoom, can take it wherever you want (SGM 123 is available)
- join the regular lecture zoom 10 minutes earlier (link available on course/DEN website; remember to sign in!), with your camera on
- we will assign you to a breakout room, proctored by a TA/grader

HW2 grade will be released by 10/06. Solutions will be discussed today.

- online via zoom, can take it wherever you want (SGM 123 is available)
- join the regular lecture zoom 10 minutes earlier (link available on course/DEN website; remember to sign in!), with your camera on
- we will assign you to a breakout room, proctored by a TA/grader
- we will use Crowdmark: app.crowdmark.com/sign-in/usc (try it before the quiz). A bit before 5pm, Crowdmark will send you the quiz.

HW2 grade will be released by 10/06. Solutions will be discussed today.

- online via zoom, can take it wherever you want (SGM 123 is available)
- join the regular lecture zoom 10 minutes earlier (link available on course/DEN website; remember to sign in!), with your camera on
- we will assign you to a breakout room, proctored by a TA/grader
- we will use Crowdmark: app.crowdmark.com/sign-in/usc (try it before the quiz). A bit before 5pm, Crowdmark will send you the quiz.
- open-book/note, but no collaboration or consultation

HW2 grade will be released by 10/06. Solutions will be discussed today.

- online via zoom, can take it wherever you want (SGM 123 is available)
- join the regular lecture zoom 10 minutes earlier (link available on course/DEN website; remember to sign in!), with your camera on
- we will assign you to a breakout room, proctored by a TA/grader
- we will use Crowdmark: app.crowdmark.com/sign-in/usc (try it before the quiz). A bit before 5pm, Crowdmark will send you the quiz.
- open-book/note, but no collaboration or consultation
- make a private Piazza post if you have clarification questions

HW2 grade will be released by 10/06. Solutions will be discussed today.

- online via zoom, can take it wherever you want (SGM 123 is available)
- join the regular lecture zoom 10 minutes earlier (link available on course/DEN website; remember to sign in!), with your camera on
- we will assign you to a breakout room, proctored by a TA/grader
- we will use Crowdmark: app.crowdmark.com/sign-in/usc (try it before the quiz). A bit before 5pm, Crowdmark will send you the quiz.
- open-book/note, but no collaboration or consultation
- make a private Piazza post if you have clarification questions
- duration is 2.5 hours, which includes the time for scanning/uploading.

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

Five problems in total

• one problem of 15 multiple-choice *multiple-answer* questions

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

- one problem of 15 multiple-choice *multiple-answer* questions
 - 0.5 point for selecting (not selecting) each correct (incorrect) answer

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

- one problem of 15 multiple-choice *multiple-answer* questions
 - 0.5 point for selecting (not selecting) each correct (incorrect) answer
 - "which of the following is correct?" does not imply one correct answer

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

- one problem of 15 multiple-choice *multiple-answer* questions
 - 0.5 point for selecting (not selecting) each correct (incorrect) answer
 - "which of the following is correct?" does not imply one correct answer
- four other homework-like problems, each has a couple sub-problems

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

- one problem of 15 multiple-choice *multiple-answer* questions
 - 0.5 point for selecting (not selecting) each correct (incorrect) answer
 - "which of the following is correct?" does not imply one correct answer
- four other homework-like problems, each has a couple sub-problems
 - can solve each one "independently" using conclusions from earlier sub-problems (c.f. HW1 Problem 3)

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

- one problem of 15 multiple-choice *multiple-answer* questions
 - 0.5 point for selecting (not selecting) each correct (incorrect) answer
 - "which of the following is correct?" does not imply one correct answer
- four other homework-like problems, each has a couple sub-problems
 - can solve each one "independently" using conclusions from earlier sub-problems (c.f. HW1 Problem 3)
 - not ordered by difficulty, budget your time carefully!

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

- one problem of 15 multiple-choice *multiple-answer* questions
 - 0.5 point for selecting (not selecting) each correct (incorrect) answer
 - "which of the following is correct?" does not imply one correct answer
- four other homework-like problems, each has a couple sub-problems
 - can solve each one "independently" using conclusions from earlier sub-problems (c.f. HW1 Problem 3)
 - not ordered by difficulty, budget your time carefully!
- in total, upload five scanned pdf/jpg/png's, one for each problem

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

- one problem of 15 multiple-choice multiple-answer questions
 - 0.5 point for selecting (not selecting) each correct (incorrect) answer
 - "which of the following is correct?" does not imply one correct answer
- four other homework-like problems, each has a couple sub-problems
 - can solve each one "independently" using conclusions from earlier sub-problems (c.f. HW1 Problem 3)
 - not ordered by difficulty, budget your time carefully!
- in total, upload five scanned pdf/jpg/png's, one for each problem
 - each can have multiple pages

Coverage: mostly Lec 1-5, some multiple-choice questions from Lec 6

Five problems in total

- one problem of 15 multiple-choice multiple-answer questions
 - 0.5 point for selecting (not selecting) each correct (incorrect) answer
 - "which of the following is correct?" does not imply one correct answer
- four other homework-like problems, each has a couple sub-problems
 - can solve each one "independently" using conclusions from earlier sub-problems (c.f. HW1 Problem 3)
 - not ordered by difficulty, budget your time carefully!
- in total, upload five scanned pdf/jpg/png's, one for each problem
 - each can have multiple pages

Tips: expect to see variants of questions from discussion/homework

Outline

- Review of last lecture
- Support vector machines (primal formulation)
- A detour of Lagrangian duality
- Support vector machines (dual formulation)

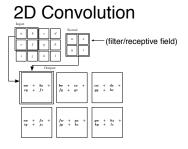
Outline

- Review of last lecture
- 2 Support vector machines (primal formulation)
- 3 A detour of Lagrangian duality
- 4 Support vector machines (dual formulation)

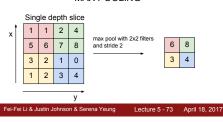
Convolutional Neural Nets

Typical architecture for CNNs:

$$\mathsf{Input} \to [\mathsf{[Conv} \to \mathsf{ReLU}] * \mathsf{N} \to \mathsf{Pool?}] * \mathsf{M} \to [\mathsf{FC} \to \mathsf{ReLU}] * \mathsf{Q} \to \mathsf{FC}$$



MAX POOLING



(Goodfellow 2016)

Kernel functions

Definition: a function $k: \mathbb{R}^{D} \times \mathbb{R}^{D} \to \mathbb{R}$ is called a *kernel function* if there exists a function $\phi: \mathbb{R}^{D} \to \mathbb{R}^{M}$ so that for any $x, x' \in \mathbb{R}^{D}$,

$$k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}')$$

Kernel functions

Definition: a function $k : \mathbb{R}^{D} \times \mathbb{R}^{D} \to \mathbb{R}$ is called a *kernel function* if there exists a function $\phi : \mathbb{R}^{D} \to \mathbb{R}^{M}$ so that for any $x, x' \in \mathbb{R}^{D}$,

$$k(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{\phi}(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}')$$

Examples we have seen

$$\begin{split} k(\boldsymbol{x}, \boldsymbol{x}') &= (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}')^2 \\ k(\boldsymbol{x}, \boldsymbol{x}') &= \sum_{d=1}^{\mathsf{D}} \frac{\sin(2\pi(x_d - x_d'))}{x_d - x_d'} \\ k(\boldsymbol{x}, \boldsymbol{x}') &= (\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}' + c)^d & \text{(polynomial kernel)} \\ k(\boldsymbol{x}, \boldsymbol{x}') &= e^{-\frac{\|\boldsymbol{x} - \boldsymbol{x}'\|_2^2}{2\sigma^2}} & \text{(Gaussian/RBF kernel)} \end{split}$$

Kernelizing ML algorithms

Feasible as long as **only inner products are required**:

regularized linear regression (dual formulation)

$$\phi(x)^{\mathrm{T}}w^{*} = \phi(x)^{\mathrm{T}}\Phi^{\mathrm{T}}(K + \lambda I)^{-1}y$$
 $(K = \Phi\Phi^{\mathrm{T}} \text{ is kernel matrix})$

• nearest neighbor, Perceptron, logistic regression, SVM, ...

Outline

- Review of last lecture
- 2 Support vector machines (primal formulation)
- 3 A detour of Lagrangian duality
- Support vector machines (dual formulation)

Support vector machines (SVM)

- one of the most commonly used classification algorithms
- works well with the kernel trick
- strong theoretical guarantees

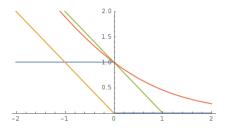
Support vector machines (SVM)

- one of the most commonly used classification algorithms
- works well with the kernel trick
- strong theoretical guarantees

We focus on **binary classification** here.

In one sentence: linear model with L2 regularized hinge loss.

In one sentence: linear model with L2 regularized hinge loss. Recall



- perceptron loss $\ell_{\mathsf{perceptron}}(z) = \max\{0, -z\} \to \mathsf{Perceptron}$
- logistic loss $\ell_{\text{logistic}}(z) = \log(1 + \exp(-z)) \rightarrow \text{logistic regression}$
- hinge loss $\ell_{\mathsf{hinge}}(z) = \max\{0, 1-z\} \to \mathsf{SVM}$

For a linear model (\boldsymbol{w},b) , this means

$$\min_{\boldsymbol{w},b} \sum_{n} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

For a linear model (\boldsymbol{w},b) , this means

$$\min_{\boldsymbol{w}, b} \sum_{n} \max \{0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b)\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

 $\bullet \ \operatorname{recall} \ y_n \in \{-1, +1\}$

For a linear model (\boldsymbol{w},b) , this means

$$\min_{\boldsymbol{w},b} \sum_{n} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

- recall $y_n \in \{-1, +1\}$
- ullet a nonlinear mapping ϕ is applied

For a linear model (\boldsymbol{w},b) , this means

$$\min_{\boldsymbol{w},b} \sum_{n} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

- recall $y_n \in \{-1, +1\}$
- ullet a nonlinear mapping ϕ is applied
- the bias/intercept term b is used explicitly (think about why after this lecture)

For a linear model (\boldsymbol{w},b) , this means

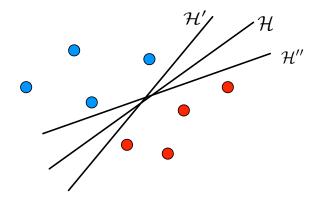
$$\min_{\boldsymbol{w},b} \sum_{n} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

- recall $y_n \in \{-1, +1\}$
- ullet a nonlinear mapping ϕ is applied
- the bias/intercept term b is used explicitly (think about why after this lecture)

So why L2 regularized hinge loss?

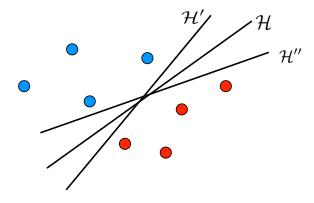
Geometric motivation: separable case

When data is **linearly separable**, there are *infinitely many hyperplanes* with zero training error:



Geometric motivation: separable case

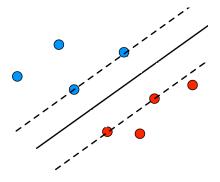
When data is **linearly separable**, there are *infinitely many hyperplanes* with zero training error:



So which one should we choose?

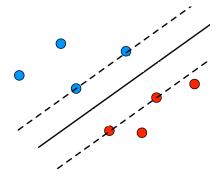
Intuition

The further away from data points the better.



Intuition

The further away from data points the better.



How to formalize this intuition?

What is the **distance** from a point x to a hyperplane $\{x : w^Tx + b = 0\}$?

What is the **distance** from a point x to a hyperplane $\{x : w^Tx + b = 0\}$?

Assume the **projection** is $oldsymbol{x} - \ell \frac{oldsymbol{w}}{\|oldsymbol{w}\|_2}$,

What is the **distance** from a point x to a hyperplane $\{x : w^{T}x + b = 0\}$?

Assume the **projection** is $x - \ell \frac{w}{\|w\|_2}$, then

$$0 = \boldsymbol{w}^{\mathrm{T}} \left(\boldsymbol{x} - \ell \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}} \right) + b = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} - \ell \|\boldsymbol{w}\| + b$$

and thus
$$\ell = rac{oldsymbol{w}^{\mathrm{T}}oldsymbol{x} + b}{\|oldsymbol{w}\|_2}.$$

What is the **distance** from a point x to a hyperplane $\{x : w^Tx + b = 0\}$?

Assume the **projection** is $oldsymbol{x} - \ell rac{oldsymbol{w}}{\|oldsymbol{w}\|_2}$, then

$$0 = \boldsymbol{w}^{\mathrm{T}} \left(\boldsymbol{x} - \ell \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}} \right) + b = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} - \ell \|\boldsymbol{w}\| + b$$

and thus $\ell = rac{oldsymbol{w}^{\mathrm{T}}oldsymbol{x} + b}{\|oldsymbol{w}\|_2}.$

Therefore the distance is

$$\frac{\|\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b\|}{\|\boldsymbol{w}\|_2}$$

What is the **distance** from a point x to a hyperplane $\{x : w^Tx + b = 0\}$?

Assume the **projection** is $x-\ell \frac{w}{\|w\|_2}$, then

$$0 = \boldsymbol{w}^{\mathrm{T}} \left(\boldsymbol{x} - \ell \frac{\boldsymbol{w}}{\|\boldsymbol{w}\|_{2}} \right) + b = \boldsymbol{w}^{\mathrm{T}} \boldsymbol{x} - \ell \|\boldsymbol{w}\| + b$$

and thus $\ell = rac{oldsymbol{w}^{\mathrm{T}}oldsymbol{x} + b}{\|oldsymbol{w}\|_2}.$

Therefore the distance is

$$\frac{|\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b|}{\|\boldsymbol{w}\|_{2}}$$

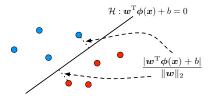
For a hyperplane that correctly classifies (x, y), the distance becomes

$$\frac{y(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x} + b)}{\|\boldsymbol{w}\|_2}$$

Maximizing margin

Margin: the *smallest* distance from all training points to the hyperplane

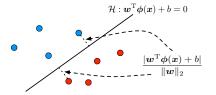
Margin of
$$(\boldsymbol{w},\ b) = \min_n \frac{y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b)}{\|\boldsymbol{w}\|_2}$$



Maximizing margin

Margin: the *smallest* distance from all training points to the hyperplane

MARGIN OF
$$(\boldsymbol{w}, b) = \min_{n} \frac{y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b)}{\|\boldsymbol{w}\|_2}$$



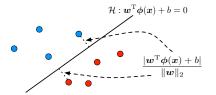
The intuition "the further away the better" translates to solving

$$\max_{\boldsymbol{w},b} \min_{n} \frac{y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b)}{\|\boldsymbol{w}\|_2}$$

Maximizing margin

Margin: the *smallest* distance from all training points to the hyperplane

MARGIN OF
$$(\boldsymbol{w}, b) = \min_{n} \frac{y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b)}{\|\boldsymbol{w}\|_2}$$



The intuition "the further away the better" translates to solving

$$\max_{\boldsymbol{w},b} \min_{n} \frac{y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b)}{\|\boldsymbol{w}\|_2} = \max_{\boldsymbol{w},b} \frac{1}{\|\boldsymbol{w}\|_2} \min_{n} y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b)$$

Note: rescaling (\boldsymbol{w},b) does not change the hyperplane at all.

Note: rescaling (w, b) does not change the hyperplane at all.

We can thus always scale (\boldsymbol{w},b) s.t. $\min_n y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n)+b)=1$

Note: rescaling (w, b) does not change the hyperplane at all.

We can thus always scale (\boldsymbol{w},b) s.t. $\min_n y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n)+b)=1$

The margin then becomes

MARGIN OF
$$(\boldsymbol{w}, b)$$

$$= \frac{1}{\|\boldsymbol{w}\|_2} \min_n y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b)$$

$$= \frac{1}{\|\boldsymbol{w}\|_2}$$

Note: rescaling (w, b) does not change the hyperplane at all.

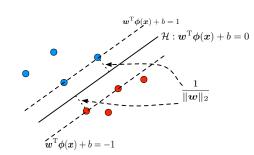
We can thus always scale (\boldsymbol{w},b) s.t. $\min_n y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n)+b)=1$

The margin then becomes

MARGIN OF
$$(\boldsymbol{w}, b)$$

$$= \frac{1}{\|\boldsymbol{w}\|_2} \min_n y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b)$$

$$= \frac{1}{\|\boldsymbol{w}\|_2}$$



Summary for separable data

For a separable training set, we aim to solve

$$\max_{\boldsymbol{w},b} \frac{1}{\|\boldsymbol{w}\|_2} \quad \text{s.t.} \quad \min_n y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) = 1$$

Summary for separable data

For a separable training set, we aim to solve

$$\max_{\boldsymbol{w},b} \frac{1}{\|\boldsymbol{w}\|_2} \quad \text{s.t.} \quad \min_n y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) = 1$$

This is equivalent to

$$\begin{split} \min_{\pmb{w},b} & \quad \frac{1}{2} \|\pmb{w}\|_2^2 \\ \text{s.t.} & \quad y_n(\pmb{w}^{\mathrm{T}} \pmb{\phi}(\pmb{x}_n) + b) \geq 1, \quad \forall \ n \end{split}$$

Summary for separable data

For a separable training set, we aim to solve

$$\max_{\boldsymbol{w},b} \frac{1}{\|\boldsymbol{w}\|_2} \quad \text{s.t.} \quad \min_n y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) = 1$$

This is equivalent to

$$\begin{split} \min_{\pmb{w},b} & \quad \frac{1}{2} \|\pmb{w}\|_2^2 \\ \text{s.t.} & \quad y_n(\pmb{w}^{\mathrm{T}} \pmb{\phi}(\pmb{x}_n) + b) \geq 1, \quad \forall \ n \end{split}$$

SVM is thus also called *max-margin* classifier. The constraints above are called *hard-margin* constraints.

General non-separable case

If data is not linearly separable, the previous constraint

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b) \ge 1, \ \forall \ n$$

is obviously *not feasible*.

General non-separable case

If data is not linearly separable, the previous constraint

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b) \ge 1, \ \forall \ n$$

is obviously not feasible.

To deal with this issue, we relax them to **soft-margin** constraints:

$$y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b) \ge 1 - \xi_n, \ \forall \ n$$

where we introduce slack variables $\xi_n \geq 0$.

SVM Primal formulation

We want ξ_n to be as small as possible too.

SVM Primal formulation

We want ξ_n to be as small as possible too. The objective becomes

$$\begin{aligned} \min_{\boldsymbol{w},b,\{\xi_n\}} \quad & \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_n \xi_n \\ \text{s.t.} \quad & y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \geq 1 - \xi_n, \quad \forall \ n \\ & \xi_n \geq 0, \quad \forall \ n \end{aligned}$$

where C is a hyperparameter to balance the two goals.

Formulation

$$\begin{split} \min_{\boldsymbol{w},b,\{\xi_n\}} & \quad C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{s.t.} & \quad 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \leq \xi_n, \quad \forall \ n \\ & \quad \xi_n \geq 0, \quad \forall \ n \end{split}$$

Formulation

$$\min_{\boldsymbol{w},b,\{\xi_n\}} \quad C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \le \xi_n, \quad \forall \ r$$

$$\xi_n \ge 0, \quad \forall \ n$$

is equivalent to

$$\begin{split} \min_{\boldsymbol{w},b,\{\xi_n\}} & \quad C\sum_n \xi_n + \frac{1}{2}\|\boldsymbol{w}\|_2^2 \\ \text{s.t.} & \quad \max\left\{0,1-y_n(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n)+b)\right\} = \xi_n, \quad \forall \ n \end{split}$$

$$\min_{\boldsymbol{w},b,\{\xi_n\}} C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$\max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} = \xi_n, \quad \forall \ n$$

is equivalent to

$$\min_{\boldsymbol{w},b} C \sum_{n} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

$$\min_{\boldsymbol{w},b,\{\xi_n\}} \quad C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$\max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} = \xi_n, \quad \forall \ n$$

is equivalent to

$$\min_{\boldsymbol{w},b} C \sum_{n} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

and

$$\min_{\boldsymbol{w},b} \sum_{n} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

with
$$\lambda = 1/C$$
.

$$\min_{\boldsymbol{w},b,\{\xi_n\}} \quad C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$\max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} = \xi_n, \quad \forall \ n$$

is equivalent to

$$\min_{\boldsymbol{w},b} C \sum_{n} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

and

$$\min_{\boldsymbol{w},b} \sum_{\boldsymbol{x}} \max \left\{ 0, 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \right\} + \frac{\lambda}{2} \|\boldsymbol{w}\|_2^2$$

with $\lambda = 1/C$. This is exactly minimizing L2 regularized hinge loss!

$$\min_{\boldsymbol{w},b,\{\xi_n\}} C \sum_{n} \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \leq \xi_n, \quad \forall n$$

$$\xi_n \geq 0, \quad \forall n$$

• It is a convex (quadratic in fact) problem

$$\min_{\boldsymbol{w},b,\{\xi_n\}} \quad C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \le \xi_n, \quad \forall \ n$$

$$\xi_n \ge 0, \quad \forall \ n$$

- It is a convex (quadratic in fact) problem
- thus can apply any convex optimization algorithms, e.g. SGD

$$\min_{\boldsymbol{w},b,\{\xi_n\}} \quad C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \le \xi_n, \quad \forall \ n$$

$$\xi_n \ge 0, \quad \forall \ n$$

- It is a convex (quadratic in fact) problem
- thus can apply any convex optimization algorithms, e.g. SGD
- there are more specialized and efficient algorithms

$$\min_{\boldsymbol{w},b,\{\xi_n\}} \quad C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \le \xi_n, \quad \forall \ n$$

$$\xi_n \ge 0, \quad \forall \ n$$

- It is a convex (quadratic in fact) problem
- thus can apply any convex optimization algorithms, e.g. SGD
- there are more specialized and efficient algorithms
- but usually we apply kernel trick, which requires solving the dual problem

Outline

- Review of last lecture
- 2 Support vector machines (primal formulation)
- A detour of Lagrangian duality
- 4 Support vector machines (dual formulation)

Lagrangian duality

Extremely important and powerful tool in analyzing optimizations

Lagrangian duality

Extremely important and powerful tool in analyzing optimizations

We will introduce basic concepts and derive the KKT conditions

Lagrangian duality

Extremely important and powerful tool in analyzing optimizations

We will introduce basic concepts and derive the KKT conditions

• the derivation is not required for this course

Lagrangian duality

Extremely important and powerful tool in analyzing optimizations

We will introduce basic concepts and derive the KKT conditions

- the derivation is not required for this course
- but the application of KKT conditions is required

Lagrangian duality

Extremely important and powerful tool in analyzing optimizations

We will introduce basic concepts and derive the KKT conditions

- the derivation is not required for this course
- but the application of KKT conditions is required

Applying it to SVM reveals an important aspect of the algorithm

Primal problem

Suppose we want to solve

$$\min_{\boldsymbol{w}} F(\boldsymbol{w})$$
 s.t. $h_j(\boldsymbol{w}) \leq 0 \quad \forall \ j \in [\mathsf{J}]$

where functions h_1, \ldots, h_J define J constraints.

Primal problem

Suppose we want to solve

$$\min_{m{w}} F(m{w})$$
 s.t. $h_j(m{w}) \leq 0 \quad \forall \ j \in [\mathsf{J}]$

where functions h_1, \ldots, h_J define J constraints.

SVM primal formulation is clearly of this form with J=2N constraints:

$$F(\boldsymbol{w}, b, \{\xi_n\}) = C \sum_{n} \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$

$$h_n(\boldsymbol{w}, b, \{\xi_n\}) = 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) - \xi_n \quad \forall \ n \in [N]$$

$$h_{\mathsf{N}+n}(\boldsymbol{w}, b, \{\xi_n\}) = -\xi_n \quad \forall \ n \in [N]$$

The **Lagrangian** of the previous problem is defined as:

$$L\left(\boldsymbol{w},\left\{\lambda_{j}\right\}\right) = F(\boldsymbol{w}) + \sum_{j=1}^{\mathsf{J}} \lambda_{j} h_{j}(\boldsymbol{w})$$

where $\lambda_1, \ldots, \lambda_J \geq 0$ are called **Lagrangian multipliers**.

The Lagrangian of the previous problem is defined as:

$$L(\boldsymbol{w}, \{\lambda_j\}) = F(\boldsymbol{w}) + \sum_{j=1}^{J} \lambda_j h_j(\boldsymbol{w})$$

where $\lambda_1, \ldots, \lambda_J \geq 0$ are called **Lagrangian multipliers**.

Note that

$$\max_{\{\lambda_j\} \geq 0} L(\boldsymbol{w}, \{\lambda_j\}) = \left\{ \begin{array}{ccc} & \text{if } h_j(\boldsymbol{w}) \leq 0 & \forall \; j \in [\mathsf{J}] \\ & \text{else} \end{array} \right.$$

The Lagrangian of the previous problem is defined as:

$$L(\boldsymbol{w}, \{\lambda_j\}) = F(\boldsymbol{w}) + \sum_{j=1}^{\mathsf{J}} \lambda_j h_j(\boldsymbol{w})$$

where $\lambda_1, \ldots, \lambda_J \geq 0$ are called **Lagrangian multipliers**.

Note that

$$\max_{\{\lambda_j\} \geq 0} L(\boldsymbol{w}, \{\lambda_j\}) = \begin{cases} F(\boldsymbol{w}) & \text{if } h_j(\boldsymbol{w}) \leq 0 \quad \forall \ j \in [\mathsf{J}] \\ & \text{else} \end{cases}$$

The Lagrangian of the previous problem is defined as:

$$L(\boldsymbol{w}, \{\lambda_j\}) = F(\boldsymbol{w}) + \sum_{j=1}^{\mathsf{J}} \lambda_j h_j(\boldsymbol{w})$$

where $\lambda_1, \ldots, \lambda_J \geq 0$ are called **Lagrangian multipliers**.

Note that

$$\max_{\{\lambda_j\} \ge 0} L(\boldsymbol{w}, \{\lambda_j\}) = \begin{cases} F(\boldsymbol{w}) & \text{if } h_j(\boldsymbol{w}) \le 0 \quad \forall \ j \in [\mathsf{J}] \\ +\infty & \text{else} \end{cases}$$

The Lagrangian of the previous problem is defined as:

$$L\left(oldsymbol{w}, \left\{\lambda_j
ight\}
ight) = F(oldsymbol{w}) + \sum_{j=1}^{\mathsf{J}} \lambda_j h_j(oldsymbol{w})$$

where $\lambda_1, \ldots, \lambda_J \geq 0$ are called **Lagrangian multipliers**.

Note that

$$\max_{\{\lambda_j\} \geq 0} L(\boldsymbol{w}, \{\lambda_j\}) = \begin{cases} F(\boldsymbol{w}) & \text{if } h_j(\boldsymbol{w}) \leq 0 \quad \forall \ j \in [\mathsf{J}] \\ +\infty & \text{else} \end{cases}$$

and thus,

$$\min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) \iff \min_{\boldsymbol{w}} F(\boldsymbol{w}) \text{ s.t. } h_j(\boldsymbol{w}) \leq 0 \quad \forall \ j \in [\mathsf{J}]$$

We define the dual problem by swapping the min and max:

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

We define the **dual problem** by swapping the min and max:

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

How are the primal and dual connected?

We define the **dual problem** by swapping the min and max:

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

We define the **dual problem** by swapping the min and max:

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right)$$

We define the **dual problem** by swapping the min and max:

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right) \leq L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right)$$

We define the **dual problem** by swapping the min and max:

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

$$\max_{\{\lambda_{j}\}\geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_{j}\}\right) = \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_{j}^{*}\}\right) \leq L\left(\boldsymbol{w}^{*}, \{\lambda_{j}^{*}\}\right)$$
$$\leq \max_{\{\lambda_{j}\}\geq 0} L\left(\boldsymbol{w}^{*}, \{\lambda_{j}\}\right)$$

We define the **dual problem** by swapping the min and max:

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right) \leq L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right)$$
$$\leq \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}^*, \{\lambda_j\}\right) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

We define the **dual problem** by swapping the min and max:

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

How are the primal and dual connected? Let w^* and $\{\lambda_j^*\}$ be the primal and dual solutions respectively, then

$$\max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right) \leq L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right)$$
$$\leq \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}^*, \{\lambda_j\}\right) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

This is called "weak duality".

Strong duality

When F, h_1, \ldots, h_J are convex, under some mild conditions:

$$\min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

Strong duality

When F, h_1, \ldots, h_J are convex, under some mild conditions:

$$\min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

This is called "strong duality".

$$F(\boldsymbol{w}^*) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$

$$F(\boldsymbol{w}^*) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L(\boldsymbol{w}, \{\lambda_j\}) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L(\boldsymbol{w}, \{\lambda_j\})$$
$$= \min_{\boldsymbol{w}} L(\boldsymbol{w}, \{\lambda_j^*\})$$

$$F(\boldsymbol{w}^*) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L(\boldsymbol{w}, \{\lambda_j\}) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L(\boldsymbol{w}, \{\lambda_j\})$$
$$= \min_{\boldsymbol{w}} L(\boldsymbol{w}, \{\lambda_j^*\}) \leq L(\boldsymbol{w}^*, \{\lambda_j^*\})$$

$$F(\boldsymbol{w}^*) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L(\boldsymbol{w}, \{\lambda_j\}) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L(\boldsymbol{w}, \{\lambda_j\})$$
$$= \min_{\boldsymbol{w}} L(\boldsymbol{w}, \{\lambda_j^*\}) \leq L(\boldsymbol{w}^*, \{\lambda_j^*\}) = F(\boldsymbol{w}^*) + \sum_{j=1}^{\mathsf{J}} \lambda_j^* h_j(\boldsymbol{w}^*)$$

$$F(\boldsymbol{w}^*) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$
$$= \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right) \leq L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = F(\boldsymbol{w}^*) + \sum_{i=1}^{\mathsf{J}} \lambda_j^* h_j(\boldsymbol{w}^*) \leq F(\boldsymbol{w}^*)$$

Observe that if strong duality holds:

$$F(\boldsymbol{w}^*) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$
$$= \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right) \leq L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = F(\boldsymbol{w}^*) + \sum_{j=1}^{\mathsf{J}} \lambda_j^* h_j(\boldsymbol{w}^*) \leq F(\boldsymbol{w}^*)$$

Implications:

all inequalities above have to be equalities!

Observe that if strong duality holds:

$$F(\boldsymbol{w}^*) = \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right)$$
$$= \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right) \leq L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = F(\boldsymbol{w}^*) + \sum_{j=1}^{\mathsf{J}} \lambda_j^* h_j(\boldsymbol{w}^*) \leq F(\boldsymbol{w}^*)$$

Implications:

- all inequalities above have to be equalities!
- \bullet last equality implies $\lambda_j^*h_j(\boldsymbol{w}^*)=0$ for all $j\in[\mathsf{J}]$

Observe that if strong duality holds:

$$\begin{split} F(\boldsymbol{w}^*) &= \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right) \\ &= \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right) \leq L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = F(\boldsymbol{w}^*) + \sum_{j=1}^{\mathsf{J}} \lambda_j^* h_j(\boldsymbol{w}^*) \leq F(\boldsymbol{w}^*) \end{split}$$

Implications:

- all inequalities above have to be equalities!
- last equality implies $\lambda_j^* h_j(\boldsymbol{w}^*) = 0$ for all $j \in [\mathsf{J}]$
- equality $\min_{\pmb{w}} L(\pmb{w}, \{\lambda_j^*\}) = L(\pmb{w}^*, \{\lambda_j^*\})$ implies \pmb{w}^* is a minimizer of $L(\pmb{w}, \{\lambda_j^*\})$

Observe that if strong duality holds:

$$\begin{split} F(\boldsymbol{w}^*) &= \min_{\boldsymbol{w}} \max_{\{\lambda_j\} \geq 0} L\left(\boldsymbol{w}, \{\lambda_j\}\right) = \max_{\{\lambda_j\} \geq 0} \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j\}\right) \\ &= \min_{\boldsymbol{w}} L\left(\boldsymbol{w}, \{\lambda_j^*\}\right) \leq L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = F(\boldsymbol{w}^*) + \sum_{j=1}^{\mathsf{J}} \lambda_j^* h_j(\boldsymbol{w}^*) \leq F(\boldsymbol{w}^*) \end{split}$$

Implications:

- all inequalities above have to be equalities!
- last equality implies $\lambda_j^* h_j(\boldsymbol{w}^*) = 0$ for all $j \in [\mathsf{J}]$
- equality $\min_{\boldsymbol{w}} L(\boldsymbol{w}, \{\lambda_j^*\}) = L(\boldsymbol{w}^*, \{\lambda_j^*\})$ implies \boldsymbol{w}^* is a minimizer of $L(\boldsymbol{w}, \{\lambda_j^*\})$ and thus has zero gradient:

$$\nabla_{\boldsymbol{w}} L(\boldsymbol{w}^*, \{\lambda_j^*\}) = \nabla F(\boldsymbol{w}^*) + \sum_{j=1}^J \lambda_j^* \nabla h_j(\boldsymbol{w}^*) = \mathbf{0}$$

If $oldsymbol{w}^*$ and $\{\lambda_j^*\}$ are the primal and dual solution respectively, then:

If w^* and $\{\lambda_i^*\}$ are the primal and dual solution respectively, then:

Stationarity:

$$\nabla_{\boldsymbol{w}} L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = \nabla F(\boldsymbol{w}^*) + \sum_{j=1}^{J} \lambda_j^* \nabla h_j(\boldsymbol{w}^*) = \mathbf{0}$$

If w^* and $\{\lambda_i^*\}$ are the primal and dual solution respectively, then:

Stationarity:

$$\nabla_{\boldsymbol{w}} L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = \nabla F(\boldsymbol{w}^*) + \sum_{j=1}^{J} \lambda_j^* \nabla h_j(\boldsymbol{w}^*) = \mathbf{0}$$

Complementary slackness:

$$\lambda_j^*h_j(\boldsymbol{w}^*) = 0 \quad \text{for all } j \in [\mathsf{J}]$$

If w^* and $\{\lambda_i^*\}$ are the primal and dual solution respectively, then:

Stationarity:

$$\nabla_{\boldsymbol{w}} L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = \nabla F(\boldsymbol{w}^*) + \sum_{j=1}^{J} \lambda_j^* \nabla h_j(\boldsymbol{w}^*) = \mathbf{0}$$

Complementary slackness:

$$\lambda_j^* h_j(\boldsymbol{w}^*) = 0 \quad \text{for all } j \in [\mathsf{J}]$$

Feasibility:

$$h_j(\boldsymbol{w}^*) \leq 0 \quad \text{and} \quad \lambda_j^* \geq 0 \quad \text{for all } j \in [\mathsf{J}]$$

If w^* and $\{\lambda_i^*\}$ are the primal and dual solution respectively, then:

Stationarity:

$$\nabla_{\boldsymbol{w}} L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = \nabla F(\boldsymbol{w}^*) + \sum_{j=1}^{J} \lambda_j^* \nabla h_j(\boldsymbol{w}^*) = \mathbf{0}$$

Complementary slackness:

$$\lambda_j^*h_j(\boldsymbol{w}^*) = 0 \quad \text{for all } j \in [\mathsf{J}]$$

Feasibility:

$$h_j(\boldsymbol{w}^*) \leq 0$$
 and $\lambda_j^* \geq 0$ for all $j \in [\mathsf{J}]$

These are *necessary conditions*.

If w^* and $\{\lambda_i^*\}$ are the primal and dual solution respectively, then:

Stationarity:

$$\nabla_{\boldsymbol{w}} L\left(\boldsymbol{w}^*, \{\lambda_j^*\}\right) = \nabla F(\boldsymbol{w}^*) + \sum_{j=1}^{J} \lambda_j^* \nabla h_j(\boldsymbol{w}^*) = \mathbf{0}$$

Complementary slackness:

$$\lambda_j^*h_j(\boldsymbol{w}^*) = 0 \quad \text{for all } j \in [\mathsf{J}]$$

Feasibility:

$$h_j(\boldsymbol{w}^*) \leq 0$$
 and $\lambda_j^* \geq 0$ for all $j \in [\mathsf{J}]$

These are *necessary conditions*. They are also *sufficient* when F is convex and h_1, \ldots, h_J are continuously differentiable convex functions.

Outline

- Review of last lecture
- 2 Support vector machines (primal formulation
- 3 A detour of Lagrangian duality
- Support vector machines (dual formulation)

Writing down the Lagrangian

Recall the primal formulation

$$\min_{\boldsymbol{w},b,\{\xi_n\}} C \sum_{n} \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \leq \xi_n, \quad \forall n$$

$$\xi_n \geq 0, \quad \forall n$$

Writing down the Lagrangian

Recall the primal formulation

$$\min_{\boldsymbol{w},b,\{\xi_n\}} \quad C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \le \xi_n, \quad \forall \ n$$

$$\xi_n \ge 0, \quad \forall \ n$$

Lagrangian is

$$L(\boldsymbol{w}, b, \{\xi_n\}, \{\alpha_n\}, \{\lambda_n\}) = C \sum_{n} \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2 - \sum_{n} \lambda_n \xi_n + \sum_{n} \alpha_n \left(1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) - \xi_n\right)$$

where $\alpha_1, \ldots, \alpha_N \geq 0$ and $\lambda_1, \ldots, \lambda_N \geq 0$ are Lagrangian multipliers.

$$L = C \sum_{n} \xi_{n} + \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} + \sum_{n} \alpha_{n} \left(1 - y_{n}(\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b) - \xi_{n}\right)$$

$$L = C \sum_{n} \xi_{n} + \frac{1}{2} \| \boldsymbol{w} \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} + \sum_{n} \alpha_{n} \left(1 - y_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b) - \xi_{n} \right)$$

$$\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{n} y_n \alpha_n \boldsymbol{\phi}(\boldsymbol{x}_n) = \mathbf{0}$$

$$L = C \sum_{n} \xi_{n} + \frac{1}{2} \| \boldsymbol{w} \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} + \sum_{n} \alpha_{n} \left(1 - y_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b) - \xi_{n} \right)$$

$$\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n}) = \boldsymbol{0} \quad \Longrightarrow \quad \boldsymbol{w} = \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n})$$

$$L = C \sum_{n} \xi_n + \frac{1}{2} \| \boldsymbol{w} \|_2^2 - \sum_{n} \lambda_n \xi_n + \sum_{n} \alpha_n \left(1 - y_n (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) - \xi_n \right)$$

$$\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n}) = \boldsymbol{0} \quad \Longrightarrow \quad \boldsymbol{w} = \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n})$$

$$\frac{\partial L}{\partial b} = -\sum_{n} \alpha_{n} y_{n} = 0$$

$$L = C \sum_{n} \xi_{n} + \frac{1}{2} \| \boldsymbol{w} \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} + \sum_{n} \alpha_{n} \left(1 - y_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b) - \xi_{n} \right)$$

$$\frac{\partial L}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n}) = \boldsymbol{0} \quad \Longrightarrow \quad \boldsymbol{w} = \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n})$$

$$\frac{\partial L}{\partial b} = -\sum \alpha_n y_n = 0 \quad \text{and} \quad \frac{\partial L}{\partial \xi_n} = C - \lambda_n - \alpha_n = 0, \quad \forall \; n$$

$$L = C \sum_{n} \xi_n + \frac{1}{2} \| \boldsymbol{w} \|_2^2 - \sum_{n} \lambda_n \xi_n + \sum_{n} \alpha_n \left(1 - y_n (\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) - \xi_n \right)$$

$$L = C \sum_{n} \xi_{n} + \frac{1}{2} \| \boldsymbol{w} \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} + \sum_{n} \alpha_{n} \left(1 - y_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b) - \xi_{n} \right)$$

$$= C \sum_{n} \xi_{n} + \frac{1}{2} \| \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n}) \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} + \sum_{n} \alpha_{n} \left(1 - y_{n} \left(\left(\sum_{m} y_{m} \alpha_{m} \boldsymbol{\phi}(\boldsymbol{x}_{m}) \right)^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b \right) - \xi_{n} \right)$$

$$L = C \sum_{n} \xi_{n} + \frac{1}{2} \| \boldsymbol{w} \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} + \sum_{n} \alpha_{n} \left(1 - y_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b) - \xi_{n} \right)$$

$$= C \sum_{n} \xi_{n} + \frac{1}{2} \| \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n}) \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} +$$

$$\sum_{n} \alpha_{n} \left(1 - y_{n} \left(\left(\sum_{m} y_{m} \alpha_{m} \boldsymbol{\phi}(\boldsymbol{x}_{m}) \right)^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b \right) - \xi_{n} \right)$$

$$= \sum_{n} \alpha_{n} + \frac{1}{2} \| \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n}) \|_{2}^{2} - \sum_{m,n} \alpha_{n} \alpha_{m} y_{m} y_{n} \boldsymbol{\phi}(\boldsymbol{x}_{m})^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n})$$

$$\left(\sum_{n} \alpha_{n} y_{n} = 0 \text{ and } C = \lambda_{n} + \alpha_{n} \right)$$

$$L = C \sum_{n} \xi_{n} + \frac{1}{2} \| \boldsymbol{w} \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} + \sum_{n} \alpha_{n} \left(1 - y_{n} (\boldsymbol{w}^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b) - \xi_{n} \right)$$

$$= C \sum_{n} \xi_{n} + \frac{1}{2} \| \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n}) \|_{2}^{2} - \sum_{n} \lambda_{n} \xi_{n} +$$

$$\sum_{n} \alpha_{n} \left(1 - y_{n} \left(\left(\sum_{m} y_{m} \alpha_{m} \boldsymbol{\phi}(\boldsymbol{x}_{m}) \right)^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n}) + b \right) - \xi_{n} \right)$$

$$= \sum_{n} \alpha_{n} + \frac{1}{2} \| \sum_{n} y_{n} \alpha_{n} \boldsymbol{\phi}(\boldsymbol{x}_{n}) \|_{2}^{2} - \sum_{m,n} \alpha_{n} \alpha_{m} y_{m} y_{n} \boldsymbol{\phi}(\boldsymbol{x}_{m})^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n})$$

$$(\sum_{n} \alpha_{n} y_{n} = 0 \text{ and } C = \lambda_{n} + \alpha_{n})$$

$$= \sum_{n} \alpha_{n} - \frac{1}{2} \sum_{n} \alpha_{n} \alpha_{m} y_{m} y_{n} \boldsymbol{\phi}(\boldsymbol{x}_{m})^{T} \boldsymbol{\phi}(\boldsymbol{x}_{n})$$

The dual formulation

To find the dual solutions, it amounts to solving

$$\begin{aligned} \max_{\{\alpha_n\},\{\lambda_n\}} \quad & \sum_n \alpha_n - \frac{1}{2} \sum_{m,n} y_m y_n \alpha_m \alpha_n \phi(\boldsymbol{x}_m)^{\mathrm{T}} \phi(\boldsymbol{x}_n) \\ \text{s.t.} \quad & \sum_n \alpha_n y_n = 0 \\ & C - \lambda_n - \alpha_n = 0, \ \alpha_n \geq 0, \ \lambda_n \geq 0, \quad \forall \ n \end{aligned}$$

The dual formulation

To find the dual solutions, it amounts to solving

$$\begin{aligned} \max_{\{\alpha_n\},\{\lambda_n\}} \quad & \sum_n \alpha_n - \frac{1}{2} \sum_{m,n} y_m y_n \alpha_m \alpha_n \phi(\boldsymbol{x}_m)^{\mathrm{T}} \phi(\boldsymbol{x}_n) \\ \text{s.t.} \quad & \sum_n \alpha_n y_n = 0 \\ & C - \lambda_n - \alpha_n = 0, \ \alpha_n \geq 0, \ \lambda_n \geq 0, \quad \forall \ n \end{aligned}$$

Note the last three constraints can be written as $0 \le \alpha_n \le C$ for all n.

The dual formulation

To find the dual solutions, it amounts to solving

$$\max_{\{\alpha_n\},\{\lambda_n\}} \quad \sum_n \alpha_n - \frac{1}{2} \sum_{m,n} y_m y_n \alpha_m \alpha_n \phi(\boldsymbol{x}_m)^{\mathrm{T}} \phi(\boldsymbol{x}_n)$$
s.t.
$$\sum_n \alpha_n y_n = 0$$

$$C - \lambda_n - \alpha_n = 0, \ \alpha_n \ge 0, \ \lambda_n \ge 0, \ \ \forall \ n$$

Note the last three constraints can be written as $0 \le \alpha_n \le C$ for all n. So the final **dual formulation of SVM** is:

$$\max_{\{\alpha_n\}} \quad \sum_n \alpha_n - \frac{1}{2} \sum_{m,n} y_m y_n \alpha_m \alpha_n \phi(\boldsymbol{x}_m)^{\mathrm{T}} \phi(\boldsymbol{x}_n)$$
s.t.
$$\sum_n \alpha_n y_n = 0 \quad \text{and} \quad 0 \le \alpha_n \le C, \quad \forall \ n$$

Kernelizing SVM

Now it is clear that with a **kernel function** k for the mapping ϕ , we can kernelize SVM as:

$$\max_{\{\alpha_n\}} \quad \sum_n \alpha_n - \frac{1}{2} \sum_{m,n} y_m y_n \alpha_m \alpha_n k(\boldsymbol{x}_m, \boldsymbol{x}_n)$$
 s.t.
$$\sum_n \alpha_n y_n = 0 \quad \text{and} \quad 0 \le \alpha_n \le C, \quad \forall \ n$$

Again, no need to compute $\phi(x)$.

Kernelizing SVM

Now it is clear that with a **kernel function** k for the mapping ϕ , we can kernelize SVM as:

$$\max_{\{\alpha_n\}} \quad \sum_n \alpha_n - \frac{1}{2} \sum_{m,n} y_m y_n \alpha_m \alpha_n k(\boldsymbol{x}_m, \boldsymbol{x}_n)$$
 s.t.
$$\sum_n \alpha_n y_n = 0 \quad \text{and} \quad 0 \le \alpha_n \le C, \quad \forall \ n$$

Again, no need to compute $\phi(x)$. It is a **quadratic program** and many efficient optimization algorithms exist.

But how do we predict given the dual solution $\{\alpha_n^*\}$?

But how do we predict given the dual solution $\{\alpha_n^*\}$? Need to figure out the primal solution w^* and b^* .

But how do we predict given the dual solution $\{\alpha_n^*\}$? Need to figure out the primal solution w^* and b^* .

Based on previous observation,

$$oldsymbol{w}^* = \sum_n lpha_n^* y_n oldsymbol{\phi}(oldsymbol{x}_n)$$

But how do we predict given the dual solution $\{\alpha_n^*\}$? Need to figure out the primal solution w^* and b^* .

Based on previous observation,

$$\boldsymbol{w}^* = \sum_n \alpha_n^* y_n \boldsymbol{\phi}(\boldsymbol{x}_n) = \sum_{n:\alpha_n^*>0} \alpha_n^* y_n \boldsymbol{\phi}(\boldsymbol{x}_n)$$

But how do we predict given the dual solution $\{\alpha_n^*\}$? Need to figure out the primal solution w^* and b^* .

Based on previous observation,

$$\boldsymbol{w}^* = \sum_n \alpha_n^* y_n \boldsymbol{\phi}(\boldsymbol{x}_n) = \sum_{n:\alpha_n^*>0} \alpha_n^* y_n \boldsymbol{\phi}(\boldsymbol{x}_n)$$

A point with $\alpha_n^* > 0$ is called a "support vector". Hence the name SVM.

But how do we predict given the dual solution $\{\alpha_n^*\}$? Need to figure out the primal solution w^* and b^* .

Based on previous observation,

$$\boldsymbol{w}^* = \sum_n \alpha_n^* y_n \boldsymbol{\phi}(\boldsymbol{x}_n) = \sum_{n:\alpha_n^*>0} \alpha_n^* y_n \boldsymbol{\phi}(\boldsymbol{x}_n)$$

A point with $\alpha_n^*>0$ is called a "support vector". Hence the name SVM.

To identify b^* , we need to apply complementary slackness.

For all n we should have

$$\lambda_n^* \xi_n^* = 0, \quad \alpha_n^* \left(1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) \right) = 0$$

For all n we should have

$$\lambda_n^* \xi_n^* = 0, \quad \alpha_n^* \left(1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) \right) = 0$$

For all n we should have

$$\lambda_n^* \xi_n^* = 0, \quad \alpha_n^* \left(1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) \right) = 0$$

For any support vector $\phi(x_n)$ with $0 < \alpha_n^* < C$, $\lambda_n^* = C - \alpha_n^* > 0$ holds.

• first condition implies $\xi_n^* = 0$.

For all n we should have

$$\lambda_n^* \xi_n^* = 0, \quad \alpha_n^* \left(1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) \right) = 0$$

- first condition implies $\xi_n^* = 0$.
- second condition implies $1 = y_n(\boldsymbol{w}^{*T}\boldsymbol{\phi}(\boldsymbol{x}_n) + b^*)$

For all n we should have

$$\lambda_n^* \xi_n^* = 0, \quad \alpha_n^* \left(1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) \right) = 0$$

- first condition implies $\xi_n^* = 0$.
- second condition implies $1 = y_n(\boldsymbol{w}^{*\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b^*)$ and thus

$$b^* = y_n - \boldsymbol{w}^{*\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n)$$

For all n we should have

$$\lambda_n^* \xi_n^* = 0, \quad \alpha_n^* \left(1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) \right) = 0$$

- first condition implies $\xi_n^* = 0$.
- second condition implies $1 = y_n(\boldsymbol{w}^{*\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b^*)$ and thus

$$b^* = y_n - \boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) = y_n - \sum_m \alpha_m^* y_m k(\boldsymbol{x}_m, \boldsymbol{x}_n)$$

For all n we should have

$$\lambda_n^* \xi_n^* = 0, \quad \alpha_n^* \left(1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) \right) = 0$$

For any support vector $\phi(x_n)$ with $0 < \alpha_n^* < C$, $\lambda_n^* = C - \alpha_n^* > 0$ holds.

- first condition implies $\xi_n^* = 0$.
- second condition implies $1 = y_n(\boldsymbol{w}^{*\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}_n) + b^*)$ and thus

$$b^* = y_n - \boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) = y_n - \sum_m \alpha_m^* y_m k(\boldsymbol{x}_m, \boldsymbol{x}_n)$$

Usually *average* over all n with $0 < \alpha_n^* < C$ to stabilize computation.

For all n we should have

$$\lambda_n^* \xi_n^* = 0, \quad \alpha_n^* \left(1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) \right) = 0$$

For any support vector $\phi(x_n)$ with $0 < \alpha_n^* < C$, $\lambda_n^* = C - \alpha_n^* > 0$ holds.

- first condition implies $\xi_n^* = 0$.
- ullet second condition implies $1 = y_n(oldsymbol{w}^{*\mathrm{T}}oldsymbol{\phi}(oldsymbol{x}_n) + b^*)$ and thus

$$b^* = y_n - \boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) = y_n - \sum_m \alpha_m^* y_m k(\boldsymbol{x}_m, \boldsymbol{x}_n)$$

Usually *average* over all n with $0 < \alpha_n^* < C$ to stabilize computation.

The prediction on a new point $oldsymbol{x}$ is therefore

$$\operatorname{SGN}\left(\boldsymbol{w}^{*\mathrm{T}}\boldsymbol{\phi}(\boldsymbol{x}) + b^{*}\right) = \operatorname{SGN}\left(\sum_{m} \alpha_{m}^{*} y_{m} k(\boldsymbol{x}_{m}, \boldsymbol{x}) + b^{*}\right)$$

A support vector satisfies $\alpha_n^* \neq 0$ and

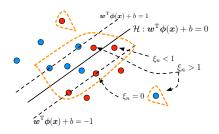
$$1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 0$$

A support vector satisfies $\alpha_n^* \neq 0$ and

$$1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 0$$

When

• $\xi_n^* = 0$, $y_n(\boldsymbol{w}^{*T}\boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 1$ and thus the point is $1/\|\boldsymbol{w}^*\|_2$ away from the hyperplane.

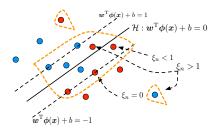


A support vector satisfies $\alpha_n^* \neq 0$ and

$$1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 0$$

When

- $\xi_n^* = 0$, $y_n(\boldsymbol{w}^{*T}\boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 1$ and thus the point is $1/\|\boldsymbol{w}^*\|_2$ away from the hyperplane.
- $\xi_n^* < 1$, the point is classified correctly but does not satisfy the large margin constraint.

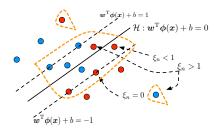


A support vector satisfies $\alpha_n^* \neq 0$ and

$$1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 0$$

When

- $\xi_n^* = 0$, $y_n(\boldsymbol{w}^{*T}\boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 1$ and thus the point is $1/\|\boldsymbol{w}^*\|_2$ away from the hyperplane.
- $\xi_n^* < 1$, the point is classified correctly but does not satisfy the large margin constraint.
- $\xi_n^* > 1$, the point is misclassified.

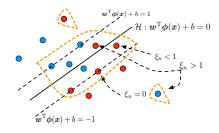


A support vector satisfies $\alpha_n^* \neq 0$ and

$$1 - \xi_n^* - y_n(\boldsymbol{w}^{*T} \boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 0$$

When

- $\xi_n^* = 0$, $y_n(\boldsymbol{w}^{*T}\boldsymbol{\phi}(\boldsymbol{x}_n) + b^*) = 1$ and thus the point is $1/\|\boldsymbol{w}^*\|_2$ away from the hyperplane.
- $\xi_n^* < 1$, the point is classified correctly but does not satisfy the large margin constraint.
- $\xi_n^* > 1$, the point is misclassified.



Support vectors (circled with the orange line) are the only points that matter!

An example

One drawback of kernel method: **non-parametric**, need to keep all training points potentially

An example

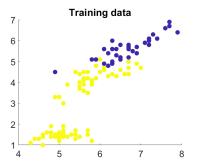
One drawback of kernel method: **non-parametric**, need to keep all training points potentially

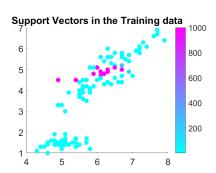
For SVM, very often #support vectors ≪ N

An example

One drawback of kernel method: **non-parametric**, need to keep all training points potentially

For SVM, very often #support vectors $\ll N$





SVM: max-margin linear classifier

SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

$$\begin{aligned} \min_{\boldsymbol{w},b,\{\xi_n\}} & C \sum_n \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2 \\ \text{s.t.} & 1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \leq \xi_n, \quad \forall \ n \\ & \xi_n \geq 0, \quad \forall \ n \end{aligned}$$

SVM: max-margin linear classifier

Primal (equivalent to minimizing L2 regularized hinge loss):

$$\min_{\boldsymbol{w},b,\{\xi_n\}} C \sum_{n} \xi_n + \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
s.t.
$$1 - y_n(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{\phi}(\boldsymbol{x}_n) + b) \leq \xi_n, \quad \forall \ n$$

$$\xi_n \geq 0, \quad \forall \ n$$

Dual (kernelizable, reveals what training points are support vectors):

$$\max_{\{\alpha_n\}} \sum_{n} \alpha_n - \frac{1}{2} \sum_{m,n} y_m y_n \alpha_m \alpha_n \phi(\boldsymbol{x}_m)^{\mathrm{T}} \phi(\boldsymbol{x}_n)$$
s.t.
$$\sum_{n} \alpha_n y_n = 0 \text{ and } 0 \le \alpha_n \le C, \quad \forall n$$

Typical steps of applying Lagrangian duality

• start with a primal problem

- start with a primal problem
- write down the Lagrangian (one dual variable per constraint)

- start with a primal problem
- write down the Lagrangian (one dual variable per constraint)
- apply KKT conditions to find the connections between primal and dual solutions

- start with a primal problem
- write down the Lagrangian (one dual variable per constraint)
- apply KKT conditions to find the connections between primal and dual solutions
- eliminate primal variables and arrive at the dual formulation

- start with a primal problem
- write down the Lagrangian (one dual variable per constraint)
- apply KKT conditions to find the connections between primal and dual solutions
- eliminate primal variables and arrive at the dual formulation
- maximize the Lagrangian with respect to dual variables

- start with a primal problem
- write down the Lagrangian (one dual variable per constraint)
- apply KKT conditions to find the connections between primal and dual solutions
- eliminate primal variables and arrive at the dual formulation
- maximize the Lagrangian with respect to dual variables
- recover the primal solutions from the dual solutions