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Decision tree

We have seen different ML models for classification/regression:

o

linear models, neural nets and other nonlinear models induced by
kernels

Decision tree is yet another one:

nonlinear in general
works for both classification and regression; we focus on classification
one key advantage is good interpretability

used to be very popular; ensemble of trees (i.e. “forest”) can still be
very effective

not to be confused with the “tree reduction” in Lec 4
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Example

Many decisions are made based on some tree structure

Medical treatment

Fever

T >100 T 100

Treatment #1 Muscle Pain
igh Lew
Treatment #2 Treatment #3
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Example

Many decisions are made based on some tree structure

Medical treatment Salary in a company

Fever Degree

T >/100 T< 100
High Setiool  College

Treatment #1 Muscle Pain . . :
Work Experience Work Experience Work Experience
igh Low <sfr ey < Ny <syr Sy
Treatment #2 Treatment #3 X4 $X $Xs $X, $X §X,
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Tree terminology
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A more abstract example of decision trees

Input: « = (21, x2)
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A more abstract example of decision trees

Input: « = (21, x2)

Output: f(x) determined

naturally by traversing the tree
@ start from the root

@ test at each node to decide
which child to visit next

o finally the leaf gives the
prediction f(x)

For example, f((61 — 1,62 +1)) =B

Complex to formally write down, but easy to represent pictorially or as
codes.

8 /47



The decision boundary

Corresponds to a classifier with boundaries:

T9
E
6 L
3 B
6, C D
A
A B C D E
0, 0, Ty
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Parameters

Parameters to learn for a decision tree:
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Parameters
Parameters to learn for a decision tree:

@ the structure of the tree, such as the depth, #branches, #nodes, etc

e some of them are sometimes considered as hyperparameters

o unlike typical neural nets, the structure of a tree is not fixed in
advance, but learned from data

@ the test at each internal node

o which feature(s) to test on?

o if the feature is continuous,
what threshold (64, 02,...)7

o the value/prediction of the leaves (A, B, ...)

10 / 47



Learning the parameters

So how do we learn all these parameters?
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Learning the parameters

So how do we learn all these parameters?
Recall typical approach is to find the parameters that minimize some loss.
This is unfortunately not feasible for trees

e For Z nodes, there are roughly #features? different ways to decide
“which feature to test on each node”, which is a /lot.

@ enumerating all these configurations to find the one that minimizes
some loss is too computationally expensive.

Instead, we turn to some greedy top-down approach.
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A running example [Russell & Norvig, AIMA]

@ predict whether a customer will wait for a table at a restaurant
@ 12 training examples
@ 10 features (all discrete)

Example Attributes Target
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est || WillWait
X, T| F F T |Some| $$$ F T | French| 0-10 T
X, T| F | F T | Full s F F | Thai |30-60 F
X3 F| T | F F |Some| § F F | Burger| 0-10 T
X, T| F T | T | Full s F F | Thai | 10-30 T
Xs T| F | T F | Full | 33§ F T | French| >60 F
X6 F| T | F T |Some| $% T T | ltalian | 0-10 T
X7 F| T | F F | None| § T F | Burger| 0-10 F
Xs F| F | F T |Some| $$ T T | Thai | 0-10 T
Xo F| T | T| F | Ful| §$ T | F |Burger| >60 F
Xo | T| T | T | T |Full| $88 | F | T |ltalian|10-30| F
Xn F| F | F F |None| $ F F | Thai | 0-10 F
Xio T| T | T| T | Ful $ F F | Burger| 30-60 T
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TG B e
First step: how to build the root?

l.e., which feature should we test at the root? Examples:

000000 000000
000000 000000
Patrons?
None Some Full
0000 00 o] e 00 o0
o0 0000 o e o0 o0
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First step: how to build the root?

l.e., which feature should we test at the root? Examples:

000000 000000
000000 000000
Patrons?
None
0] e 00 o0
o0 o000 o] e o0 o0

Which split is better?

@ intuitively “patrons” is a better feature since it leads to “more pure”
or “more certain” children

@ how to quantify this intuition?
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It should be a function of the distribution of classes
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Measure of uncertainty of a node

It should be a function of the distribution of classes

@ e.g. a node with 2 positive and 4 Eull
negative examples can be \
summarized by a distribution P

o0
with P(Y = +1) =1/3 and 0000

P(Y = —1) =2/3

One classic uncertainty measure of a distribution is its (Shannon) entropy:

C
=—> P(Y =k)logP(Y = k)
k=1
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Properties of entropy
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@ the base of log can be 2, e or 10
@ always non-negative
@ it's the smallest codeword length to encode symbols drawn from P

e maximized if P is uniform (max = In C): most uncertain case
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Properties of entropy

C
==Y P(Y =k)logP(Y = k)
k=1
@ the base of log can be 2, e or 10
@ always non-negative
@ it's the smallest codeword length to encode symbols drawn from P

e maximized if P is uniform (max = In C): most uncertain case

e minimized if P focuses on one class (min = 0): most certain case
e eg. P=(1,0,...,0)

o 0logO0 is defined naturally as lim, o4 zlogz =0
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Examples of computing entropy

With base e and 4 classes:

N H(Y) =0.8360 od  H(Y)=1.3863
206 £08
§0.4 §U4—
o IR L] ]
! Class N 1 2 s 4
04| H(Y):O
2 kS 7

Class
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Another example

Entropy in each child if root tests on “patrons”

For “None” branch

( 0 log 0 + log 2 ) =0
0+ 2 0+2 042 0+4+2)
N N + + 00000
For “Some” branch OT.OO.
Patrons?
4 4 0 0 T
— 7log% + 710g7) =0 None " Some TS~ Ful
(4+0 440 440 "4+40 > eoee o0
[ ] o000

For “Full” branch

2 Jog 2 1 og 2 0.9
_(2+4 54T 244 ""’3’2+4)” .
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Another example

Entropy in each child if root tests on “patrons”

For “None” branch

( 0 log 0 + log 2 ) =0
0+ 2 0+2 042 0+4+2)
N N + + 00000
For “Some” branch OT.OO.
Patrons?
4 4 0 0 e
e e lOg% + T lOg 7) =0 None " Some \‘\\\ Full
(4+O 440 440 440 - 0000 00
For “Full” branch o0 (I Ir}
2 2 4 4
- log + log ~ 0.9
(2+4'*2+4 2+4'*2+4)

So how good is choosing “patrons” overall?
Very naturally, we take the weighted average of entropy:

2><0+4><O+6><09—045
12 12 12 R
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Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y | A)
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Measure of uncertainty of a split

Suppose we split based on a discrete feature A, the uncertainty can be
measured by the conditional entropy:

H(Y [ A)
_ZP HY |A=a)
C
=Y P(A=a) (—ZP(Y|A:a)logP(Y|A:a)>
a k=1

= Z “fraction of example at node A = a" x “entropy at node A = a”

a

Pick the feature that leads to the smallest conditional entropy.
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Deciding the root

For “French” branch 000000
( 1 1 1 1 ) 000060

log 1
T R R R P

P
.« - Francn/,/'ﬁ.ﬂnn/ \Tn.u -
For “Italian” branch

1 1 1 1 b
- log + log =1
1+1 1+1 1+1 1+1
For “Thai”” and “Burger” branches

2 2 2 2 .
— log + log =1
242 242 242 2+2
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For “French” branch

000000
1 1 1 1 000060
— log + log = Type?
1+1 °1+1 141 °1+1 e
.« - French _ ,/'Tl;hnn/ \Th. |\“‘~\\_Eurue-
For “Italian” branch @ o oo o0
e oo o0

1 1 1 1 b
- log + log =1
1+1 1+1 1+1 1+1
For “Thai”” and “Burger” branches

2 2 2 2 .
— log + log =1
242 242 242 242

The conditional entropy is % X 1+% X 1+% X 1+% x1=1>045

19 / 47



Deciding the root

For “French” branch

000000
1 1 1 1 000060
— log + log = Type?
1+1 °1+1 141 "1+1 e
- French _—Tialian \Thm\“\\ Burger
For “Italian” branch o o o0 00
e oo o0

1 1 1 1 b
- log + log =1
1+1 1+1 1+1 1+1
For “Thai”” and “Burger” branches

2 2 2 2 .
— log + log =1
242 242 242 242

The conditional entropy is % x 1+ % x 1+ % x 1+ % x1=1>045
So splitting with “patrons” is better than splitting with “type”.

19 / 47



Deciding the root

For “French” branch

000000
1 1 1 1 000060
— log + log = Type?
1+1 °1+1 141 "1+1 e
- French _—Tialian \Thm\“\\ Burger
For “Italian” branch o o o0 00
e oo o0

1 1 1 1 b
- log + log =1
1+1 1+1 1+1 1+1
For “Thai”” and “Burger” branches

2 2 2 2 _
— log + log =1
242 242 242 2+2

The conditional entropy is % x 1+ % x 1+ % x 1+ % x1=1>045
So splitting with “patrons” is better than splitting with “type”.

In fact by similar calculation “patrons” is the best split among all features.

19 / 47



Deciding the root

For “French” branch

000000
1 1 1 1 000060
— log + log = Type?
1+1 °1+1 141 "1+1 e
- French _—Tialian \Thm\“\\ Burger
For “Italian” branch o o o0 00
e oo o0

1 1 1 1 b
- log + log =1
1+1 1+1 1+1 1+1
For “Thai”” and “Burger” branches

2 2 2 2 _
— log + log =1
242 242 242 2+2

The conditional entropy is % x 1+ % x 1+ % x 1+ % x1=1>045
So splitting with “patrons” is better than splitting with “type”.
In fact by similar calculation “patrons” is the best split among all features.

We are now done with building the root (this is also called a stump).
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Repeat recursively

Split each child in the same way.

Patrons?
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EE e
Repeat recursively

Split each child in the same way. 000000

@ but no need to split children “none” 000000
and “some”: they are pure already Patrons? |
and become leaves

None Full
o for “full”, repeat, focusing on those o0 o000 ::..
6 examples:
Alt| Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | WillWait
X, T| F | F T |Some| $3% F T | French| 0-10 T
X, T|F|F| T |Ful| $ F | F | Thai |30-60 &
X3 F| T | F F_|Some| $ F F_| Burger| 0-10 T
X T| F | T| T |Ful| $ F | F | Thai |10-30 T
X5 T| F | T| F | Full | $$§ = T |French| >60 =
X F| T | F| T |Some|l $$ T T | ltalian | 0-10 T
X7 F| T | F| F |None| $ T | F |Burger| 0-10 F
Xs F| F F T |Some| $% T T | Thai | 0-10 T
Xo F| T | T| F | Ful s T F | Burger| >60 (=
Xy T| T | T T | Full | $38 (5 T | Italian | 10-30 F
Xu F| F F F | None| § F F | Thai | 0-10 F
X2 T| T | T T | Full $ 1= F | Burger| 30-60 T
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Patrons?

French Italian Burger

Again, very easy to interpret.
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Putting it together

DecisionTreeLearning(Examples, Features)
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@ else if Features is empty, return a leaf with the majority class
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EE e
Putting it together

DecisionTreeLearning(Examples, Features)

o if Examples have the same class, return a leaf with this class
@ else if Features is empty, return a leaf with the majority class
@ else if Examples is empty, return a leaf with majority class of parent
@ else
find the best feature A to split (e.g. based on conditional entropy)
Tree < a root with test on A
For each value a of A:
Child + DecisionTreeLearning(Examples with A = a, Features\{A})
add Child to Tree as a new branch
@ return Tree
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Variants

Popular decision tree algorithms (e.g. C4.5, CART, etc) are all based on
this framework.
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Learning a decision tree
Variants

Popular decision tree algorithms (e.g. C4.5, CART, etc) are all based on
this framework.

Variants:

o replace entropy by Gini impurity:
C
G(P)=> P(Y =k)(1-P(Y =k))
k=1

meaning: how often a randomly chosen example would be incorrectly
classified if we predict according to another randomly picked example

o if a feature is continuous, we need to find a threshold that leads to
minimum conditional entropy or Gini impurity. Think about how to
do it efficiently.
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Regularization

If the dataset has no contradiction (i.e. same @ but different y), the
training error of a tree is always zero, which might indicate overfitting.
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Regularization

If the dataset has no contradiction (i.e. same @ but different y), the
training error of a tree is always zero, which might indicate overfitting.

Pruning is a typical way to prevent overfitting for a tree:

@ restrict the depth or #nodes
@ other more principled approaches

@ all make use of a validation set

24 / 47



Outline

© Boosting
@ Examples

@ AdaBoost
@ Derivation of AdaBoost
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Introduction

Boosting

@ is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy
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Introduction

Boosting

We

is a meta-algorithm, which takes a base algorithm (classification,
regression, ranking, etc) as input and boosts its accuracy

main idea: combine weak “rules of thumb” (e.g. 51% accuracy) to
form a highly accurate predictor (e.g. 99% accuracy)

works very well in practice (especially in combination with trees)
often is resistant to overfitting

has strong theoretical guarantees

again focus on binary classification.
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Email spam detection:

@ given a training set like:
o (“Want to make money fast? ...", spam)
o (“Viterbi Research Gist ...", not spam)

o first obtain a classifier by applying a base algorithm, which can be a
rather simple/weak one, like decision stumps:
e e.g. contains the word “money” = spam

@ reweight the examples so that “difficult” ones get more attention
e e.g. spam that doesn’t contain the word “money”

@ obtain another classifier by applying the same base algorithm:
e e.g. empty “to address” =- spam

@ repeat ...

e final classifier is the (weighted) majority vote of all weak classifiers
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A base algorithm A (also called weak learning algorithm/oracle) takes a
training set S weighted by D as input, and outputs classifier h + A(S, D)

o this can be any off-the-shelf classification algorithm (e.g. decision
trees, logistic regression, neural nets, etc)

@ many algorithms can deal with a weighted training set (e.g. for
algorithm that minimizes some loss, we can simply replace “total
loss” by “weighted total loss")

@ even if it's not obvious how to deal with weight directly, we can
always resample according to D to create a new unweighted dataset
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Boosting Algorithms

Given:
@ a training set S

@ a base algorithm A

Two things to specify a boosting algorithm:
@ how to reweight the examples?

@ how to combine all the weak classifiers?

AdaBoost is one of the most successful boosting algorithms.
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Given a training set S and a base algorithm A, initialize Dy to be uniform

Fort=1,...,T
@ obtain a weak classifier hy < A(S, Dy)

@ calculate the importance of h; as

Bt:;hl<l_€t> (ﬁt>0<:>€t<0.5)

€t
where €, = 3, 1, ()24, Dt(n) is the weighted error of hy.
@ update distributions

Dt(n)e*@5 if he(xn) = yn

D n) o< _D n e_ﬁiynht(mn) —
t+1(n) ¢(n) Dimebt  else

Output the final classifier H(x) = sgn (Zthl Btht(m))
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Example
+
10 data points in R2 + o+
The size of 4 or - indicates the + -
weight, which starts from uniform D, n B
Base algorithm is decision stump:
x>0 Xz, > 02

Observe that no stump can predict very accurately for this dataset
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o 3 misclassified (circled): e; = 0.3 = 81 = 31n <ﬂ> ~ 0.42.

€t

@ Dy puts more weights on those examples
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@ D3 puts more weights on those examples
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AdaBoost
Round 3: t = 3

@ again 3 misclassified (circled): e3 = 0.14 — (33 = 0.92.

34 /47



Final classifier: combining 3 classifiers
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Final classifier: combining 3 classifiers

All data points are now classified correctly, even though each weak

classifier makes 3 mistakes.
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When T is large, the model is very complicated and overfitting can happen

30
-
25 + \
\
20| test "]
— \ ) N
e) \ N Y
215 | -
o
10 | train
5 L
0 L L
1 10 100 1000

# rounds

(boosting “stumps” on
heart-disease dataset)
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510 (boosting C4.5 on
5 test “letter” dataset)
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Resistance to overfitting

However, very often AdaBoost is resistant to overfitting

20:

o

10 (boosting C4.5 on
5 test “letter” dataset)

) M train
10 100 1000
# of rounds (7)

error

0

e test error does not increase, even after 1000 rounds
(total size > 2,000,000 nodes)
e test error continues to drop even after training error is zero!
# rounds
5 | 100 | 1000
train error | 0.0 | 0.0 0.0
test error | 8.4 | 3.3 3.1

Used to be a mystery, but by now rigorous theory has been developed to

explain this phenomenon.
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In fact, AdaBoost also follows the general framework of minimizing some
surrogate loss.

Step 1: the model that AdaBoost considers is

T
{sgn (f(4) ’ fG)= Zﬁtht(~) for some 5, > 0 and h; € H}
t=1

where H is the set of models considered by the base algorithm

Step 2: the loss that AdaBoost \

minimizes is the exponential loss

N
> exp (~yaf (@)

n=1 2 1 0 ]
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Step 3: the way that AdaBoost minimizes exponential loss is by a greedy
approach, that is, find 3¢, hy one by one fort =1,...,T.

Specifically, let f; = Zizl Brhr. Suppose we have found f;_1, what
should f; b

e? Greedily, we want to find f;, hy to minimize

N N
> exp(=ynfi(@n)) = exp (=ynfi-1(wn)) exp (—ynBihi(wn))
n=1

n=1

o8 Z Dt eXp ynﬁtht(wn))
where the last step is by the definition of weights

Di(n) oc Dy—1(n) exp (=ynBi—1ht—1(xn)) o< - - - o< exp (=yn fr—1(xn))
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So the goal becomes finding (¢, hy € H that minimize

N

Z Di(n) exp (—ynBihi(zr))

n=

1
= Y. D)+ DY Dyn)e

n:ynFhe(n) n:yn="h¢(xn)

= el + (1 —¢)e ™ (recall € =3, shi(an) Dt(1))
— Et(eﬁt _ e*ﬁt) + e~ Bt

It is now clear we should find h; to minimize its the weighted classification
error €, exactly what the base algorithm should do intuitively!

This greedy step is abstracted out through a base algorithm.
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Greedy minimization

When h; (and thus ¢;) is fixed, we then find 5; to minimize

€t(eﬁt _ e—ﬁt) + e Bt

In HW3, you will verify that this exactly gives:
1 1-—

By = —1In ( et)
‘ 2 €t

Keep doing this greedy minimization gives the AdaBoost algorithm.

41/ 47
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There are many boosting algorithms; AdaBoost is the most classic one.
AdaBoost is greedily minimizing the exponential loss.

AdaBoost is often resistant to overfitting.
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Derivation of AdaBoost
Quiz 1 Problem 5 (a)

Consider the following Gaussian/RBF kernel

k(z,x") = exp (w) . (3)

It is known that there exists an infinite-dimensional nonlinear mapping ¢rpr such that
¢rer(z)  prer(z’) = k(z. 2') (4)
for any @ and «’. In this problem, you will investigate a way to approximate this nonlinear mapping ¢rp.
(a) Consider a nonlinear mapping ¢, 5 : R” — R constructed as follows: randomly draw a vector v €

RP from the standard Gaussian and a scalar b from the uniform distribution over [0, 7], then define
Gop(x) = V2cos(vTz + b) for any input feature vector x € RP.

For any two feature vectors @ and @', prove the following

E [0y ()0p ()] = k(z.2') (5)

where the expectation is over the randomness of v and b, and k(-,-) is defined in Eq. (3). You can
directly use the following two identities in your proof:

e trigonometric identity: 2 cos(a) cos(3) = cos

(v = ) + cos(a+ B):

_lzlI2 L
e integral identity: E [(‘os('UTz)] = (exp( ”;Hz) where the expectation is with respect to v ran-

domly drawn from the standard Gaussian. (With this, you do not even need to know what the
standard Gaussian is to solve this problem.)
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Derivation of AdaBoost
Quiz 1 Problem 5 (a)

Plugging in the definition of ¢, we first have
E [¢o.1(T)du ()] = 2E [(‘()h(’UT?E +0b) cos(v@’ + bﬂ . (1 point)
Using the given trigonometric identity, the above is equal to
E [cos(v™ (z — a')) + cos(v Tz +vTa’ + 20)] . (1 point)

For the first term above, directly applying the given integral identity gives

E [('()s(vl (x—a))] = k(z.2'). (1 point)

For the second term, fixing v and taking the expectation over b shows

E [(‘os(ulm +ola’ + 20)] = — / cos(vla +v'a’ + 2b)db
0

s

1
=5 sin(v'z + 02" +20)| =0. (2 points)
2T 0

This finishes the proof. (The last step can also be argued by symmetry without writing down the
integral explicitly.)
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Derivation of AdaBoost
Quiz 1 Problem 5 (b)

(b) Comparing Eq. (4) and Eq. (5). we see that ¢, can be used as an approximation for ¢rpr. However,
using only one sample (v, b) leads to large variance for this approximation. Based on this information,
for any given dimension M > 1, can you come up with a random nonlinear mapping ¢ : RP? — RM
such that it is a better approximation of ¢rpp satisfying E [(f)(m)Td)(w’)} = k(z,z’)? Write down your
proposal, prove E [qﬁ(m)Tqﬁ(z’)} = k(x. '), and finally explain why it is a better approximation (in
one concise sentence). (5 points)

Proposal: ¢(x) = (ﬁom_bl(z)f.Auﬁov“_b“ (CD)) where each (v;,b;) is an independent sample
drawn from the distribution described in the last question.

It satisfies the claimed equality since

: 1 M 1 M
E [(ﬁ(z)lqﬁ(a‘,/)} =K i Z(')v],;,] (@) o0, (') | = i Z k(x,x') = k(x,2'),

j=1 j=1

where the second step is by Eq. (5). It is a better approximation since using multiple independent
samples reduces the variance (by a factor of 1/M precisely).
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Derivation of AdaBoost
Quiz 1 Problem 5 (c)

(¢) As discussed in Lecture 5. in RBF-kernelized linear regression with training set (1,y1). ..., (xN.yN),
we maintain a weight vector a = (K + A\I)~'y € RV, where K € RV*V is the Gram matrix (such
that K, ,, = k(x,,,@,,)), A > 0 is the regularization coefficient, and y = (y; )T is the response

N

vector. For a test point &, we make a prediction via 3, : 1 ank(x,, ). While powerful, this method

can be computationally expensive when N is huge.

Based on the nonlinear mapping you proposed in the last question for M much smaller than N, describe
how you can approximate the kernelized linear regression described above with a much better time
and space complexity. You only need to describe what quantities your method maintains, and how it

makes a prediction for a test point. (4 points)

The method is simply what we discussed in Lectures 2 and 5: maintain a weight vector w* € RM as:
—1
w' = (2T®+ ) 2Ty,
where the n-th row of ® € RV*M is ¢(x,,)". To make a prediction for a test point @, simply compute
w* ().

Reasoning (NOT required): First, this has better time and space complexit;
be much smaller than N. Second, based on the discussion in Lecture 5, this is equivalent to kernelized

since M is assumed to

linear regr
question.

jon with Gram matrix ®®7, which is a good approximation of K according to the last

46 / 47



Final note

These random-feature-based methods are widely successful in practice!
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Final note

These random-feature-based methods are widely successful in practice!
@ enjoy the benefit of kernel methods, without paying for the price

@ Rahimi and Recht won NeurlPS 2017 Test of Time Award for this
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