CSCI567 Machine Learning (Fall 2021)

Prof. Haipeng Luo

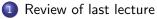
U of Southern California

Oct 28, 2021

HW3: discuss solutions today

HW3: discuss solutions today

HW4: to be released, due on Tue, 11/09



Clustering 2

Gaussian mixture models

Outline

Review of last lecture

Clustering

General training algorithm for decision trees

DecisionTreeLearning(Examples, Features)

- if Examples have the same class, return a leaf with this class
- else if Features is empty, return a leaf with the majority class
- else if Examples is empty, return a leaf with majority class of parent

else

find the best feature A to split (e.g. based on conditional entropy)

Tree \leftarrow a root with test on A

For each value a of A:

Child \leftarrow **DecisionTreeLearning**(Examples with A = a, Features \{A}) add **Child** to **Tree** as a new branch

• return Tree

The AdaBoost Algorithm

Given a training set S and a base algorithm \mathcal{A} , initialize D_1 to be uniform

For $t = 1, \ldots, T$

- obtain a weak classifier $h_t \leftarrow \mathcal{A}(S, D_t)$
- calculate the importance of h_t as

$$\beta_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \qquad \qquad (\beta_t > 0 \Leftrightarrow \epsilon_t < 0.5)$$

where $\epsilon_t = \sum_{n:h_t(\boldsymbol{x}_n) \neq y_n} D_t(n)$ is the weighted error of h_t .

• update distributions

$$D_{t+1}(n) \propto D_t(n) e^{-\beta_t y_n h_t(\boldsymbol{x}_n)} = \begin{cases} D_t(n) e^{-\beta_t} & \text{if } h_t(x_n) = y_n \\ D_t(n) e^{\beta_t} & \text{else} \end{cases}$$

Output the final classifier $H(\boldsymbol{x}) = \operatorname{sgn}\left(\sum_{t=1}^{T} \beta_t h_t(\boldsymbol{x})\right)$

Outline

2 Clustering

- Problem setup
- K-means algorithm
- Initialization and Convergence

Recall there are different types of machine learning problems

Recall there are different types of machine learning problems

• **supervised learning** (what we have discussed so far) Aim to predict, e.g. classification and regression

Recall there are different types of machine learning problems

- **supervised learning** (what we have discussed so far) Aim to predict, e.g. classification and regression
- **unsupervised learning** (main focus from now on) Aim to discover hidden/latent patterns and explore data

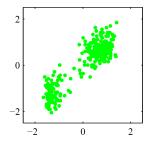
Recall there are different types of machine learning problems

- **supervised learning** (what we have discussed so far) Aim to predict, e.g. classification and regression
- **unsupervised learning** (main focus from now on) Aim to discover hidden/latent patterns and explore data

Today's focus: **clustering**, an important unsupervised learning problem

Clustering: informal definition

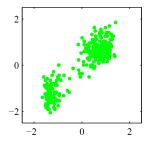
Given: a set of data points (feature vectors), without labels



Clustering: informal definition

Given: a set of data points (feature vectors), without labels

Output: group the data into some clusters,

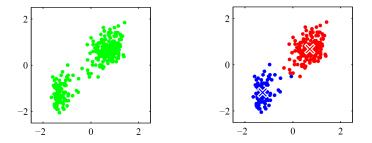


Clustering: informal definition

Given: a set of data points (feature vectors), without labels

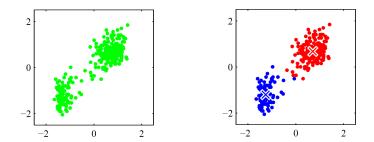
Output: group the data into some clusters, which means

- assign each point to a specific cluster
- find the center (representative/prototype/...) of each cluster



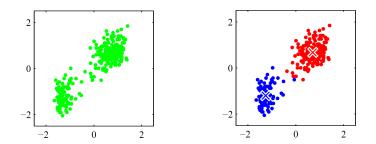
Clustering: formal definition

Given: data points $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N\in\mathbb{R}^\mathsf{D}$



Clustering: formal definition

Given: data points $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N\in\mathbb{R}^\mathsf{D}$ and $\#\mathsf{clusters}\;K$ we want

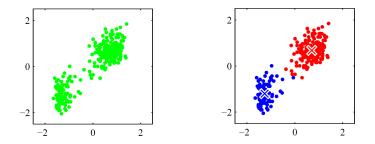


Clustering: formal definition

Given: data points $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N\in\mathbb{R}^\mathsf{D}\,$ and $\#\mathsf{clusters}\;K$ we want

Output: group the data into K clusters, which means

• find assignment $\gamma_{nk} \in \{0,1\}$ for each data point $n \in [N]$ and $k \in [K]$ s.t. $\sum_{k \in [K]} \gamma_{nk} = 1$ for any fixed n



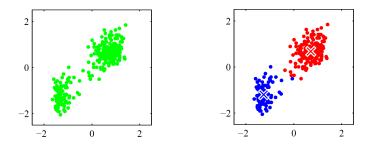
Problem setup

Clustering: formal definition

Given: data points $\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N\in\mathbb{R}^\mathsf{D}\,$ and $\#\mathsf{clusters}\;K$ we want

Output: group the data into K clusters, which means

- find assignment $\gamma_{nk} \in \{0,1\}$ for each data point $n \in [N]$ and $k \in [K]$ s.t. $\sum_{k \in [K]} \gamma_{nk} = 1$ for any fixed n
- find the cluster centers $\mu_1, \ldots, \mu_K \in \mathbb{R}^{\mathsf{D}}$



Many applications

- recognize communities in a social network
- group similar customers in market research
- image segmentation
- accelerate other algorithms (e.g. NNC as in programing projects)

• . . .

One example

image compression:

- each pixel is a point
- perform clustering over these points
- replace each point by the center of the cluster it belongs to

Original image

 $\mathsf{Large}\ K \longrightarrow \mathsf{Small}\ K$

Formal Objective

Key difference from supervised learning problems: no labels given, which means *no ground-truth to even measure the quality of your answer!*

Formal Objective

Key difference from supervised learning problems: no labels given, which means *no ground-truth to even measure the quality of your answer!*

Still, we can turn it into an optimization problem, e.g. through the popular "K-means" objective: find γ_{nk} and μ_k to minimize

$$F(\{\gamma_{nk}\}, \{\mu_k\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \| \boldsymbol{x}_n - \boldsymbol{\mu}_k \|_2^2$$

i.e. the sum of squared distances of each point to its center.

Formal Objective

Key difference from supervised learning problems: no labels given, which means *no ground-truth to even measure the quality of your answer!*

Still, we can turn it into an optimization problem, e.g. through the popular "K-means" objective: find γ_{nk} and μ_k to minimize

$$F(\{\gamma_{nk}\}, \{\mu_k\}) = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \| \boldsymbol{x}_n - \boldsymbol{\mu}_k \|_2^2$$

i.e. the sum of squared distances of each point to its center.

Unfortunately, finding the exact minimizer is NP-hard!

Instead, use a heuristic that alternatingly minimizes over $\{\gamma_{nk}\}$ and $\{\mu_k\}$:

Instead, use a heuristic that alternatingly minimizes over $\{\gamma_{nk}\}$ and $\{\mu_k\}$:

Initialize $\{ oldsymbol{\mu}_k^{(1)} \}$

Instead, use a heuristic that alternatingly minimizes over $\{\gamma_{nk}\}$ and $\{\mu_k\}$:

Initialize $\{\boldsymbol{\mu}_{k}^{(1)}\}$ For $t = 1, 2, \dots$ • find $\{\gamma_{nk}^{(t+1)}\} = \operatorname*{argmin}_{\{\gamma_{nk}\}} F\left(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_{k}^{(t)}\}\right)$

Instead, use a heuristic that alternatingly minimizes over $\{\gamma_{nk}\}$ and $\{\mu_k\}$:

Initialize $\{\boldsymbol{\mu}_{k}^{(1)}\}$ For t = 1, 2, ...• find $\{\gamma_{nk}^{(t+1)}\} = \operatorname*{argmin}_{\{\gamma_{nk}\}} F\left(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_{k}^{(t)}\}\right)$

find

$$\{\boldsymbol{\mu}_{k}^{(t+1)}\} = \operatorname*{argmin}_{\{\boldsymbol{\mu}_{k}\}} F\left(\{\gamma_{nk}^{(t+1)}\}, \{\boldsymbol{\mu}_{k}\}\right)$$

A closer look

The first step

$$\min_{\{\gamma_{nk}\}} F\left(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_k\}\right) = \min_{\{\gamma_{nk}\}} \sum_n \sum_k \gamma_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$

A closer look

The first step

$$\min_{\{\gamma_{nk}\}} F\left(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_k\}\right) = \min_{\{\gamma_{nk}\}} \sum_n \sum_k \gamma_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$
$$= \sum_n \min_{\{\gamma_{nk}\}} \sum_k \gamma_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$

K-means algorithm

A closer look

The first step

$$\min_{\{\gamma_{nk}\}} F\left(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_k\}\right) = \min_{\{\gamma_{nk}\}} \sum_n \sum_k \gamma_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$
$$= \sum_n \min_{\{\gamma_{nk}\}} \sum_k \gamma_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$

is simply to assign each x_n to the closest μ_k , i.e.

$$\gamma_{nk} = \mathbb{I}\left[k = \operatorname*{argmin}_{c} \|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{c}\|_{2}^{2}\right]$$

for all $k \in [K]$ and $n \in [N]$.

A closer look

The second step

$$\min_{\{\boldsymbol{\mu}_k\}} F\left(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_k\}\right) = \min_{\{\boldsymbol{\mu}_k\}} \sum_n \sum_k \gamma_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$

A closer look

The second step

$$\min_{\{\mu_k\}} F(\{\gamma_{nk}\}, \{\mu_k\}) = \min_{\{\mu_k\}} \sum_n \sum_k \gamma_{nk} \|x_n - \mu_k\|_2^2$$
$$= \sum_k \min_{\mu_k} \sum_{n:\gamma_{nk}=1} \|x_n - \mu_k\|_2^2$$

K-means algorithm

A closer look

The second step

$$\min_{\{\boldsymbol{\mu}_k\}} F(\{\gamma_{nk}\}, \{\boldsymbol{\mu}_k\}) = \min_{\{\boldsymbol{\mu}_k\}} \sum_n \sum_k \gamma_{nk} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$
$$= \sum_k \min_{\boldsymbol{\mu}_k} \sum_{n:\gamma_{nk}=1} \|\boldsymbol{x}_n - \boldsymbol{\mu}_k\|_2^2$$

is simply to average the points of each cluster (hence the name)

$$\boldsymbol{\mu}_k = \frac{\sum_{n:\gamma_{nk}=1} \boldsymbol{x}_n}{|\{n:\gamma_{nk}=1\}|} = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

for each $k \in [K]$.

The K-means algorithm

Step 0 Initialize μ_1, \ldots, μ_K

The K-means algorithm

Step 0 Initialize μ_1, \ldots, μ_K

Step 1 Fix the centers μ_1, \ldots, μ_K , assign each point to the closest center:

$$\gamma_{nk} = \mathbb{I}\left[k = = \operatorname*{argmin}_{c} \|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{c}\|_{2}^{2}
ight]$$

K-means algorithm

The K-means algorithm

Step 0 Initialize μ_1, \ldots, μ_K

Step 1 Fix the centers μ_1, \ldots, μ_K , assign each point to the closest center:

$$\gamma_{nk} = \mathbb{I}\left[k = = \operatorname*{argmin}_{c} \|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{c}\|_{2}^{2}\right]$$

Step 2 Fix the assignment $\{\gamma_{nk}\}$, update the centers

$$\boldsymbol{\mu}_k = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

The K-means algorithm

Step 0 Initialize μ_1, \ldots, μ_K

Step 1 Fix the centers μ_1, \ldots, μ_K , assign each point to the closest center:

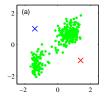
$$\gamma_{nk} = \mathbb{I}\left[k = = \operatorname*{argmin}_{c} \|\boldsymbol{x}_{n} - \boldsymbol{\mu}_{c}\|_{2}^{2}
ight]$$

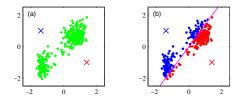
Step 2 Fix the assignment $\{\gamma_{nk}\}$, update the centers

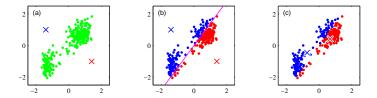
$$\boldsymbol{\mu}_k = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

Step 3 Return to Step 1 if not converged

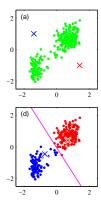
K-means algorithm

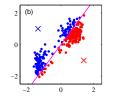


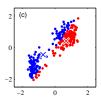




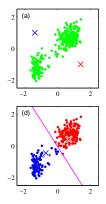
K-means algorithm

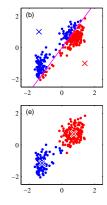


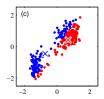




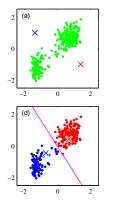
K-means algorithm

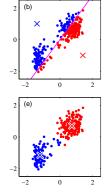


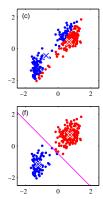




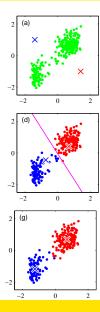
K-means algorithm

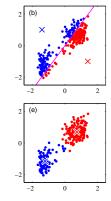


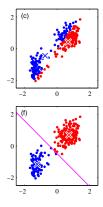




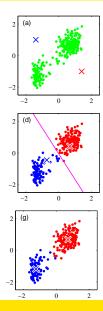
K-means algorithm

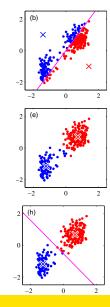


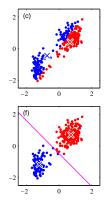




K-means algorithm

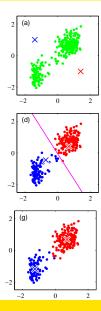


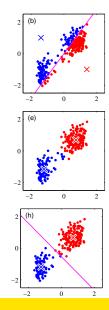


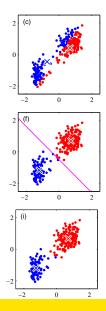


K-means algorithm

An example







18 / 50

There are different ways to initialize:

There are different ways to initialize:

• randomly pick K points as initial centers

There are different ways to initialize:

- $\bullet\,$ randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average

There are different ways to initialize:

- randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average
- or more sophisticated approaches (e.g. K-means++)

There are different ways to initialize:

- randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average
- or more sophisticated approaches (e.g. K-means++)

Initialization matters for convergence.

K-means will converge in a finite number of iterations, why?

K-means will converge in a finite number of iterations, why?

• objective decreases at each step

K-means will converge in a finite number of iterations, why?

- objective decreases at each step
- ${\scriptstyle \bullet}$ objective is lower bounded by 0

K-means will converge in a finite number of iterations, why?

- objective decreases at each step
- objective is lower bounded by 0
- #possible_assignments is finite (K^N , exponentially large though)

K-means will converge in a finite number of iterations, why?

- objective decreases at each step
- objective is lower bounded by 0
- #possible_assignments is finite (K^N , exponentially large though)

However

• it could take *exponentially many iterations* to converge

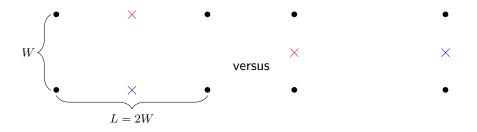
K-means will converge in a finite number of iterations, why?

- objective decreases at each step
- objective is lower bounded by 0
- #possible_assignments is finite (K^N , exponentially large though)

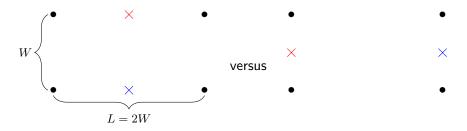
However

- it could take exponentially many iterations to converge
- and it *might not converge to the global minimum* of the K-means objective

Simple example: 4 data points, 2 clusters, 2 different initializations

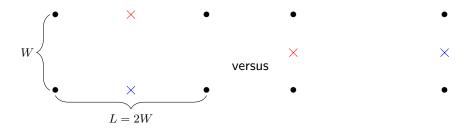


Simple example: 4 data points, 2 clusters, 2 different initializations



K-means converges immediately in both cases,

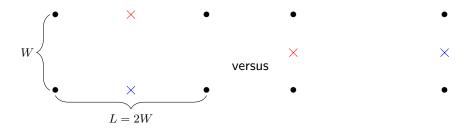
Simple example: 4 data points, 2 clusters, 2 different initializations



K-means converges immediately in both cases, but

• left has K-means objective $L^2 = 4W^2$

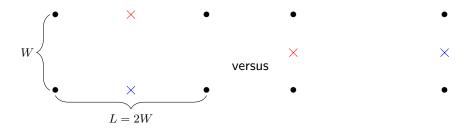
Simple example: 4 data points, 2 clusters, 2 different initializations



K-means converges immediately in both cases, but

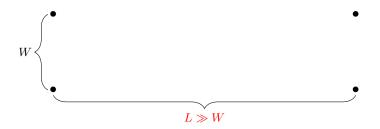
- left has K-means objective $L^2 = 4W^2$
- right has K-means objective W^2 , 4 times better than left!

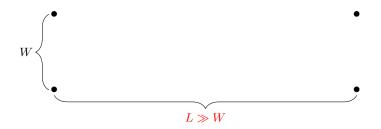
Simple example: 4 data points, 2 clusters, 2 different initializations



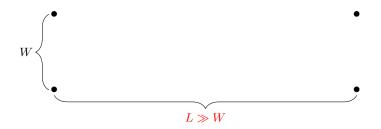
K-means converges immediately in both cases, but

- left has K-means objective $L^2 = 4W^2$
- right has K-means objective W^2 , 4 times better than left!
- in fact, left is local minimum, and right is global minimum.



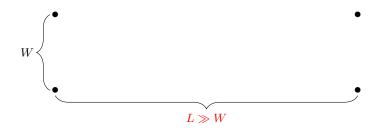


• moreover, local minimum can be *arbitrarily worse* if we increase L



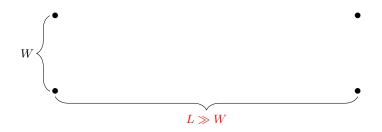
• moreover, local minimum can be *arbitrarily worse* if we increase L

• so *initialization matters a lot* for K-means



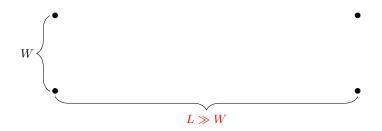
- randomly pick K points as initial centers
- or randomly assign each point to a cluster, then average

• or more sophisticated approaches

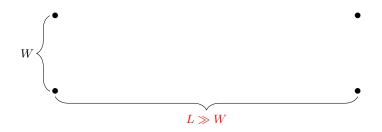


- randomly pick K points as initial centers: fails with 1/3 probability
- or randomly assign each point to a cluster, then average

• or more sophisticated approaches



- randomly pick K points as initial centers: fails with 1/3 probability
- or randomly assign each point to a cluster, then average: similarly fail with a constant probability
- or more sophisticated approaches



- randomly pick K points as initial centers: fails with 1/3 probability
- or randomly assign each point to a cluster, then average: similarly fail with a constant probability
- or more sophisticated approaches: K-means++ guarantees to find a solution that in expectation is at most O(log K) times of the optimal

K-means++

K-means++ is K-means with a better initialization procedure:

K-means++

K-means++ is K-means with a better initialization procedure:

Start with a random data point as the first center μ_1

K-means++

K-means++ is K-means with a better initialization procedure:

Start with a random data point as the first center $oldsymbol{\mu}_1$

For $k = 2, \ldots, K$

• randomly pick the k-th center μ_k such that

$$\Pr[oldsymbol{\mu}_k = oldsymbol{x}_n] \propto \min_{j=1,...,k-1} \|oldsymbol{x}_n - oldsymbol{\mu}_j\|_2^2$$

K-means++

K-means++ is K-means with a better initialization procedure:

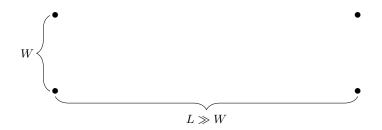
Start with a random data point as the first center μ_1

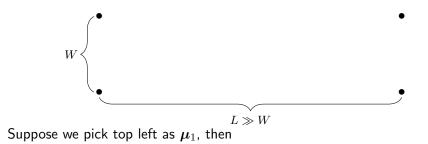
For $k = 2, \ldots, K$

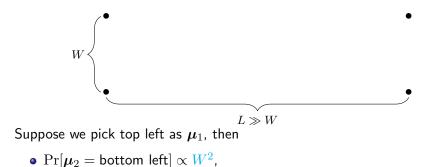
• randomly pick the k-th center μ_k such that

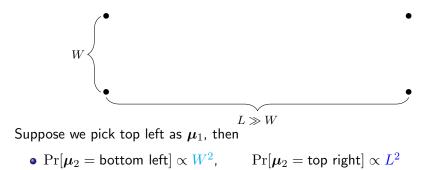
$$\Pr[oldsymbol{\mu}_k = oldsymbol{x}_n] \propto \min_{j=1,...,k-1} \|oldsymbol{x}_n - oldsymbol{\mu}_j\|_2^2$$

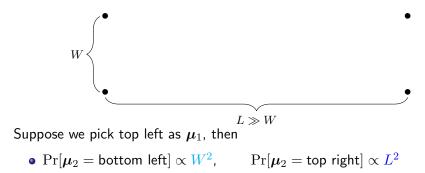
Intuitively this spreads out the initial centers.



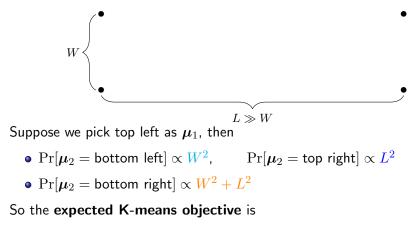




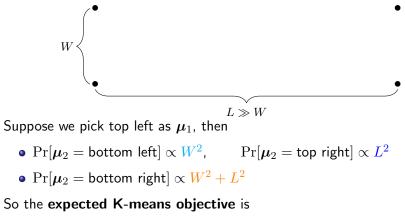




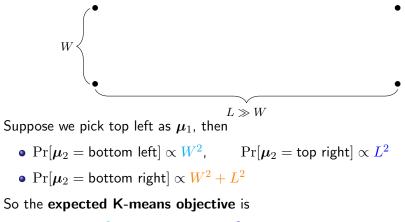
•
$$\Pr[\mu_2 = \text{bottom right}] \propto W^2 + L^2$$



$$rac{W^2}{2(W^2+L^2)} \cdot L^2 + \left(rac{L^2}{2(W^2+L^2)} + rac{1}{2}
ight) \cdot W^2$$



$$\frac{W^2}{2(W^2 + L^2)} \cdot L^2 + \left(\frac{L^2}{2(W^2 + L^2)} + \frac{1}{2}\right) \cdot W^2 \le \frac{3}{2}W^2,$$



$$\frac{W^2}{2(W^2 + L^2)} \cdot L^2 + \left(\frac{L^2}{2(W^2 + L^2)} + \frac{1}{2}\right) \cdot W^2 \le \frac{3}{2}W^2,$$

that is, at most 1.5 times of the optimal.

Summary for K-means

K-means is alternating minimization for the K-means objective.

The initialization matters a lot for the convergence.

K-means++ uses a theoretically (and often empirically) better initialization.

Outline

Clustering

- Gaussian mixture models
 - Motivation and Model
 - EM algorithm
 - EM applied to GMMs

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

- more explanatory than minimizing the K-means objective
- can be seen as a soft version of K-means

Gaussian mixture models

Gaussian mixture models (GMM) is a probabilistic approach for clustering

- more explanatory than minimizing the K-means objective
- can be seen as a soft version of K-means

To solve GMM, we will introduce a powerful method for learning probabilistic model: **Expectation–Maximization (EM) algorithm**

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

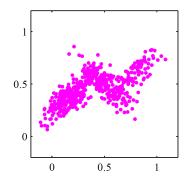
For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

That is, each point is an independent sample of $\boldsymbol{x} \sim p$.

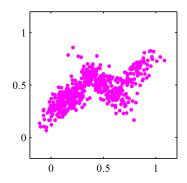


For classification, we discussed the sigmoid model to "explain" how the labels are generated.

Similarly, for clustering, we want to come up with a probabilistic model p to "explain" how the data is generated.

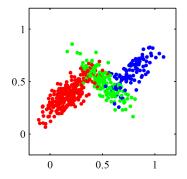
That is, each point is an independent sample of $x \sim p$.

What probabilistic model generates data like this?



GMM is a natural model to explain such data

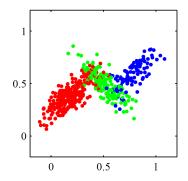
Assume there are 3 ground-truth Gaussian models.



GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models. To generate a point, we

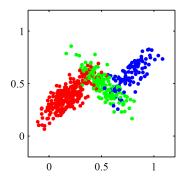
• first randomly pick one of the Gaussian models,



GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models. To generate a point, we

- first randomly pick one of the Gaussian models,
- then draw a point according this Gaussian.



GMM is a natural model to explain such data

Assume there are 3 ground-truth Gaussian models. To generate a point, we

- first randomly pick one of the Gaussian models,
- then draw a point according this Gaussian.

Hence the name "Gaussian mixture model".

A GMM has the following density function:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

A GMM has the following density function:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

• K: the number of Gaussian components (same as #clusters we want)

A GMM has the following density function:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

• K: the number of Gaussian components (same as #clusters we want)

• $\omega_1, \ldots, \omega_K$: mixture weights, a distribution over K components

A GMM has the following density function:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

- *K*: the number of Gaussian components (same as #clusters we want)
- $\omega_1, \ldots, \omega_K$: mixture weights, a distribution over K components
- μ_k and Σ_k : mean and covariance matrix of the k-th Gaussian

A GMM has the following density function:

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where

- K: the number of Gaussian components (same as #clusters we want)
- $\omega_1, \ldots, \omega_K$: mixture weights, a distribution over K components
- μ_k and Σ_k : mean and covariance matrix of the k-th Gaussian
- N: the density function for a Gaussian

By introducing a **latent variable** $z \in [K]$, which indicates cluster membership, we can see p as a marginal distribution

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} p(\boldsymbol{x}, z = k)$$

By introducing a **latent variable** $z \in [K]$, which indicates cluster membership, we can see p as a marginal distribution

$$p(x) = \sum_{k=1}^{K} p(x, z = k) = \sum_{k=1}^{K} p(z = k) p(x|z = k)$$

By introducing a **latent variable** $z \in [K]$, which indicates cluster membership, we can see p as a marginal distribution

$$p(\boldsymbol{x}) = \sum_{k=1}^{K} p(\boldsymbol{x}, z = k) = \sum_{k=1}^{K} p(z = k) p(\boldsymbol{x} | z = k) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

By introducing a **latent variable** $z \in [K]$, which indicates cluster membership, we can see p as a **marginal distribution**

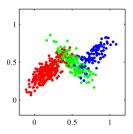
$$p(\boldsymbol{x}) = \sum_{k=1}^{K} p(\boldsymbol{x}, z = k) = \sum_{k=1}^{K} p(z = k) p(\boldsymbol{x} | z = k) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

 \boldsymbol{x} and z are both random variables drawn from the model

• x is observed

• z is unobserved/latent

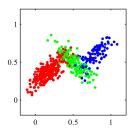
An example



The conditional distributions are

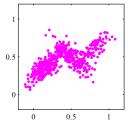
$$\begin{split} p(\boldsymbol{x} \mid z = \mathsf{red}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \\ p(\boldsymbol{x} \mid z = \mathsf{blue}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ p(\boldsymbol{x} \mid z = \mathsf{green}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$

An example



The conditional distributions are

$$\begin{split} p(\boldsymbol{x} \mid z = \mathsf{red}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1) \\ p(\boldsymbol{x} \mid z = \mathsf{blue}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_2, \boldsymbol{\Sigma}_2) \\ p(\boldsymbol{x} \mid z = \mathsf{green}) &= N(\boldsymbol{x} \mid \boldsymbol{\mu}_3, \boldsymbol{\Sigma}_3) \end{split}$$



The marginal distribution is

$$\begin{split} p(\pmb{x}) &= p(\mathsf{red}) N(\pmb{x} \mid \pmb{\mu}_1, \pmb{\Sigma}_1) + p(\mathsf{blue}) N(\pmb{x} \mid \pmb{\mu}_2, \pmb{\Sigma}_2) \\ &+ p(\mathsf{green}) N(\pmb{x} \mid \pmb{\mu}_3, \pmb{\Sigma}_3) \end{split}$$

Learning GMMs

Learning a GMM means finding all the parameters $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$.

Learning GMMs

Learning a GMM means finding all the parameters $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$. In the process, we will learn the latent variable z_n as well:

$$p(z_n = k \mid \boldsymbol{x}_n)$$

Learning a GMM means finding all the parameters $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$. In the process, we will learn the latent variable z_n as well:

$$p(z_n = k \mid \boldsymbol{x}_n) \triangleq \gamma_{nk} \in [0, 1]$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

Learning a GMM means finding all the parameters $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$. In the process, we will learn the latent variable z_n as well:

$$p(z_n = k \mid \boldsymbol{x}_n) \triangleq \gamma_{nk} \in [0, 1]$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

GMM is more explanatory than K-means

• both learn the cluster centers μ_k 's

Learning a GMM means finding all the parameters $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$. In the process, we will learn the latent variable z_n as well:

$$p(z_n = k \mid \boldsymbol{x}_n) \triangleq \gamma_{nk} \in [0, 1]$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

GMM is more explanatory than K-means

- both learn the cluster centers μ_k 's
- in addition, GMM learns cluster weight ω_k and covariance Σ_k ,

Learning a GMM means finding all the parameters $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$. In the process, we will learn the latent variable z_n as well:

$$p(z_n = k \mid \boldsymbol{x}_n) \triangleq \gamma_{nk} \in [0, 1]$$

i.e. "soft assignment" of each point to each cluster, as opposed to "hard assignment" by K-means.

GMM is more explanatory than K-means

- both learn the cluster centers μ_k 's
- ullet in addition, GMM learns cluster weight ω_k and covariance $oldsymbol{\Sigma}_k$, thus
 - we can predict probability of seeing a new point
 - we can generate synthetic data

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{n=1}^{N} p(\boldsymbol{x}_{n} ; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p(\boldsymbol{x}_{n} ; \boldsymbol{\theta}) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})$$

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{n=1}^{N} p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})$$

This is called incomplete log-likelihood (since z_n 's are unobserved), and is *intractable in general* (non-concave problem).

How to learn these parameters?

An obvious attempt is maximum-likelihood estimation (MLE): find

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ln \prod_{n=1}^{N} p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) \triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\boldsymbol{\theta})$$

This is called incomplete log-likelihood (since z_n 's are unobserved), and is *intractable in general* (non-concave problem).

One solution is to still apply GD/SGD, but a much more effective approach is the **Expectation–Maximization (EM) algorithm**.

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = rac{\sum_n \gamma_{nk}}{N}$$
 $\mu_k = rac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$

$$\boldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = rac{\sum_n \gamma_{nk}}{N}$$
 $\boldsymbol{\mu}_k = rac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$

$$\boldsymbol{\Sigma}_{k} = rac{1}{\sum_{n} \gamma_{nk}} \sum_{n} \gamma_{nk} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{\mathrm{T}}$$

Step 3 return to Step 1 if not converged

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$
 $\boldsymbol{\mu}_k = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$

$$\boldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

Step 3 return to Step 1 if not converged

We will see how this is a special case of EM.

Generate 50 data points from a mixture of 2 Gaussians with

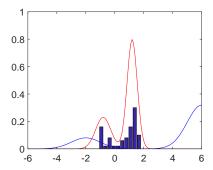
- $\omega_1 = 0.3, \mu_1 = -0.8, \Sigma_1 = 0.52$
- $\omega_2 = 0.7, \mu_2 = 1.2, \Sigma_2 = 0.35$

Generate 50 data points from a mixture of 2 Gaussians with

•
$$\omega_1 = 0.3, \mu_1 = -0.8, \Sigma_1 = 0.52$$

•
$$\omega_2 = 0.7, \mu_2 = 1.2, \Sigma_2 = 0.35$$

histogram represents the data



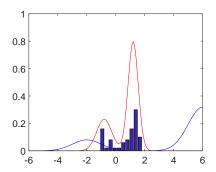
Generate 50 data points from a mixture of 2 Gaussians with

•
$$\omega_1 = 0.3, \mu_1 = -0.8, \Sigma_1 = 0.52$$

•
$$\omega_2 = 0.7, \mu_2 = 1.2, \Sigma_2 = 0.35$$

histogram represents the data

red curve represents the ground-truth density $p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$



Generate 50 data points from a mixture of 2 Gaussians with

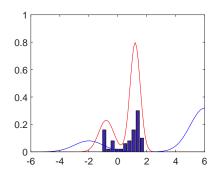
•
$$\omega_1 = 0.3, \mu_1 = -0.8, \Sigma_1 = 0.52$$

•
$$\omega_2 = 0.7, \mu_2 = 1.2, \Sigma_2 = 0.35$$

histogram represents the data

red curve represents the ground-truth density $p(\boldsymbol{x}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

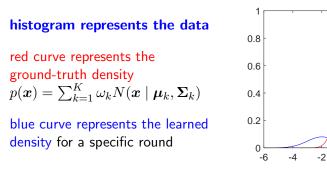
blue curve represents the learned density for a specific round

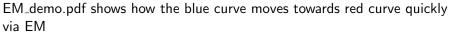


Generate 50 data points from a mixture of 2 Gaussians with

•
$$\omega_1 = 0.3, \mu_1 = -0.8, \Sigma_1 = 0.52$$

•
$$\omega_2 = 0.7, \mu_2 = 1.2, \Sigma_2 = 0.35$$





0

2

4

6

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta})$$

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \int_{z_n} p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) dz_n$$

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \int_{z_n} p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) dz_n$$

• heta is the parameters for a general probabilistic model

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \int_{z_n} p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) dz_n$$

• heta is the parameters for a general probabilistic model

• x_n 's are observed random variables

In general EM is a heuristic to solve MLE with latent variables (not just GMM), i.e. find the maximizer of

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \int_{z_n} p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) dz_n$$

- heta is the parameters for a general probabilistic model
- x_n 's are observed random variables
- z_n 's are latent variables

In general EM is a **heuristic to solve MLE with latent variables** (not just GMM), i.e. find the maximizer of

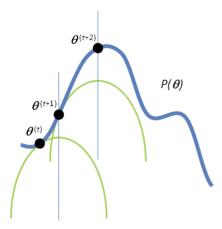
$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \int_{z_n} p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) dz_n$$

- heta is the parameters for a general probabilistic model
- x_n 's are observed random variables
- z_n 's are latent variables

Again, directly solving the objective is intractable.

High level idea

Keep maximizing a lower bound of P that is more manageable



Derivation of EM

Finding the lower bound of *P*:

$$\ln p(\boldsymbol{x} ; \boldsymbol{\theta}) = \ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}$$

(true for any z)

Finding the lower bound of *P*:

$$\ln p(\boldsymbol{x} ; \boldsymbol{\theta}) = \ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}$$
$$= \mathbb{E}_{z \sim q} \left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z | \boldsymbol{x} ; \boldsymbol{\theta})} \right]$$

(true for any z)

(true for any dist. q)

Finding the lower bound of *P*:

$$\ln p(\boldsymbol{x}; \boldsymbol{\theta}) = \ln \frac{p(\boldsymbol{x}, z; \boldsymbol{\theta})}{p(z|\boldsymbol{x}; \boldsymbol{\theta})}$$
(true for any z)
$$= \mathbb{E}_{z \sim q} \left[\ln \frac{p(\boldsymbol{x}, z; \boldsymbol{\theta})}{p(z|\boldsymbol{x}; \boldsymbol{\theta})} \right]$$
(true for any dist. q)

-

$$= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] - \mathbb{E}_{z \sim q} \left[\ln q(z) \right] - \mathbb{E}_{z \sim q} \left[\ln \frac{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right]$$

Finding the lower bound of *P*:

$$\ln p(\boldsymbol{x} ; \boldsymbol{\theta}) = \ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z|\boldsymbol{x} ; \boldsymbol{\theta})}$$
(true for any z)
$$= \mathbb{E}_{z \sim q} \left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z|\boldsymbol{x} ; \boldsymbol{\theta})} \right]$$
(true for any dist. q)

$$= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] - \mathbb{E}_{z \sim q} \left[\ln q(z) \right] - \mathbb{E}_{z \sim q} \left[\ln \frac{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right]$$
$$= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] + \boldsymbol{H}(\boldsymbol{q}) - \mathbb{E}_{z \sim q} \left[\ln \frac{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right] \quad (H \text{ is entropy})$$

Finding the lower bound of *P*:

$$\ln p(\boldsymbol{x} ; \boldsymbol{\theta}) = \ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}$$
(true for any z)
$$= \mathbb{E}_{z \sim q} \left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z | \boldsymbol{x} ; \boldsymbol{\theta})} \right]$$
(true for any dist. q)

$$= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] - \mathbb{E}_{z \sim q} \left[\ln q(z) \right] - \mathbb{E}_{z \sim q} \left[\ln \frac{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right]$$

$$= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] + H(q) - \mathbb{E}_{z \sim q} \left[\ln \frac{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right] \quad (H \text{ is entropy})$$

$$\geq \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] + H(q) - \ln \mathbb{E}_{z \sim q} \left[\frac{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right]$$

(Jensen's inequality)

Finding the lower bound of *P*:

$$\ln p(\boldsymbol{x} ; \boldsymbol{\theta}) = \ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z|\boldsymbol{x} ; \boldsymbol{\theta})} \qquad (\text{true for any } z)$$
$$= \mathbb{E}_{z \sim q} \left[\ln \frac{p(\boldsymbol{x}, z ; \boldsymbol{\theta})}{p(z|\boldsymbol{x} ; \boldsymbol{\theta})} \right] \qquad (\text{true for any dist. } q)$$
$$= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] - \mathbb{E}_{z \sim q} \left[\ln q(z) \right] - \mathbb{E}_{z \sim q} \left[\ln \frac{p(z|\boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right]$$
$$= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] + H(q) - \mathbb{E}_{z \sim q} \left[\ln \frac{p(z|\boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right] \qquad (H \text{ is entropy})$$

$$\geq \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] + H(q) - \ln \mathbb{E}_{z \sim q} \left[\frac{p(z | \boldsymbol{x} ; \boldsymbol{\theta})}{q(z)} \right]$$
(Jensen's inequality)

$$= \mathbb{E}_{z \sim q} \left[\ln p(\boldsymbol{x}, z ; \boldsymbol{\theta}) \right] + H(q)$$

Therefore, we obtain a lower bound for the log-likelihood function

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta})$$

$$\geq \sum_{n=1}^{N} \left(\mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right] + H(q_n) \right) = F(\boldsymbol{\theta}, \{q_n\})$$

Therefore, we obtain a lower bound for the log-likelihood function

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta})$$

$$\geq \sum_{n=1}^{N} \left(\mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right] + H(q_n) \right) = F(\boldsymbol{\theta}, \{q_n\})$$

This holds for any $\{q_n\}$, so how do we choose?

Therefore, we obtain a lower bound for the log-likelihood function

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta})$$

$$\geq \sum_{n=1}^{N} \left(\mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right] + H(q_n) \right) = F(\boldsymbol{\theta}, \{q_n\})$$

This holds for any $\{q_n\}$, so how do we choose? Naturally, the one that maximizes the lower bound (i.e. the tightest lower bound)!

Therefore, we obtain a lower bound for the log-likelihood function

$$P(\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n ; \boldsymbol{\theta})$$

$$\geq \sum_{n=1}^{N} \left(\mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right] + H(q_n) \right) = F(\boldsymbol{\theta}, \{q_n\})$$

This holds for any $\{q_n\}$, so how do we choose? Naturally, the one that maximizes the lower bound (i.e. the tightest lower bound)!

Equivalently, this is the same as alternatingly maximizing F over $\{q_n\}$ and θ (similar to K-means).

Maximizing over $\{q_n\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$\operatorname*{argmax}_{q_n} \mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n)$$

is $q_n^{(t)}$ s.t. $q_n^{(t)}(z_n) = p(z_n \mid \pmb{x}_n \ ; \pmb{\theta}^{(t)})$

i.e., the *posterior distribution of* z_n given x_n and $\theta^{(t)}$. (Verified in HW4)

Maximizing over $\{q_n\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$\operatorname*{argmax}_{q_n} \mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n)$$

is $q_n^{(t)}$ s.t. $q_n^{(t)}(z_n) = p(z_n \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}) \propto \ p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)})$

i.e., the *posterior distribution of* z_n given x_n and $\theta^{(t)}$. (Verified in HW4)

Maximizing over $\{q_n\}$

Fix $oldsymbol{ heta}^{(t)}$, the solution to

$$\operatorname*{argmax}_{q_n} \mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n)$$

is $q_n^{(t)}$ s.t. $q_n^{(t)}(z_n) = p(z_n \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}) \propto \ p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)})$

i.e., the *posterior distribution of* z_n given x_n and $\theta^{(t)}$. (Verified in HW4)

So at $\boldsymbol{\theta}^{(t)}$, we found the tightest lower bound $F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right)$:

Maximizing over $\{q_n\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$\operatorname*{argmax}_{q_n} \mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n)$$

is $q_n^{(t)}$ s.t. $q_n^{(t)}(z_n) = p(z_n \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}) \propto \ p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)})$

i.e., the *posterior distribution of* z_n given x_n and $\theta^{(t)}$. (Verified in HW4)

So at $\theta^{(t)}$, we found the tightest lower bound $F\left(\theta, \{q_n^{(t)}\}\right)$: • $F\left(\theta, \{q_n^{(t)}\}\right) \leq P(\theta)$ for all θ .

Maximizing over $\{q_n\}$

Fix $\boldsymbol{\theta}^{(t)}$, the solution to

$$\operatorname*{argmax}_{q_n} \mathbb{E}_{z_n \sim q_n} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)}) \right] + H(q_n)$$

is $q_n^{(t)}$ s.t. $q_n^{(t)}(z_n) = p(z_n \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}) \propto \ p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}^{(t)})$

i.e., the *posterior distribution of* z_n given x_n and $\theta^{(t)}$. (Verified in HW4)

So at $\boldsymbol{\theta}^{(t)}$, we found the tightest lower bound $F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right)$:

•
$$F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right) \leq P(\boldsymbol{\theta})$$
 for all $\boldsymbol{\theta}$.
• $F\left(\boldsymbol{\theta}^{(t)}, \{q_n^{(t)}\}\right) = P(\boldsymbol{\theta}^{(t)})$ (verify yourself by going through Slide 40)

Fix $\{q_n^{(t)}\}$, maximize over $\boldsymbol{\theta}$:

$$\operatorname{argmax}_{\boldsymbol{\theta}} F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right)$$

Fix $\{q_n^{(t)}\}$, maximize over $\boldsymbol{\theta}$:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right)$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta})\right] \quad (H(q_n^{(t)}) \text{ is independent of } \boldsymbol{\theta})$$

Fix $\{q_n^{(t)}\}$, maximize over $\boldsymbol{\theta}$:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right)$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta})\right] \quad (H(q_n^{(t)}) \text{ is independent of } \boldsymbol{\theta})$$

$$\triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}) \qquad (\{q_n^{(t)}\} \text{ are computed via } \boldsymbol{\theta}^{(t)})$$

Fix $\{q_n^{(t)}\}$, maximize over $\boldsymbol{\theta}$:

$$\begin{aligned} \underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right) \\ &= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta})\right] \quad (H(q_n^{(t)}) \text{ is independent of } \boldsymbol{\theta}) \\ &\triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta}; \boldsymbol{\theta}^{(t)}) \qquad (\{q_n^{(t)}\} \text{ are computed via } \boldsymbol{\theta}^{(t)}) \end{aligned}$$

Q is the (expected) complete likelihood and is usually more tractable.

Fix $\{q_n^{(t)}\}$, maximize over $\boldsymbol{\theta}$:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} F\left(\boldsymbol{\theta}, \{q_n^{(t)}\}\right)$$

$$= \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta})\right] \quad (H(q_n^{(t)}) \text{ is independent of } \boldsymbol{\theta})$$

$$\triangleq \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)}) \qquad (\{q_n^{(t)}\} \text{ are computed via } \boldsymbol{\theta}^{(t)})$$

Q is the (expected) complete likelihood and is usually more tractable.

• versus the incomplete likelihood:
$$P(\theta) = \sum_{n=1}^{N} \ln p(\boldsymbol{x}_n; \theta)$$

EM algorithm

General EM algorithm

Step 0 Initialize $\theta^{(1)}$, t = 1

General EM algorithm

Step 0 Initialize $\theta^{(1)}$, t = 1

Step 1 (E-Step) update the posterior of latent variables

$$q_n^{(t)}(\cdot) = p(\cdot \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)})$$

General EM algorithm

Step 0 Initialize $\theta^{(1)}$, t = 1

Step 1 (E-Step) update the posterior of latent variables

$$q_n^{(t)}(\cdot) = p(\cdot \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)})$$

and obtain Expectation of complete likelihood

$$Q(\boldsymbol{\theta};\boldsymbol{\theta}^{(t)}) = \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n; \boldsymbol{\theta}) \right]$$

General EM algorithm

Step 0 Initialize $\theta^{(1)}$, t = 1

Step 1 (E-Step) update the posterior of latent variables

$$q_n^{(t)}(\cdot) = p(\cdot \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)})$$

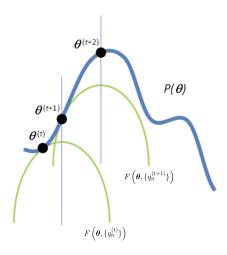
and obtain Expectation of complete likelihood

$$Q(\boldsymbol{\theta};\boldsymbol{\theta}^{(t)}) = \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n; \boldsymbol{\theta}) \right]$$

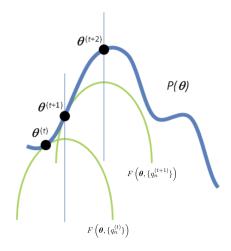
Step 2 (M-Step) update the model parameter via Maximization

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \operatorname*{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta} ; \boldsymbol{\theta}^{(t)})$$

Step 3 $t \leftarrow t + 1$ and return to Step 1 if not converged

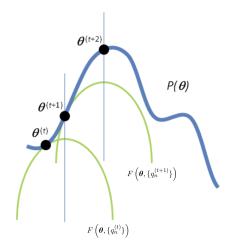


 $P(\pmb{\theta})$ is non-concave, but $Q(\pmb{\theta}; \pmb{\theta}^{(t)})$ often is concave and easy to maximize.



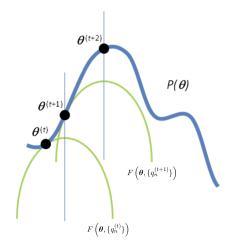
 $P(\pmb{\theta})$ is non-concave, but $Q(\pmb{\theta}; \pmb{\theta}^{(t)})$ often is concave and easy to maximize.

$$P(\boldsymbol{\theta}^{(\mathsf{t+1})}) \ge F\left(\boldsymbol{\theta}^{(\mathsf{t+1})}; \{q_n^{(t)}\}\right)$$



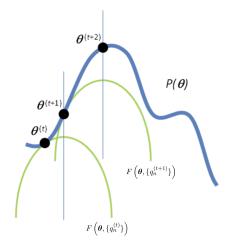
 $P(\theta)$ is non-concave, but $Q(\theta; \theta^{(t)})$ often is concave and easy to maximize.

$$P(\boldsymbol{\theta}^{(t+1)}) \ge F\left(\boldsymbol{\theta}^{(t+1)}; \{q_n^{(t)}\}\right)$$
$$\ge F\left(\boldsymbol{\theta}^{(t)}; \{q_n^{(t)}\}\right)$$



 $P(\pmb{\theta})$ is non-concave, but $Q(\pmb{\theta}; \pmb{\theta}^{(t)})$ often is concave and easy to maximize.

$$P(\boldsymbol{\theta}^{(t+1)}) \ge F\left(\boldsymbol{\theta}^{(t+1)}; \{q_n^{(t)}\}\right)$$
$$\ge F\left(\boldsymbol{\theta}^{(t)}; \{q_n^{(t)}\}\right)$$
$$= P(\boldsymbol{\theta}^{(t)})$$



 $P(\theta)$ is non-concave, but $Q(\theta; \theta^{(t)})$ often is concave and easy to maximize.

$$P(\boldsymbol{\theta}^{(t+1)}) \ge F\left(\boldsymbol{\theta}^{(t+1)}; \{q_n^{(t)}\}\right)$$
$$\ge F\left(\boldsymbol{\theta}^{(t)}; \{q_n^{(t)}\}\right)$$
$$= P(\boldsymbol{\theta}^{(t)})$$

So EM always increases the objective value and will converge to some local maximum (similar to K-means).

E-Step:

$$q_n^{(t)}(z_n = k) = p\left(z_n = k \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}\right)$$
$$\propto p\left(\boldsymbol{x}_n, z_n = k ; \boldsymbol{\theta}^{(t)}\right)$$

E-Step:

$$q_n^{(t)}(z_n = k) = p\left(z_n = k \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}\right)$$

$$\propto p\left(\boldsymbol{x}_n, z_n = k ; \boldsymbol{\theta}^{(t)}\right)$$

$$= p\left(z_n = k ; \boldsymbol{\theta}^{(t)}\right) p(\boldsymbol{x}_n \mid z_n = k ; \boldsymbol{\theta}^{(t)})$$

E-Step:

$$q_n^{(t)}(z_n = k) = p\left(z_n = k \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}\right)$$

$$\propto p\left(\boldsymbol{x}_n, z_n = k ; \boldsymbol{\theta}^{(t)}\right)$$

$$= p\left(z_n = k ; \boldsymbol{\theta}^{(t)}\right) p(\boldsymbol{x}_n \mid z_n = k ; \boldsymbol{\theta}^{(t)}\right)$$

$$= \omega_k^{(t)} N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)}\right)$$

E-Step:

$$q_n^{(t)}(z_n = k) = p\left(z_n = k \mid \boldsymbol{x}_n ; \boldsymbol{\theta}^{(t)}\right)$$

$$\propto p\left(\boldsymbol{x}_n, z_n = k ; \boldsymbol{\theta}^{(t)}\right)$$

$$= p\left(z_n = k ; \boldsymbol{\theta}^{(t)}\right) p(\boldsymbol{x}_n \mid z_n = k ; \boldsymbol{\theta}^{(t)}\right)$$

$$= \omega_k^{(t)} N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k^{(t)}, \boldsymbol{\Sigma}_k^{(t)}\right)$$

This computes the "soft assignment" $\gamma_{nk} = q_n^{(t)}(z_n = k)$, i.e. conditional probability of x_n belonging to cluster k.

M-Step:

$$\operatorname{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right]$$

M-Step:

$$\operatorname{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right]$$
$$= \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(z_n ; \boldsymbol{\theta}) + \ln p(\boldsymbol{x}_n | z_n ; \boldsymbol{\theta}) \right]$$

M-Step:

$$\operatorname{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right]$$
$$= \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(z_n ; \boldsymbol{\theta}) + \ln p(\boldsymbol{x}_n | z_n ; \boldsymbol{\theta}) \right]$$
$$= \operatorname{argmax}_{\{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left(\ln \omega_k + \ln N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

M-Step:

$$\operatorname{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right]$$
$$= \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(z_n ; \boldsymbol{\theta}) + \ln p(\boldsymbol{x}_n | z_n ; \boldsymbol{\theta}) \right]$$
$$= \operatorname{argmax}_{\{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left(\ln \omega_k + \ln N(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

To find $\omega_1, \ldots, \omega_K$, solve

$$\underset{\boldsymbol{\omega}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \ln \omega_k$$

M-Step:

$$\operatorname{argmax}_{\boldsymbol{\theta}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) = \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(\boldsymbol{x}_n, z_n ; \boldsymbol{\theta}) \right]$$
$$= \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{n=1}^{N} \mathbb{E}_{z_n \sim q_n^{(t)}} \left[\ln p(z_n ; \boldsymbol{\theta}) + \ln p(\boldsymbol{x}_n | z_n ; \boldsymbol{\theta}) \right]$$
$$= \operatorname{argmax}_{\{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \left(\ln \omega_k + \ln N(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right)$$

To find $\omega_1, \ldots, \omega_K$, solve

To find each μ_k, Σ_k , solve

$$\underset{\boldsymbol{\omega}}{\operatorname{argmax}} \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} \ln \omega_k$$

$$\operatorname{argmax}_{\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k} \sum_{n=1}^N \gamma_{nk} \ln N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Solutions to previous two problems are very natural, for each k

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$

i.e. (weighted) fraction of examples belonging to cluster k

Solutions to previous two problems are very natural, for each k

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$

i.e. (weighted) fraction of examples belonging to cluster k

$$\boldsymbol{\mu}_k = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

i.e. (weighted) average of examples belonging to cluster k

Solutions to previous two problems are very natural, for each k

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$

i.e. (weighted) fraction of examples belonging to cluster \boldsymbol{k}

$$\boldsymbol{\mu}_k = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

i.e. (weighted) average of examples belonging to cluster k

$$oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{\mathrm{T}}$$

i.e (weighted) covariance of examples belonging to cluster k

Solutions to previous two problems are very natural, for each k

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$

i.e. (weighted) fraction of examples belonging to cluster \boldsymbol{k}

$$\boldsymbol{\mu}_k = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$$

i.e. (weighted) average of examples belonging to cluster k

$$oldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (oldsymbol{x}_n - oldsymbol{\mu}_k) (oldsymbol{x}_n - oldsymbol{\mu}_k)^{\mathrm{T}}$$

i.e (weighted) covariance of examples belonging to cluster k

You will verify some of these in HW4.

EM for learning GMMs:

Step 0 Initialize $\omega_k, \mu_k, \Sigma_k$ for each $k \in [K]$

EM for learning GMMs:

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

EM for learning GMMs:

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N\left(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\right)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\omega_k = \frac{\sum_n \gamma_{nk}}{N}$$
 $\boldsymbol{\mu}_k = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}}$

$$\boldsymbol{\Sigma}_k = rac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}}$$

EM for learning GMMs:

Step 0 Initialize $\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ for each $k \in [K]$

Step 1 (E-Step) update the "soft assignment" (fixing parameters)

$$\gamma_{nk} = p(z_n = k \mid \boldsymbol{x}_n) \propto \omega_k N(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Step 2 (M-Step) update the model parameter (fixing assignments)

$$\begin{split} \omega_k &= \frac{\sum_n \gamma_{nk}}{N} \qquad \boldsymbol{\mu}_k = \frac{\sum_n \gamma_{nk} \boldsymbol{x}_n}{\sum_n \gamma_{nk}} \\ \boldsymbol{\Sigma}_k &= \frac{1}{\sum_n \gamma_{nk}} \sum_n \gamma_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{\mathrm{T}} \end{split}$$

Step 3 return to Step 1 if not converged

K-means is in fact a special case of EM for (a simplified) GMM:

K-means is in fact a special case of EM for (a simplified) GMM:

• assume $\Sigma_k = \sigma^2 I$ for some fixed σ so only ω_k and μ_k are parameters

K-means is in fact a special case of EM for (a simplified) GMM:

- assume $\Sigma_k = \sigma^2 I$ for some fixed σ so only ω_k and μ_k are parameters
- when $\sigma \rightarrow 0$, EM becomes K-means

K-means is in fact a special case of EM for (a simplified) GMM:

- assume $\Sigma_k = \sigma^2 I$ for some fixed σ so only ω_k and μ_k are parameters
- when $\sigma \rightarrow 0$, EM becomes K-means

GMM is a soft version of K-means and it provides a probabilistic interpretation of the data, which means we can predict and generate data after learning.