
CSCI 659 Homework 1
Fall 2022

Instructor: Haipeng Luo

This homework is due on 9/25, 11:59pm. See course website for more instructions on finishing and
submitting your homework as well as the late policy. Total points: 60.

1. (Doubling Trick) (6pts) We have seen that Hedge enjoys a regret bound 2
√
T lnN with the

optimal tuning η =
√
(lnN)/T . What if T is unknown? One simple way to address this issue

is the so-called “doubling trick”. The idea is to make a guess on T , and once the actual horizon
exceeds the guess, double the guess and restart the algorithm. This is outlined below (with 0
being the all-zero vector):

Algorithm 1: Hedge with a Doubling Trick

Initialize: L0 = 0, initial guess T0 = 1, and initial learning rate η =
√
(lnN)/T0

for t = 1, 2, . . . , do
if t ≥ 2T0 then

double the guess: T0 ← 2T0
reset the algorithm: Lt−1 = 0 and η =

√
(lnN)/T0

compute pt ∈ ∆(N) such that pt(i) ∝ exp(−ηLt−1(i))
play pt and observe loss vector ℓt ∈ [0, 1]N

update Lt = Lt−1 + ℓt

Prove that Algorithm 1 ensures RT = O(
√
T lnN) for all T . (Hint: consider how many times

the algorithm resets and how large the regret can be between two resets.)



2. (Regret Matching) Regret Matching is a suboptimal yet extremely simple and practical algo-
rithm for the expert problem. Specifically, let rt ∈ [−1, 1]N be such that rt(i) = ⟨pt, ℓt⟩ − ℓt(i)
(that is, the instantaneous regret against expert i), and Rt =

∑
s≤t rs. Then at round t, Regret

Matching predicts pt ∈ ∆(N) such that

pt(i) ∝ [Rt−1(i)]+, where [x]+ = max{x, 0}.

Prove the regret bound for this algorithm through the following steps.

(a) (4pts) Prove that for any i, [Rt(i)]2+ ≤ [Rt−1(i)]
2
+ + 2[Rt−1(i)]+rt(i) + r2t (i).

(b) (3pts) Define potential Φt =
∑N
i=1[Rt(i)]

2
+. Prove Φt ≤ Φt−1 +N .

(c) (3pts) Conclude that Regret Matching ensuresRT ≤
√
TN .
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3. (Improved Analysis for FTPL) In Lecture 2, we prove that for the combinatorial problem, FTPL
achieves a suboptimal regret boundO(m

√
TN lnN). In this exercise, you need to prove that the

exact same algorithm actually achieves a better bound O(m
√
Tm lnN). (See the lecture for all

notations used here.)

(a) (7pts) In the proof of Lemma 5 of Lecture 2, we prove pt(j) ≤ eη∥ℓt∥1pt+1(j). The key
here is to improve this to

pt(j) ≤ eη⟨vj ,ℓt⟩pt+1(j).

To show this, fix any j, and consider an auxiliary distribution pjt+1 ∈ ∆(M) such that for
any combinatorial action vk ∈ S:

pjt+1(k) = Pr

[
vk = argmin

w∈Ω

〈
w,

(
t−1∑
s=0

ℓs

)
+ vj ⊙ ℓt

〉]
where ⊙ denotes element-wise product. Follow the proof of Lemma 5 to show

pt(j) ≤ eη⟨vj ,ℓt⟩pjt+1(j),

and then conclude pt(j) ≤ eη⟨vj ,ℓt⟩pt+1(j).

(b) (5pts) Based on the result from last question, prove E[⟨wt − wt+1, ℓt⟩] ≤ ηm2. Then further
conclude the regret bound O(m

√
Tm lnN) when using the optimal η.
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4. (Hedge is an FTPL) Consider the following FTPL strategy for the expert problem: at time t,
select expert (recall Lt =

∑
s≤t ℓs is the cumulative loss vector)

it = argmin
i

(Lt−1(i)− ℓ0(i)) ,

where ℓ0(i) for i = 1, . . . , N areN independent random variables with Gumbel distribution, that
is, with CDF: Pr[ℓ0(i) ≤ x] = exp(− exp(−ηx)) for some parameter η.

(a) (3pts) Prove that for any j, Pr[it = j] = Pr
[
j = argmaxi

exp(−ηLt−1(i))
exp(−ηℓ0(i))

]
.

(b) (3pts) Prove that the random variable β(i) = exp(−ηℓ0(i)) follows the standard exponential
distribution, that is Pr[β(i) ≤ x] = 1− e−x.

(c) (6pts) For any a ∈ RN>0, prove that for any j, Pr
[
j = argmaxi

a(i)
β(i)

]
= a(j)∑N

i=1 a(i)
. Conclude

that FTPL with Gumbel noise is equivalent to Hedge.
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5. (Online Mirror Descent) Besides FTRL and FTPL, Online Mirror Descent (OMD) is yet an-
other general framework to derive online learning algorithm for OCO. For a convex regularizer
function ψ : Ω→ R (also called mirror map) and a learning rate η > 0, the update of OMD is

wt+1 = argmin
w∈Ω

⟨w, ℓt⟩+
1

η
Dψ(w,wt),

starting from an arbitrary w1 ∈ Ω. In other words, OMD tries to find a point that minimizes the
loss at time t while being close to the previous point wt (in terms of their Bregman divergence).
In this exercise, you will prove a regret bound for OMD similar to that of FTRL and instantiate
OMD in two examples.

(a) (5pts) Use Lemma 1 from Lecture 2 to prove for any u ∈ Ω:

η ⟨wt+1 − u, ℓt⟩ ≤ Dψ(u,wt)−Dψ(u,wt+1)−Dψ(wt+1, wt), (1)

then further conclude that OMD’s regret against any u is bounded as:

T∑
t=1

⟨wt − u, ℓt⟩ ≤
Dψ(u,w1)

η
+

T∑
t=1

⟨wt − wt+1, ℓt⟩ −
1

η

T∑
t=1

Dψ(wt+1, wt). (2)

(Note the similarity of this bound compared to that in Lemma 3 of Lecture 2 for FTRL.)

(b) (5pts) Suppose that ψ is strongly convex with respect to some norm ∥·∥. By setting u = wt
in Eq. (1), prove the stability of OMD: ∥wt − wt+1∥ ≤ η ∥ℓt∥⋆ (the same stability property
that FTRL enjoys), then conclude the regret bound

RT ≤
maxu∈ΩDψ(u,w1)

η
+ η

T∑
t=1

∥ℓt∥2⋆ . (3)

(c) (5pts) Show that Hedge is an instance of OMD with a specific ψ, then recover its regret
bound using Eq. (3) (assuming w1 is the uniform distribution).

(d) (5pts) Use ψ(w) = 1
2 ∥w∥

2
2 to derive the non-lazy version of OGD we discussed in

Lecture 2. Then apply Eq. (3) to show that with the optimal η OMD enjoys RT =
O(diam(Ω)G

√
T ) where diam(Ω) = maxw,u∈Ω ∥w − u∥2 is the diameter of Ω and G is

such that maxt ∥ℓt∥2 ≤ G.
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