CSCI 659 Homework 1
Fall 2022

Instructor: Haipeng Luo

This homework is due on 9/25, 11:59pm. See course website for more instructions on finishing and
submitting your homework as well as the late policy. Total points: 60.

1. (Doubling Trick) (6pts) We have seen that Hedge enjoys a regret bound 2v/7T In N with the
optimal tuning n = /(In N)/T. What if T is unknown? One simple way to address this issue
is the so-called “doubling trick”. The idea is to make a guess on 7', and once the actual horizon
exceeds the guess, double the guess and restart the algorithm. This is outlined below (with O
being the all-zero vector):

Algorithm 1: Hedge with a Doubling Trick

Initialize: Lo = 0, initial guess T = 1, and initial learning rate n = /(In N) /Ty
fort=1,2,...,do
if t > 271}, then
double the guess: Ty < 2Ty
L reset the algorithm: L;,_; = 0andn = /(In N)/Tj
compute p; € A(N) such that p; (i) o exp( nLi—1(7))

play p; and observe loss vector ¢; € [0, 1]V
update Ly = Ly_1 + {;

Prove that Algorithm 1 ensures Ry = O(vVT In N) for all T. (Hint: consider how many times
the algorithm resets and how large the regret can be between two resets.)

Proof. Fix any value of T'. It is straightforward to see that the algorithm resets for n = |log, T
times. Forany k = 0, 1,...,n — 1, after the k-th reset, a new instance of Hedge with the optimal
tunning is run for 2* rounds (from ¢t = 2% to t = 2#*1 — 1) before the next reset, and thus suffers

k41 _
at most 2v/2% In N regret: max,c () f:gk Ype —p,b) < 2V2FIn N.
After the last reset, a new instance of Hedge is run for no more than 2" rounds, but one can

imagine that it is still run for exactly 2" rounds by feeding the O loss vector to the algorithm for
the extra imaginary rounds, which has no effect to the regret. Therefore, the regret after the last

reset is bounded by 2v2" In N: maxpea (v Zt on (Pt — 0, 4) <2V27In N,

Now we conclude that the total regret is bounded as

T n—1 ok+1l_1 T
max —p, b)) < max -, L + max —p, L
e AN 2 <pt 'z t> = 2 peAN) t=22k <pt b, t> PR (N) P <pt D, t>

<22\/2k1 —2”?7;1_1\/ <2\7 VinN = O(VTInN),
k=0 - -

which completes the proof. O



2. (Regret Matching) Regret Matching is a suboptimal yet extremely simple and practical algo-
rithm for the expert problem. Specifically, let 7; € [—1,1]" be such that r;(i) = (p, £s) — £4(i)
(that is, the instantaneous regret against expert ¢), and R; = ZS <t Ts- Then at round ¢, Regret

Matching predicts p; € A(N) such that
pe(1) o [Ri—1(i)]s+, where [x]4 = max{x,0}.
Prove the regret bound for this algorithm through the following steps.

(a) (4pts) Prove that for any 4, [R;(i)]3 < [Ry—1(3)]% + 2[Ry—1(d)] 47 (i) + 77 (4).

Proof. Notice that (1) [z]% in non-decreasing in z and (2) [#]3 < 2. Therefore if
R;_1(i) <0, then

[Re())F = [Re-1(i) + e (0)]3

< (@] < 770) (by (1) and (2))

= [Re1 (D)3 + 2[Re—a ()47 (0) + 77 (D). (Re1(1))+ = 0)

Otherwise if R;_1(z) > 0, then by (2) [R.(i)]2 < Ry(1)* = Ry—1(:)* + 2Ry—1 (i) (i) +
ri(i) = [Re—1 (D)3 + 2[Re—1(0)]4re(d) + 7 (0). O

(b) (3pts) Define potential ®; = Ef\il[Rt(z)]i Prove ®, < &, 1 + N.
Proof. Summing up the results of the last question over ¢, we get

N
¢t§¢t—l+2Z[Rt—1 +’I“t +Z7”t <q)t 1—1—22 Rt 1 ]+’I"t(l)—|—N

i=1 i=1

It suffices to prove vazl [R:—1(¢)]4+7¢(4) = 0, which is true because

Zpt i)re(i Zpt (pe, Le) Zpt () (i) = (pt, €r) — (pr, Le) = 0,
and py (i) o [Ri_1(i)]+. 0

(c) (3pts) Conclude that Regret Matching ensures Ry < vVT'N.

Proof. Using the conclusion from the last question we have &7 < &3 + TN = TN.
Therefore, the regret can be bounded as

Ry = maxRT( ) < max[RT( N+ =4 Jmax [Rr(i)]2 < /®r < VTN,

finishing the proof. O



3. (Improved Analysis for FTPL) In Lecture 2, we prove that for the combinatorial problem, FTPL
achieves a suboptimal regret bound O(m+/TN In N). In this exercise, you need to prove that the

exact same algorithm actually achieves a better bound O(m+vTmIn N). (See the lecture for all
notations used here.)

(a) (7pts) In the proof of Lemma 5 of Lecture 2, we prove p;(j) < eleelly pi+1(j). The key
here is to improve this to

pe(j) < e p, L (5).

To show this, fix any j, and consider an auxiliary distribution p{ 41 € A(M) such that for
any combinatorial action vy, € S:

t—1
p{+1(k’) =Pr [Uk = argéngin <w, (Z €s> +v;© €t>

s=0

where © denotes element-wise product. Follow the proof of Lemma 5 to show

pe(j) < en<v1,€t>p +1(3)
and then conclude p; (5) < ") p, 1 (5).

Proof. The reasoning of the first step is exactly the same as that in Lemma 5:

pj:/ 1 {v; = argmin Ly
D=t wEQ< Z >

t—1
= / 1 |v; = argmin <w, Zﬂs +v; © £t>
Lo ERN i weN

h(lo)dly

h(go + Uj @ gt)dgo

s=0
r t—1

< / 1 |v; = argmin ( w, Zﬂs +v; O 4 h(éo)e”””jwtllldﬁo
LoERN i weN s—0

_ 677\|U.7‘®4t\|1p{+1(j) = e’7<”f’£‘>pf+1(j)-

It remains to argue p{ +1(J) < pey1(j). This is true because whenever v; minimizes the
function <w Sl v ®€t>, it has to also minimize (w,Y"_, /s ), given that v,

achieves the same value for these two functions, while all other vy (k # j) leads to a
larger (if not equal) value for the second function.

(b) (5pts) Based on the result from last question, prove E[(w; — w41, £;)] < nm?. Then further
conclude the regret bound O(m+v/TmIn N) when using the optimal 7.

Proof. This also follows similar reasoning as the proof of Lemma 5:

M M
E[(w; — w1, &) = D (0:() = pra()) (v, ) < Z 1— el )py (5) (v, 1)
j—l 7=1
M
< ant (0, 00)* < mm® Y pu(d) = nm?,
j=1

where the first inequality uses the result from the last question and the second inequality
uses the fact 1 — e™* < z for all 2. Finally, based on Lemma 3 of Lecture 2, we have

E[max,, (w, £y) — min,, (w, {p)]

T
; + ) E[(wy — wgr, b)),

t=1

E[Rr] <

where the first term is still bounded by 2™ (1 + In N) according to the proof of Theorem 2,
and the second term is now improved to 77Tm . Picking the optimal ) then shows E[R ]

O(mvTmInN). E



4. (Hedge is an FTPL) Consider the following FTPL strategy for the expert problem: at time ¢,
select expert (recall L; = ZS <t {, is the cumulative loss vector)

iy = argmln (Le—1(i) — €o(i))

where £y(i) fori = 1,..., N are N independent random variables with Gumbel distribution, that
is, with CDF: Pr[{y (i ) < x} = exp(— exp(—nz)) for some parameter 7).

(a) (3pts) Prove that for any j, Pr[i; = j| = Pr |j = argmax; w}

exp(—no (7))
Proof. This is by definition and rewriting:

Prliy = j] = Prlj = argmin (L1 (i) — £o(i))]
= Pr[j = argminexp (nL:—1(i) — nlo(7))]
::Pr[. eXp(—nl¢1U))}.

= argmax -
A T (it (i)

O

(b) (3pts) Prove that the random variable 3(i) = exp(—n¢y(7)) follows the standard exponential
distribution, that is Pr[f(i) < z] =1 — e *.

Proof. This is also by definition and direct calculation:
Pr(f(i) < ] = Prlexp(—nfo(i)) < z]
= Pr[ly(i) > —71nx]
=1—-Prllp(i) < —flnx}

=1—exp(— exp(—n(*% Inx)))

=1—e"".

O

(c) (6pts) Forany a € RY, prove that for any j, Pr {j = argmax; 28} = )

LT Conclude

that FTPL with Gumbel noise is equivalent to Hedge.

Proof. Note that the density of the standard exponential distribution is e~”. Direct calcula-
tion shows

Pr {j = argmax ;((g] = /000 AU) pr {ﬂig < B(é)), Vi 75]} dp(j)
(1) _ a(j)

:/ J)gp {z < (])] dB(j) (by independence)

=/°° e PO ] Pr L“;)ﬁ < Bl )} dB(j)

J#i

=

- ooeiﬁ(j) ex _ald) g j result from

0 i

TN al)

Combining all the results shows that Pr[i; = j] o exp(nL:—1(j)), same as Hedge. O



5. (Online Mirror Descent) Besides FTRL and FTPL, Online Mirror Descent (OMD) is yet an-
other general framework to derive online learning algorithm for OCO. For a convex regularizer
function ¢ : 2 — R (also called mirror map) and a learning rate > 0, the update of OMD is

wyy1 = argmin (w, £;) + lDw(w, wy),
weN n

starting from an arbitrary w; € €). In other words, OMD tries to find a point that minimizes the

loss at time ¢ while being close to the previous point w; (in terms of their Bregman divergence).

In this exercise, you will prove a regret bound for OMD similar to that of FTRL and instantiate

OMD in two examples.

(a) (5pts) Use Lemma 1 from Lecture 2 to prove for any v € :

n <wt+1 - U»£t> < Dw(%wt) - Dw(u7wt+1) - Dw(wt+1, wt), (D
then further conclude that OMD’s regret against any w is bounded as:
T T T
Dy (u,w 1
Z (wy —u, b)) < 1/)(771) + Z (wy — wyy1, b) — E ZDw(wt+17wt)~ )
t=1 t=1 t=1

(Note the similarity of this bound compared to that in Lemma 3 of Lecture 2 for FTRL.)
Proof. Let F(w) = (w, {;) + %Dw(w, wy). Since w1 minimizes F', by applying Lemma
1 we have for any u €

1 1
(wig1,e) + EDw(th,wt) < (u, ) + ;Dw(%wt) — Dp(u, wii1).

Note that the only non-linear term in F is % (w), and thus Dp = %D«/w Rearranging then

proves the first statement. The second statement is simply by adding (w;, ¢;) to both sides,
summing over ¢, rearranging, telescoping, and the fact D (u, wr41) > 0.

(b) (5pts) Suppose that 1 is strongly convex with respect to some norm ||-||. By setting v = w;
in Eq. (1), prove the stability of OMD: ||w; — wy41|| < 7 [|4¢||, (the same stability property
that FTRL enjoys), then conclude the regret bound

maxyeq Dy (u, wy) d
< uE P (W, W1 +7']Z||€t“z 3)

Rr <
n =1

Proof. Setting u = w; in Eq. (1) and using strong convexity gives

N (W1 — we, be) < —Dy(we, wi1) — Dy (Wig1, we) < — [Jwy — wt+1||2~

Rearranging and using Holder’s inequality, we arrive at

we — wegr || < 0w — wesr, ) < 0wy — wepa || 1]l -

Dividing both sides by ||w; — ws1]| finishes the proof for the first statement. The second
statement is a direct application of Eq. (2), Holder’s inequality, and the stability property we
just proved. O

(c) (5pts) Show that Hedge is an instance of OMD with a specific 1, then recover its regret
bound using Eq. (3) (assuming w; is the uniform distribution).

Proof. Let the regularizer be the (negative) entropy ¢)(p) = >, p(¢) Inp(¢). Then Dy (p, q)

is exactly the KL divergence Zf\il p(7) In Z 8 , and OMD becomes
N

. 1 A1 PO
pry1 = argmin (p, &) + — » p(i)In —+.
T eam ; pe(4)

Direct calculation (by writing down Lagrangian and setting the gradient to zero) shows
pry1(i) o< pi(i)exp(—nle(?)). Expanding this definition recursively shows p;iq(i) o

exp (777 Dos<t s (z)) exactly the same as Hedge.



As for the regret bound, we already know that 1) is strongly convex with respect to the L
norm, so Eq. (3) implies

MaXpe A(N) Zl 1 p(i) In(Np(i))
n

InN
Ry < +nT§%+nT,

which is 2v/T In N with the optimal 7, recovering the same bound we proved before. [

(d) (5pts) Use ¢(w) = %Hng to derive the non-lazy version of OGD we discussed in
Lecture 2. Then apply Eq. (3) to show that with the optimal  OMD enjoys Ry =

O(diam(Q)GV/T) where diam(Q) = max,, yeq ||w — ul|, is the diameter of  and G is
such that max; ||4]|, < G.

Proof. In this case, we have Dy (w,u) = 3 [|[w — uH2 and thus
wiy1 = argmin (w, &) + % lw — th2 = argmin ||w — (wy — 774,5)”3,
weN weN
which is equivalent to the non-lazy version of OGD:

g1 = wy — by wepr = argmin [[w — ugy |y -
weN

As for the regret bound, recall that ) is strongly convex with respect to Lo norm. Applying
Eq. (3) thus proves

T

max U —w diam(2)?
Ry < ue || 1”2 Z |£t||2 ( ) +7]TG2.
2n P 2n
Picking the optimal 7 finishes the proof. O



