CSCI 659 Homework 1

Fall 2022

Instructor: Haipeng Luo

This homework is due on $\mathbf{9 / 2 5}, \mathbf{1 1 : 5 9} \mathbf{p m}$. See course website for more instructions on finishing and submitting your homework as well as the late policy. Total points: 60.

1. (Doubling Trick) (6pts) We have seen that Hedge enjoys a regret bound $2 \sqrt{T \ln N}$ with the optimal tuning $\eta=\sqrt{(\ln N) / T}$. What if T is unknown? One simple way to address this issue is the so-called "doubling trick". The idea is to make a guess on T, and once the actual horizon exceeds the guess, double the guess and restart the algorithm. This is outlined below (with $\mathbf{0}$ being the all-zero vector):
```
Algorithm 1: Hedge with a Doubling Trick
Initialize: \(L_{0}=\mathbf{0}\), initial guess \(T_{0}=1\), and initial learning rate \(\eta=\sqrt{(\ln N) / T_{0}}\)
for \(t=1,2, \ldots\), do
    if \(t \geq 2 T_{0}\) then
        double the guess: \(T_{0} \leftarrow 2 T_{0}\)
        reset the algorithm: \(L_{t-1}=\mathbf{0}\) and \(\eta=\sqrt{(\ln N) / T_{0}}\)
    compute \(p_{t} \in \Delta(N)\) such that \(p_{t}(i) \propto \exp \left(-\eta L_{t-1}(i)\right)\)
    play \(p_{t}\) and observe loss vector \(\ell_{t} \in[0,1]^{N}\)
    update \(L_{t}=L_{t-1}+\ell_{t}\)
```

Prove that Algorithm 1 ensures $\mathcal{R}_{T}=\mathcal{O}(\sqrt{T \ln N})$ for all T. (Hint: consider how many times the algorithm resets and how large the regret can be between two resets.)

Proof. Fix any value of T. It is straightforward to see that the algorithm resets for $n=\left\lfloor\log _{2} T\right\rfloor$ times. For any $k=0,1, \ldots, n-1$, after the k-th reset, a new instance of Hedge with the optimal tunning is run for 2^{k} rounds (from $t=2^{k}$ to $t=2^{k+1}-1$) before the next reset, and thus suffers at most $2 \sqrt{2^{k} \ln N}$ regret: $\max _{p \in \Delta(N)} \sum_{t=2^{k}}^{2^{k+1}-1}\left\langle p_{t}-p, \ell_{t}\right\rangle \leq 2 \sqrt{2^{k} \ln N}$.
After the last reset, a new instance of Hedge is run for no more than 2^{n} rounds, but one can imagine that it is still run for exactly 2^{n} rounds by feeding the $\mathbf{0}$ loss vector to the algorithm for the extra imaginary rounds, which has no effect to the regret. Therefore, the regret after the last reset is bounded by $2 \sqrt{2^{n} \ln N}: \max _{p \in \Delta(N)} \sum_{t=2^{n}}^{T}\left\langle p_{t}-p, \ell_{t}\right\rangle \leq 2 \sqrt{2^{n} \ln N}$.
Now we conclude that the total regret is bounded as

$$
\begin{aligned}
& \max _{p \in \Delta(N)} \sum_{t=1}^{T}\left\langle p_{t}-p, \ell_{t}\right\rangle \leq\left(\sum_{k=0}^{n-1} \max _{p \in \Delta(N)} \sum_{t=2^{k}}^{2^{k+1}-1}\left\langle p_{t}-p, \ell_{t}\right\rangle\right)+\max _{p \in \Delta(N)} \sum_{t=2^{n}}^{T}\left\langle p_{t}-p, \ell_{t}\right\rangle \\
& \leq \sum_{k=0}^{n} 2 \sqrt{2^{k} \ln N}=2 \frac{\sqrt{2^{n+1}}-1}{\sqrt{2}-1} \sqrt{\ln N} \leq 2 \frac{\sqrt{2 T}-1}{\sqrt{2}-1} \sqrt{\ln N}=\mathcal{O}(\sqrt{T \ln N}),
\end{aligned}
$$

which completes the proof.
2. (Regret Matching) Regret Matching is a suboptimal yet extremely simple and practical algorithm for the expert problem. Specifically, let $r_{t} \in[-1,1]^{N}$ be such that $r_{t}(i)=\left\langle p_{t}, \ell_{t}\right\rangle-\ell_{t}(i)$ (that is, the instantaneous regret against expert i, and $R_{t}=\sum_{s \leq t} r_{s}$. Then at round t, Regret Matching predicts $p_{t} \in \Delta(N)$ such that

$$
p_{t}(i) \propto\left[R_{t-1}(i)\right]_{+}, \quad \text { where }[x]_{+}=\max \{x, 0\}
$$

Prove the regret bound for this algorithm through the following steps.
(a) (4pts) Prove that for any $i,\left[R_{t}(i)\right]_{+}^{2} \leq\left[R_{t-1}(i)\right]_{+}^{2}+2\left[R_{t-1}(i)\right]_{+} r_{t}(i)+r_{t}^{2}(i)$.

Proof. Notice that (1) $[x]_{+}^{2}$ in non-decreasing in x and (2) $[x]_{+}^{2} \leq x^{2}$. Therefore if $R_{t-1}(i) \leq 0$, then

$$
\begin{array}{rlrl}
{\left[R_{t}(i)\right]_{+}^{2}} & =\left[R_{t-1}(i)+r_{t}(i)\right]_{+}^{2} & \\
& \leq\left[r_{t}(i)\right]_{+}^{2} \leq r_{t}^{2}(i) & & (\text { by }(1) \text { and }(2)) \\
& =\left[R_{t-1}(i)\right]_{+}^{2}+2\left[R_{t-1}(i)\right]_{+} r_{t}(i)+r_{t}^{2}(i) . & & \left(\left[R_{t-1}(i)\right]_{+}=0\right)
\end{array}
$$

Otherwise if $R_{t-1}(i) \geq 0$, then by (2) $\left[R_{t}(i)\right]_{+}^{2} \leq R_{t}(i)^{2}=R_{t-1}(i)^{2}+2 R_{t-1}(i) r_{t}(i)+$ $r_{t}^{2}(i)=\left[R_{t-1}(i)\right]_{+}^{2}+2\left[R_{t-1}(i)\right]_{+} r_{t}(i)+r_{t}^{2}(i)$.
(b) (3pts) Define potential $\Phi_{t}=\sum_{i=1}^{N}\left[R_{t}(i)\right]_{+}^{2}$. Prove $\Phi_{t} \leq \Phi_{t-1}+N$.

Proof. Summing up the results of the last question over i, we get

$$
\Phi_{t} \leq \Phi_{t-1}+2 \sum_{i=1}^{N}\left[R_{t-1}(i)\right]_{+} r_{t}(i)+\sum_{i=1}^{N} r_{t}^{2}(i) \leq \Phi_{t-1}+2 \sum_{i=1}^{N}\left[R_{t-1}(i)\right]_{+} r_{t}(i)+N
$$

It suffices to prove $\sum_{i=1}^{N}\left[R_{t-1}(i)\right]_{+} r_{t}(i)=0$, which is true because

$$
\sum_{i=1}^{N} p_{t}(i) r_{t}(i)=\sum_{i=1}^{N} p_{t}(i)\left\langle p_{t}, \ell_{t}\right\rangle-\sum_{i=1}^{N} p_{t}(i) \ell_{t}(i)=\left\langle p_{t}, \ell_{t}\right\rangle-\left\langle p_{t}, \ell_{t}\right\rangle=0
$$

and $p_{t}(i) \propto\left[R_{t-1}(i)\right]_{+}$.
(c) (3pts) Conclude that Regret Matching ensures $\mathcal{R}_{T} \leq \sqrt{T N}$.

Proof. Using the conclusion from the last question we have $\Phi_{T} \leq \Phi_{0}+T N=T N$. Therefore, the regret can be bounded as

$$
\mathcal{R}_{T}=\max _{i} R_{T}(i) \leq \max _{i}\left[R_{T}(i)\right]_{+}=\sqrt{\max _{i}\left[R_{T}(i)\right]_{+}^{2}} \leq \sqrt{\Phi_{T}} \leq \sqrt{T N}
$$

finishing the proof.
3. (Improved Analysis for FTPL) In Lecture 2, we prove that for the combinatorial problem, FTPL achieves a suboptimal regret bound $\mathcal{O}(m \sqrt{T N \ln N})$. In this exercise, you need to prove that the exact same algorithm actually achieves a better bound $\mathcal{O}(m \sqrt{T m \ln N})$. (See the lecture for all notations used here.)
(a) (7pts) In the proof of Lemma 5 of Lecture 2, we prove $p_{t}(j) \leq e^{\eta\left\|\ell_{t}\right\|_{1}} p_{t+1}(j)$. The key here is to improve this to

$$
p_{t}(j) \leq e^{\eta\left\langle v_{j}, \ell_{t}\right\rangle} p_{t+1}(j)
$$

To show this, fix any j, and consider an auxiliary distribution $p_{t+1}^{j} \in \Delta(M)$ such that for any combinatorial action $v_{k} \in S$:

$$
p_{t+1}^{j}(k)=\operatorname{Pr}\left[v_{k}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle w,\left(\sum_{s=0}^{t-1} \ell_{s}\right)+v_{j} \odot \ell_{t}\right\rangle\right]
$$

where \odot denotes element-wise product. Follow the proof of Lemma 5 to show

$$
p_{t}(j) \leq e^{\eta\left\langle v_{j}, \ell_{t}\right\rangle} p_{t+1}^{j}(j),
$$

and then conclude $p_{t}(j) \leq e^{\eta\left\langle v_{j}, \ell_{t}\right\rangle} p_{t+1}(j)$.
Proof. The reasoning of the first step is exactly the same as that in Lemma 5:

$$
\begin{aligned}
p_{t}(j) & =\int_{\ell_{0} \in \mathbb{R}^{N}} \mathbf{1}\left[v_{j}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle w, \sum_{s=0}^{t-1} \ell_{s}\right\rangle\right] h\left(\ell_{0}\right) d \ell_{0} \\
& =\int_{\ell_{0} \in \mathbb{R}^{N}} \mathbf{1}\left[v_{j}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle w, \sum_{s=0}^{t-1} \ell_{s}+v_{j} \odot \ell_{t}\right\rangle\right] h\left(\ell_{0}+v_{j} \odot \ell_{t}\right) d \ell_{0} \\
& \leq \int_{\ell_{0} \in \mathbb{R}^{N}} \mathbf{1}\left[v_{j}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle w, \sum_{s=0}^{t-1} \ell_{s}+v_{j} \odot \ell_{t}\right\rangle\right] h\left(\ell_{0}\right) e^{\eta\left\|v_{j} \odot \ell_{t}\right\|_{1}} d \ell_{0} \\
& =e^{\eta\left\|v_{j} \odot \ell_{t}\right\|_{1}} p_{t+1}^{j}(j)=e^{\eta\left\langle v_{j}, \ell_{t}\right\rangle} p_{t+1}^{j}(j) .
\end{aligned}
$$

It remains to argue $p_{t+1}^{j}(j) \leq p_{t+1}(j)$. This is true because whenever v_{j} minimizes the function $\left\langle w, \sum_{s=0}^{t-1} \ell_{s}+v_{j} \odot \ell_{t}\right\rangle$, it has to also minimize $\left\langle w, \sum_{s=0}^{t} \ell_{s}\right\rangle$, given that v_{j} achieves the same value for these two functions, while all other $v_{k}(k \neq j)$ leads to a larger (if not equal) value for the second function.
(b) (5pts) Based on the result from last question, prove $\mathbb{E}\left[\left\langle w_{t}-w_{t+1}, \ell_{t}\right\rangle\right] \leq \eta m^{2}$. Then further conclude the regret bound $\mathcal{O}(m \sqrt{T m \ln N})$ when using the optimal η.
Proof. This also follows similar reasoning as the proof of Lemma 5:

$$
\begin{aligned}
\mathbb{E}\left[\left\langle w_{t}-w_{t+1}, \ell_{t}\right\rangle\right] & =\sum_{j=1}^{M}\left(p_{t}(j)-p_{t+1}(j)\right)\left\langle v_{j}, \ell_{t}\right\rangle \leq \sum_{j=1}^{M}\left(1-e^{-\eta\left\langle v_{j}, \ell_{t}\right\rangle}\right) p_{t}(j)\left\langle v_{j}, \ell_{t}\right\rangle \\
& \leq \eta \sum_{j=1}^{M} p_{t}(j)\left\langle v_{j}, \ell_{t}\right\rangle^{2} \leq \eta m^{2} \sum_{j=1}^{M} p_{t}(j)=\eta m^{2},
\end{aligned}
$$

where the first inequality uses the result from the last question and the second inequality uses the fact $1-e^{-z} \leq z$ for all z. Finally, based on Lemma 3 of Lecture 2, we have

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \frac{\mathbb{E}\left[\max _{w}\left\langle w, \ell_{0}\right\rangle-\min _{w}\left\langle w, \ell_{0}\right\rangle\right]}{\eta}+\sum_{t=1}^{T} \mathbb{E}\left[\left\langle w_{t}-w_{t+1}, \ell_{t}\right\rangle\right]
$$

where the first term is still bounded by $\frac{2 m}{\eta}(1+\ln N)$ according to the proof of Theorem 2, and the second term is now improved to $\eta T m^{2}$. Picking the optimal η then shows $\mathbb{E}\left[\mathcal{R}_{T}\right]=$ $\mathcal{O}(m \sqrt{T m \ln N})$.
4. (Hedge is an FTPL) Consider the following FTPL strategy for the expert problem: at time t, select expert (recall $L_{t}=\sum_{s \leq t} \ell_{s}$ is the cumulative loss vector)

$$
i_{t}=\underset{i}{\operatorname{argmin}}\left(L_{t-1}(i)-\ell_{0}(i)\right),
$$

where $\ell_{0}(i)$ for $i=1, \ldots, N$ are N independent random variables with Gumbel distribution, that is, with CDF: $\operatorname{Pr}\left[\ell_{0}(i) \leq x\right]=\exp (-\exp (-\eta x))$ for some parameter η.
(a) (3pts) Prove that for any $j, \operatorname{Pr}\left[i_{t}=j\right]=\operatorname{Pr}\left[j=\operatorname{argmax}_{i} \frac{\exp \left(-\eta L_{t-1}(i)\right)}{\exp \left(-\eta \ell_{0}(i)\right)}\right]$.

Proof. This is by definition and rewriting:

$$
\begin{aligned}
\operatorname{Pr}\left[i_{t}=j\right] & =\operatorname{Pr}\left[j=\underset{i}{\operatorname{argmin}}\left(L_{t-1}(i)-\ell_{0}(i)\right)\right] \\
& =\operatorname{Pr}\left[j=\underset{i}{\operatorname{argmin}} \exp \left(\eta L_{t-1}(i)-\eta \ell_{0}(i)\right)\right] \\
& =\operatorname{Pr}\left[j=\underset{i}{\operatorname{argmax}} \frac{\exp \left(-\eta L_{t-1}(i)\right)}{\exp \left(-\eta \ell_{0}(i)\right)}\right] .
\end{aligned}
$$

(b) (3pts) Prove that the random variable $\beta(i)=\exp \left(-\eta \ell_{0}(i)\right)$ follows the standard exponential distribution, that is $\operatorname{Pr}[\beta(i) \leq x]=1-e^{-x}$.
Proof. This is also by definition and direct calculation:

$$
\begin{aligned}
\operatorname{Pr}[\beta(i) \leq x] & =\operatorname{Pr}\left[\exp \left(-\eta \ell_{0}(i)\right) \leq x\right] \\
& =\operatorname{Pr}\left[\ell_{0}(i) \geq-\frac{1}{\eta} \ln x\right] \\
& =1-\operatorname{Pr}\left[\ell_{0}(i) \leq-\frac{1}{\eta} \ln x\right] \\
& =1-\exp \left(-\exp \left(-\eta\left(-\frac{1}{\eta} \ln x\right)\right)\right) \\
& =1-e^{-x}
\end{aligned}
$$

(c) (6pts) For any $a \in \mathbb{R}_{>0}^{N}$, prove that for any $j, \operatorname{Pr}\left[j=\operatorname{argmax}_{i} \frac{a(i)}{\beta(i)}\right]=\frac{a(j)}{\sum_{i=1}^{N} a(i)}$. Conclude that FTPL with Gumbel noise is equivalent to Hedge.
Proof. Note that the density of the standard exponential distribution is e^{-x}. Direct calculation shows

$$
\begin{aligned}
\operatorname{Pr}\left[j=\underset{i}{\operatorname{argmax}} \frac{a(i)}{\beta(i)}\right] & =\int_{0}^{\infty} e^{-\beta(j)} \operatorname{Pr}\left[\frac{a(i)}{\beta(i)} \leq \frac{a(j)}{\beta(j)}, \forall i \neq j\right] d \beta(j) \\
& =\int_{0}^{\infty} e^{-\beta(j)} \prod_{j \neq i} \operatorname{Pr}\left[\frac{a(i)}{\beta(i)} \leq \frac{a(j)}{\beta(j)}\right] d \beta(j) \quad \text { (by independence) } \\
& =\int_{0}^{\infty} e^{-\beta(j)} \prod_{j \neq i} \operatorname{Pr}\left[\frac{a(i)}{a(j)} \beta(j) \leq \beta(i)\right] d \beta(j) \\
& =\int_{0}^{\infty} e^{-\beta(j)} \prod_{j \neq i} \exp \left(-\frac{a(i)}{a(j)} \beta(j)\right) d \beta(j) \quad \text { (result from (b)) } \\
& =\int_{0}^{\infty} \exp \left(\frac{-\sum_{i=1}^{N} a(i)}{a(j)} \beta(j)\right) d \beta(j) \\
& =\left.\frac{-a(j)}{\sum_{i=1}^{N} a(i)} \exp \left(\frac{-\sum_{i=1}^{N} a(i)}{a(j)} \beta(j)\right)\right|_{0} ^{\infty} \\
& =\frac{a(j)}{\sum_{i=1}^{N} a(i)} .
\end{aligned}
$$

Combining all the results shows that $\operatorname{Pr}\left[i_{t}=j\right] \propto \exp \left(\eta L_{t-1}(j)\right)$, same as Hedge.
5. (Online Mirror Descent) Besides FTRL and FTPL, Online Mirror Descent (OMD) is yet another general framework to derive online learning algorithm for OCO. For a convex regularizer function $\psi: \Omega \rightarrow \mathbb{R}$ (also called mirror map) and a learning rate $\eta>0$, the update of OMD is

$$
w_{t+1}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle w, \ell_{t}\right\rangle+\frac{1}{\eta} D_{\psi}\left(w, w_{t}\right),
$$

starting from an arbitrary $w_{1} \in \Omega$. In other words, OMD tries to find a point that minimizes the loss at time t while being close to the previous point w_{t} (in terms of their Bregman divergence). In this exercise, you will prove a regret bound for OMD similar to that of FTRL and instantiate OMD in two examples.
(a) (5pts) Use Lemma 1 from Lecture 2 to prove for any $u \in \Omega$:

$$
\begin{equation*}
\eta\left\langle w_{t+1}-u, \ell_{t}\right\rangle \leq D_{\psi}\left(u, w_{t}\right)-D_{\psi}\left(u, w_{t+1}\right)-D_{\psi}\left(w_{t+1}, w_{t}\right) \tag{1}
\end{equation*}
$$

then further conclude that OMD's regret against any u is bounded as:

$$
\begin{equation*}
\sum_{t=1}^{T}\left\langle w_{t}-u, \ell_{t}\right\rangle \leq \frac{D_{\psi}\left(u, w_{1}\right)}{\eta}+\sum_{t=1}^{T}\left\langle w_{t}-w_{t+1}, \ell_{t}\right\rangle-\frac{1}{\eta} \sum_{t=1}^{T} D_{\psi}\left(w_{t+1}, w_{t}\right) \tag{2}
\end{equation*}
$$

(Note the similarity of this bound compared to that in Lemma 3 of Lecture 2 for FTRL.)
Proof. Let $F(w)=\left\langle w, \ell_{t}\right\rangle+\frac{1}{\eta} D_{\psi}\left(w, w_{t}\right)$. Since w_{t+1} minimizes F, by applying Lemma 1 we have for any $u \in \Omega$:

$$
\left\langle w_{t+1}, \ell_{t}\right\rangle+\frac{1}{\eta} D_{\psi}\left(w_{t+1}, w_{t}\right) \leq\left\langle u, \ell_{t}\right\rangle+\frac{1}{\eta} D_{\psi}\left(u, w_{t}\right)-D_{F}\left(u, w_{t+1}\right)
$$

Note that the only non-linear term in F is $\frac{1}{\eta} \psi(w)$, and thus $D_{F}=\frac{1}{\eta} D_{\psi}$. Rearranging then proves the first statement. The second statement is simply by adding $\left\langle w_{t}, \ell_{t}\right\rangle$ to both sides, summing over t, rearranging, telescoping, and the fact $D_{\psi}\left(u, w_{T+1}\right) \geq 0$.
(b) (5pts) Suppose that ψ is strongly convex with respect to some norm $\|\cdot\|$. By setting $u=w_{t}$ in Eq. (1), prove the stability of OMD: $\left\|w_{t}-w_{t+1}\right\| \leq \eta\left\|\ell_{t}\right\|_{\star}$ (the same stability property that FTRL enjoys), then conclude the regret bound

$$
\begin{equation*}
\mathcal{R}_{T} \leq \frac{\max _{u \in \Omega} D_{\psi}\left(u, w_{1}\right)}{\eta}+\eta \sum_{t=1}^{T}\left\|\ell_{t}\right\|_{\star}^{2} \tag{3}
\end{equation*}
$$

Proof. Setting $u=w_{t}$ in Eq. (1) and using strong convexity gives

$$
\eta\left\langle w_{t+1}-w_{t}, \ell_{t}\right\rangle \leq-D_{\psi}\left(w_{t}, w_{t+1}\right)-D_{\psi}\left(w_{t+1}, w_{t}\right) \leq-\left\|w_{t}-w_{t+1}\right\|^{2}
$$

Rearranging and using Hölder's inequality, we arrive at

$$
\left\|w_{t}-w_{t+1}\right\|^{2} \leq \eta\left\langle w_{t}-w_{t+1}, \ell_{t}\right\rangle \leq \eta\left\|w_{t}-w_{t+1}\right\|\left\|\ell_{t}\right\|_{\star} .
$$

Dividing both sides by $\left\|w_{t}-w_{t+1}\right\|$ finishes the proof for the first statement. The second statement is a direct application of Eq. (2), Hölder's inequality, and the stability property we just proved.
(c) (5pts) Show that Hedge is an instance of OMD with a specific ψ, then recover its regret bound using Eq. (3) (assuming w_{1} is the uniform distribution).
Proof. Let the regularizer be the (negative) entropy $\psi(p)=\sum_{i} p(i) \ln p(i)$. Then $D_{\psi}(p, q)$ is exactly the KL divergence $\sum_{i=1}^{N} p(i) \ln \frac{p(i)}{q(i)}$, and OMD becomes

$$
p_{t+1}=\underset{p \in \Delta(N)}{\operatorname{argmin}}\left\langle p, \ell_{t}\right\rangle+\frac{1}{\eta} \sum_{i=1}^{N} p(i) \ln \frac{p(i)}{p_{t}(i)} .
$$

Direct calculation (by writing down Lagrangian and setting the gradient to zero) shows $p_{t+1}(i) \propto p_{t}(i) \exp \left(-\eta \ell_{t}(i)\right)$. Expanding this definition recursively shows $p_{t+1}(i) \propto$ $\exp \left(-\eta \sum_{s \leq t} \ell_{s}(i)\right)$, exactly the same as Hedge.

As for the regret bound, we already know that ψ is strongly convex with respect to the L_{1} norm, so Eq. (3) implies

$$
\mathcal{R}_{T} \leq \frac{\max _{p \in \Delta(N)} \sum_{i=1}^{N} p(i) \ln (N p(i))}{\eta}+\eta T \leq \frac{\ln N}{\eta}+\eta T
$$

which is $2 \sqrt{T \ln N}$ with the optimal η, recovering the same bound we proved before.
(d) (5pts) Use $\psi(w)=\frac{1}{2}\|w\|_{2}^{2}$ to derive the non-lazy version of OGD we discussed in Lecture 2. Then apply Eq. (3) to show that with the optimal η OMD enjoys $\mathcal{R}_{T}=$ $\mathcal{O}(\operatorname{diam}(\Omega) G \sqrt{T})$ where $\operatorname{diam}(\Omega)=\max _{w, u \in \Omega}\|w-u\|_{2}$ is the diameter of Ω and G is such that $\max _{t}\left\|\ell_{t}\right\|_{2} \leq G$.
Proof. In this case, we have $D_{\psi}(w, u)=\frac{1}{2}\|w-u\|_{2}^{2}$ and thus

$$
w_{t+1}=\underset{w \in \Omega}{\operatorname{argmin}}\left\langle w, \ell_{t}\right\rangle+\frac{1}{2 \eta}\left\|w-w_{t}\right\|_{2}^{2}=\underset{w \in \Omega}{\operatorname{argmin}}\left\|w-\left(w_{t}-\eta \ell_{t}\right)\right\|_{2}^{2},
$$

which is equivalent to the non-lazy version of OGD:

$$
u_{t+1}=w_{t}-\eta \ell_{t} ; \quad w_{t+1}=\underset{w \in \Omega}{\operatorname{argmin}}\left\|w-u_{t+1}\right\|_{2}
$$

As for the regret bound, recall that ψ is strongly convex with respect to L_{2} norm. Applying Eq. (3) thus proves

$$
\mathcal{R}_{T} \leq \frac{\max _{u \in \Omega}\left\|u-w_{1}\right\|_{2}^{2}}{2 \eta}+\eta \sum_{t=1}^{T}\left\|\ell_{t}\right\|_{2}^{2} \leq \frac{\operatorname{diam}(\Omega)^{2}}{2 \eta}+\eta T G^{2}
$$

Picking the optimal η finishes the proof.

