
CSCI 659 Homework 1
Fall 2022

Instructor: Haipeng Luo

This homework is due on 9/25, 11:59pm. See course website for more instructions on finishing and
submitting your homework as well as the late policy. Total points: 60.

1. (Doubling Trick) (6pts) We have seen that Hedge enjoys a regret bound 2
√
T lnN with the

optimal tuning η =
√
(lnN)/T . What if T is unknown? One simple way to address this issue

is the so-called “doubling trick”. The idea is to make a guess on T , and once the actual horizon
exceeds the guess, double the guess and restart the algorithm. This is outlined below (with 0
being the all-zero vector):

Algorithm 1: Hedge with a Doubling Trick

Initialize: L0 = 0, initial guess T0 = 1, and initial learning rate η =
√
(lnN)/T0

for t = 1, 2, . . . , do
if t ≥ 2T0 then

double the guess: T0 ← 2T0
reset the algorithm: Lt−1 = 0 and η =

√
(lnN)/T0

compute pt ∈ ∆(N) such that pt(i) ∝ exp(−ηLt−1(i))
play pt and observe loss vector ℓt ∈ [0, 1]N

update Lt = Lt−1 + ℓt

Prove that Algorithm 1 ensures RT = O(
√
T lnN) for all T . (Hint: consider how many times

the algorithm resets and how large the regret can be between two resets.)

Proof. Fix any value of T . It is straightforward to see that the algorithm resets for n = ⌊log2 T ⌋
times. For any k = 0, 1, . . . , n− 1, after the k-th reset, a new instance of Hedge with the optimal
tunning is run for 2k rounds (from t = 2k to t = 2k+1− 1) before the next reset, and thus suffers
at most 2

√
2k lnN regret: maxp∈∆(N)

∑2k+1−1
t=2k ⟨pt − p, ℓt⟩ ≤ 2

√
2k lnN.

After the last reset, a new instance of Hedge is run for no more than 2n rounds, but one can
imagine that it is still run for exactly 2n rounds by feeding the 0 loss vector to the algorithm for
the extra imaginary rounds, which has no effect to the regret. Therefore, the regret after the last
reset is bounded by 2

√
2n lnN : maxp∈∆(N)

∑T
t=2n ⟨pt − p, ℓt⟩ ≤ 2

√
2n lnN.

Now we conclude that the total regret is bounded as

max
p∈∆(N)

T∑
t=1

⟨pt − p, ℓt⟩ ≤

n−1∑
k=0

max
p∈∆(N)

2k+1−1∑
t=2k

⟨pt − p, ℓt⟩

+ max
p∈∆(N)

T∑
t=2n

⟨pt − p, ℓt⟩

≤
n∑
k=0

2
√
2k lnN = 2

√
2n+1 − 1√
2− 1

√
lnN ≤ 2

√
2T − 1√
2− 1

√
lnN = O(

√
T lnN),

which completes the proof.



2. (Regret Matching) Regret Matching is a suboptimal yet extremely simple and practical algo-
rithm for the expert problem. Specifically, let rt ∈ [−1, 1]N be such that rt(i) = ⟨pt, ℓt⟩ − ℓt(i)
(that is, the instantaneous regret against expert i), and Rt =

∑
s≤t rs. Then at round t, Regret

Matching predicts pt ∈ ∆(N) such that

pt(i) ∝ [Rt−1(i)]+, where [x]+ = max{x, 0}.

Prove the regret bound for this algorithm through the following steps.

(a) (4pts) Prove that for any i, [Rt(i)]2+ ≤ [Rt−1(i)]
2
+ + 2[Rt−1(i)]+rt(i) + r2t (i).

Proof. Notice that (1) [x]2+ in non-decreasing in x and (2) [x]2+ ≤ x2. Therefore if
Rt−1(i) ≤ 0, then

[Rt(i)]
2
+ = [Rt−1(i) + rt(i)]

2
+

≤ [rt(i)]
2
+ ≤ r2t (i) (by (1) and (2))

= [Rt−1(i)]
2
+ + 2[Rt−1(i)]+rt(i) + r2t (i). ([Rt−1(i)]+ = 0)

Otherwise if Rt−1(i) ≥ 0, then by (2) [Rt(i)]2+ ≤ Rt(i)
2 = Rt−1(i)

2 + 2Rt−1(i)rt(i) +
r2t (i) = [Rt−1(i)]

2
+ + 2[Rt−1(i)]+rt(i) + r2t (i).

(b) (3pts) Define potential Φt =
∑N
i=1[Rt(i)]

2
+. Prove Φt ≤ Φt−1 +N .

Proof. Summing up the results of the last question over i, we get

Φt ≤ Φt−1 + 2

N∑
i=1

[Rt−1(i)]+rt(i) +

N∑
i=1

r2t (i) ≤ Φt−1 + 2

N∑
i=1

[Rt−1(i)]+rt(i) +N.

It suffices to prove
∑N
i=1[Rt−1(i)]+rt(i) = 0, which is true because

N∑
i=1

pt(i)rt(i) =

N∑
i=1

pt(i) ⟨pt, ℓt⟩ −
N∑
i=1

pt(i)ℓt(i) = ⟨pt, ℓt⟩ − ⟨pt, ℓt⟩ = 0,

and pt(i) ∝ [Rt−1(i)]+.

(c) (3pts) Conclude that Regret Matching ensuresRT ≤
√
TN .

Proof. Using the conclusion from the last question we have ΦT ≤ Φ0 + TN = TN .
Therefore, the regret can be bounded as

RT = max
i
RT (i) ≤ max

i
[RT (i)]+ =

√
max
i

[RT (i)]2+ ≤
√
ΦT ≤

√
TN,

finishing the proof.

2



3. (Improved Analysis for FTPL) In Lecture 2, we prove that for the combinatorial problem, FTPL
achieves a suboptimal regret boundO(m

√
TN lnN). In this exercise, you need to prove that the

exact same algorithm actually achieves a better bound O(m
√
Tm lnN). (See the lecture for all

notations used here.)

(a) (7pts) In the proof of Lemma 5 of Lecture 2, we prove pt(j) ≤ eη∥ℓt∥1pt+1(j). The key
here is to improve this to

pt(j) ≤ eη⟨vj ,ℓt⟩pt+1(j).

To show this, fix any j, and consider an auxiliary distribution pjt+1 ∈ ∆(M) such that for
any combinatorial action vk ∈ S:

pjt+1(k) = Pr

[
vk = argmin

w∈Ω

〈
w,

(
t−1∑
s=0

ℓs

)
+ vj ⊙ ℓt

〉]
where ⊙ denotes element-wise product. Follow the proof of Lemma 5 to show

pt(j) ≤ eη⟨vj ,ℓt⟩pjt+1(j),

and then conclude pt(j) ≤ eη⟨vj ,ℓt⟩pt+1(j).
Proof. The reasoning of the first step is exactly the same as that in Lemma 5:

pt(j) =

∫
ℓ0∈RN

1

[
vj = argmin

w∈Ω

〈
w,

t−1∑
s=0

ℓs

〉]
h(ℓ0)dℓ0

=

∫
ℓ0∈RN

1

[
vj = argmin

w∈Ω

〈
w,

t−1∑
s=0

ℓs + vj ⊙ ℓt

〉]
h(ℓ0 + vj ⊙ ℓt)dℓ0

≤
∫
ℓ0∈RN

1

[
vj = argmin

w∈Ω

〈
w,

t−1∑
s=0

ℓs + vj ⊙ ℓt

〉]
h(ℓ0)e

η∥vj⊙ℓt∥1dℓ0

= eη∥vj⊙ℓt∥1pjt+1(j) = eη⟨vj ,ℓt⟩pjt+1(j).

It remains to argue pjt+1(j) ≤ pt+1(j). This is true because whenever vj minimizes the

function
〈
w,
∑t−1
s=0 ℓs + vj ⊙ ℓt

〉
, it has to also minimize

〈
w,
∑t
s=0 ℓs

〉
, given that vj

achieves the same value for these two functions, while all other vk (k ̸= j) leads to a
larger (if not equal) value for the second function.

(b) (5pts) Based on the result from last question, prove E[⟨wt − wt+1, ℓt⟩] ≤ ηm2. Then further
conclude the regret bound O(m

√
Tm lnN) when using the optimal η.

Proof. This also follows similar reasoning as the proof of Lemma 5:

E[⟨wt − wt+1, ℓt⟩] =
M∑
j=1

(pt(j)− pt+1(j)) ⟨vj , ℓt⟩ ≤
M∑
j=1

(1− e−η⟨vj ,ℓt⟩)pt(j) ⟨vj , ℓt⟩

≤ η
M∑
j=1

pt(j) ⟨vj , ℓt⟩2 ≤ ηm2
M∑
j=1

pt(j) = ηm2,

where the first inequality uses the result from the last question and the second inequality
uses the fact 1− e−z ≤ z for all z. Finally, based on Lemma 3 of Lecture 2, we have

E[RT ] ≤
E[maxw ⟨w, ℓ0⟩ −minw ⟨w, ℓ0⟩]

η
+

T∑
t=1

E[⟨wt − wt+1, ℓt⟩],

where the first term is still bounded by 2m
η (1 + lnN) according to the proof of Theorem 2,

and the second term is now improved to ηTm2. Picking the optimal η then shows E[RT ] =
O(m

√
Tm lnN).

3



4. (Hedge is an FTPL) Consider the following FTPL strategy for the expert problem: at time t,
select expert (recall Lt =

∑
s≤t ℓs is the cumulative loss vector)

it = argmin
i

(Lt−1(i)− ℓ0(i)) ,

where ℓ0(i) for i = 1, . . . , N areN independent random variables with Gumbel distribution, that
is, with CDF: Pr[ℓ0(i) ≤ x] = exp(− exp(−ηx)) for some parameter η.

(a) (3pts) Prove that for any j, Pr[it = j] = Pr
[
j = argmaxi

exp(−ηLt−1(i))
exp(−ηℓ0(i))

]
.

Proof. This is by definition and rewriting:
Pr[it = j] = Pr[j = argmin

i
(Lt−1(i)− ℓ0(i))]

= Pr[j = argmin
i

exp (ηLt−1(i)− ηℓ0(i))]

= Pr

[
j = argmax

i

exp(−ηLt−1(i))

exp(−ηℓ0(i))

]
.

(b) (3pts) Prove that the random variable β(i) = exp(−ηℓ0(i)) follows the standard exponential
distribution, that is Pr[β(i) ≤ x] = 1− e−x.
Proof. This is also by definition and direct calculation:

Pr[β(i) ≤ x] = Pr[exp(−ηℓ0(i)) ≤ x]
= Pr[ℓ0(i) ≥ − 1

η lnx]

= 1− Pr[ℓ0(i) ≤ − 1
η lnx]

= 1− exp(− exp(−η(− 1
η lnx)))

= 1− e−x.

(c) (6pts) For any a ∈ RN>0, prove that for any j, Pr
[
j = argmaxi

a(i)
β(i)

]
= a(j)∑N

i=1 a(i)
. Conclude

that FTPL with Gumbel noise is equivalent to Hedge.
Proof. Note that the density of the standard exponential distribution is e−x. Direct calcula-
tion shows

Pr

[
j = argmax

i

a(i)

β(i)

]
=

∫ ∞

0

e−β(j) Pr

[
a(i)

β(i)
≤ a(j)

β(j)
, ∀i ̸= j

]
dβ(j)

=

∫ ∞

0

e−β(j)
∏
j ̸=i

Pr

[
a(i)

β(i)
≤ a(j)

β(j)

]
dβ(j) (by independence)

=

∫ ∞

0

e−β(j)
∏
j ̸=i

Pr

[
a(i)

a(j)
β(j) ≤ β(i)

]
dβ(j)

=

∫ ∞

0

e−β(j)
∏
j ̸=i

exp

(
− a(i)
a(j)

β(j)

)
dβ(j) (result from (b))

=

∫ ∞

0

exp

(
−
∑N
i=1 a(i)

a(j)
β(j)

)
dβ(j)

=
−a(j)∑N
i=1 a(i)

exp

(
−
∑N
i=1 a(i)

a(j)
β(j)

)∣∣∣∣∣
∞

0

=
a(j)∑N
i=1 a(i)

.

Combining all the results shows that Pr[it = j] ∝ exp(ηLt−1(j)), same as Hedge.

4



5. (Online Mirror Descent) Besides FTRL and FTPL, Online Mirror Descent (OMD) is yet an-
other general framework to derive online learning algorithm for OCO. For a convex regularizer
function ψ : Ω→ R (also called mirror map) and a learning rate η > 0, the update of OMD is

wt+1 = argmin
w∈Ω

⟨w, ℓt⟩+
1

η
Dψ(w,wt),

starting from an arbitrary w1 ∈ Ω. In other words, OMD tries to find a point that minimizes the
loss at time t while being close to the previous point wt (in terms of their Bregman divergence).
In this exercise, you will prove a regret bound for OMD similar to that of FTRL and instantiate
OMD in two examples.

(a) (5pts) Use Lemma 1 from Lecture 2 to prove for any u ∈ Ω:

η ⟨wt+1 − u, ℓt⟩ ≤ Dψ(u,wt)−Dψ(u,wt+1)−Dψ(wt+1, wt), (1)

then further conclude that OMD’s regret against any u is bounded as:
T∑
t=1

⟨wt − u, ℓt⟩ ≤
Dψ(u,w1)

η
+

T∑
t=1

⟨wt − wt+1, ℓt⟩ −
1

η

T∑
t=1

Dψ(wt+1, wt). (2)

(Note the similarity of this bound compared to that in Lemma 3 of Lecture 2 for FTRL.)
Proof. Let F (w) = ⟨w, ℓt⟩+ 1

ηDψ(w,wt). Since wt+1 minimizes F , by applying Lemma
1 we have for any u ∈ Ω:

⟨wt+1, ℓt⟩+
1

η
Dψ(wt+1, wt) ≤ ⟨u, ℓt⟩+

1

η
Dψ(u,wt)−DF (u,wt+1).

Note that the only non-linear term in F is 1
ηψ(w), and thus DF = 1

ηDψ . Rearranging then
proves the first statement. The second statement is simply by adding ⟨wt, ℓt⟩ to both sides,
summing over t, rearranging, telescoping, and the fact Dψ(u,wT+1) ≥ 0.

(b) (5pts) Suppose that ψ is strongly convex with respect to some norm ∥·∥. By setting u = wt
in Eq. (1), prove the stability of OMD: ∥wt − wt+1∥ ≤ η ∥ℓt∥⋆ (the same stability property
that FTRL enjoys), then conclude the regret bound

RT ≤
maxu∈ΩDψ(u,w1)

η
+ η

T∑
t=1

∥ℓt∥2⋆ . (3)

Proof. Setting u = wt in Eq. (1) and using strong convexity gives

η ⟨wt+1 − wt, ℓt⟩ ≤ −Dψ(wt, wt+1)−Dψ(wt+1, wt) ≤ −∥wt − wt+1∥2 .
Rearranging and using Hölder’s inequality, we arrive at

∥wt − wt+1∥2 ≤ η ⟨wt − wt+1, ℓt⟩ ≤ η ∥wt − wt+1∥ ∥ℓt∥⋆ .
Dividing both sides by ∥wt − wt+1∥ finishes the proof for the first statement. The second
statement is a direct application of Eq. (2), Hölder’s inequality, and the stability property we
just proved.

(c) (5pts) Show that Hedge is an instance of OMD with a specific ψ, then recover its regret
bound using Eq. (3) (assuming w1 is the uniform distribution).
Proof. Let the regularizer be the (negative) entropy ψ(p) =

∑
i p(i) ln p(i). Then Dψ(p, q)

is exactly the KL divergence
∑N
i=1 p(i) ln

p(i)
q(i) , and OMD becomes

pt+1 = argmin
p∈∆(N)

⟨p, ℓt⟩+
1

η

N∑
i=1

p(i) ln
p(i)

pt(i)
.

Direct calculation (by writing down Lagrangian and setting the gradient to zero) shows
pt+1(i) ∝ pt(i) exp(−ηℓt(i)). Expanding this definition recursively shows pt+1(i) ∝
exp

(
−η
∑
s≤t ℓs(i)

)
, exactly the same as Hedge.

5



As for the regret bound, we already know that ψ is strongly convex with respect to the L1

norm, so Eq. (3) implies

RT ≤
maxp∈∆(N)

∑N
i=1 p(i) ln(Np(i))

η
+ ηT ≤ lnN

η
+ ηT,

which is 2
√
T lnN with the optimal η, recovering the same bound we proved before.

(d) (5pts) Use ψ(w) = 1
2 ∥w∥

2
2 to derive the non-lazy version of OGD we discussed in

Lecture 2. Then apply Eq. (3) to show that with the optimal η OMD enjoys RT =
O(diam(Ω)G

√
T ) where diam(Ω) = maxw,u∈Ω ∥w − u∥2 is the diameter of Ω and G is

such that maxt ∥ℓt∥2 ≤ G.

Proof. In this case, we have Dψ(w, u) =
1
2 ∥w − u∥

2
2 and thus

wt+1 = argmin
w∈Ω

⟨w, ℓt⟩+ 1
2η ∥w − wt∥

2
2 = argmin

w∈Ω
∥w − (wt − ηℓt)∥22 ,

which is equivalent to the non-lazy version of OGD:

ut+1 = wt − ηℓt; wt+1 = argmin
w∈Ω

∥w − ut+1∥2 .

As for the regret bound, recall that ψ is strongly convex with respect to L2 norm. Applying
Eq. (3) thus proves

RT ≤
maxu∈Ω ∥u− w1∥22

2η
+ η

T∑
t=1

∥ℓt∥22 ≤
diam(Ω)2

2η
+ ηTG2.

Picking the optimal η finishes the proof.

6


