
CSCI 659 Homework 2
Fall 2022

Instructor: Haipeng Luo

This homework is due on 10/16, 11:59pm. See course website for more instructions on finishing
and submitting your homework as well as the late policy. Total points: 60.

1. (Optimistic OMD) Similar to the optimistic version of FTRL, the general Online Mirror Descent
framework that we saw in HW1 can also incorporate an arbitrary loss predictormt at round t. The
resulting algorithm, called Optimistic Online Mirror Descent, starts with an arbitrary w′

1 ∈ Ω,
and plays at time t the following action:

wt = argmin
w∈Ω

⟨w,mt⟩+ 1
ηDψ(w,w

′
t),

followed by the an update to the auxiliary action w′
t after seeing the true loss vector ℓt:

w′
t+1 =argmin

w∈Ω
⟨w, ℓt⟩+ 1

ηDψ(w,w
′
t),

where as before η > 0 is a learning rate and ψ is a convex regularizer. Note that the auxiliary
sequence w′

1, . . . , w
′
T is exactly the output of the vanilla OMD. Unlike Optimistic FTRL where

such an auxiliary sequence only appears in the analysis, Optimistic OMD needs to explicitly
maintain this sequence in order to compute the actual action sequence w1, . . . , wT .

(a) (4pts) Based on Eq. (1) of HW1, we clearly have for any u ∈ Ω:

η
〈
w′
t+1 − u, ℓt

〉
≤ Dψ(u,w

′
t)−Dψ(u,w

′
t+1)−Dψ(w

′
t+1, w

′
t). (1)

Follow the same proof of this fact to show that for any u′ ∈ Ω:

η ⟨wt − u′,mt⟩ ≤ Dψ(u
′, w′

t)−Dψ(u
′, wt)−Dψ(wt, w

′
t). (2)

Then, combine these two inequalities and choose a specific u′ to further prove for any u ∈ Ω:

⟨wt − u, ℓt⟩ ≤
〈
wt − w′

t+1, ℓt −mt

〉
+ 1

ηDψ(u,w
′
t)− 1

ηDψ(u,w
′
t+1)

− 1
ηDψ(w

′
t+1, wt)− 1

ηDψ(wt, w
′
t).

(3)

(b) (6pts) Suppose that ψ is strongly convex with respect to some norm ∥·∥. Make use of
Eq. (1) and Eq. (2) again to prove the following stability statement (which optimistic FTRL
also enjoys): ∥∥wt − w′

t+1

∥∥ ≤ η ∥ℓt −mt∥⋆ . (4)
Combine everything to show the final regret bound:

RT ≤ maxu∈ΩDψ(u,w
′
1)

η
+ η

T∑
t=1

∥ℓt −mt∥2⋆ −
1

4η

T∑
t=2

∥wt − wt−1∥2.

(Note the similarity of this bound compared to that of Theorem 1 from Lecture 3 for Opti-
mistic FTRL.)

2. (Learning in Zero-Sum Games) Consider the learning setup for a two-player zero-sum game
G ∈ [0, 1]N×M discussed in Lecture 4: at each round t = 1, . . . , T , row player uses a no-regret
algorithm to come up with pt ∈ ∆(N) and the column player comes up with qt ∈ ∆(M) in some
way, after which the row player suffers loss G(pt, qt) and see G(i, qt) for all i. Let the empirical
average strategies be p̄ = 1

T

∑T
t=1 pt and q̄ = 1

T

∑T
t=1 qt.

(a) (4pts) Suppose that the column player gets to see pt before deciding qt. Then naturally
she would choose to best respond to pt, that is, qt ∈ argmaxq∈∆(M)G(pt, q). In this
case, prove that (p̄, q̄) is an approximate Nash equilibrium with error ϵ = RT

T (where
RT =

∑T
t=1G(pt, qt) − minp

∑T
t=1G(p, qt) is the regret of the row player), that is,

maxq G(p̄, q)− ϵ ≤ G(p̄, q̄) ≤ minpG(p, q̄) + ϵ.

(b) (5pts) Now suppose that both the row player and the column player use a no-regret algorithm
such that, no matter what their opponent plays, their regret is bounded by B(T) and B′(T)

respectively for some function B and B′ (e.g. B(T) =
√
T lnN and B′(T) =

√
T lnM).

In Lecture 1, we mentioned that the definition of (static) regret might not be very reasonable
when against an adaptive adversary whose decisions would change accordingly if the learner
were to stick with a fixed action for all rounds. In the literature, a different regret measure,
called policy regret, was exactly proposed to address this issue. Specifically, in this game
setting, the policy regret PRT of the row player is defined as

PRT =

T∑
t=1

G(pt, qt)− min
p∈∆(N)

T∑
t=1

G(p, q
(p)
t)

where q(p)t is what the column player would have played at time t if the row player were to
play p all the time. Show that PRT ≤ B(T)+B′(T) (and thus, given that the same should
also hold for the column player by symmetry, if both of them try to selfishly minimize their
policy regret, they might just as well minimize their own static regret).

2

3. (Weakly Adaptive Algorithm) Recall that an OCO algorithm is called weakly adaptive if for
any time interval I = [s, e], its interval regret satisfies RI = Õ(

√
T) (ignoring dependence on

other parameters). Below, you need to analyze several weakly adaptive algorithms.

(a) In HW1 we discussed the Regret Matching (RM) algorithm for the expert problem:

pt+1(i) ∝ [Rt(i)]+

where Rt(i) = Rt−1(i) + rt(i) (with R0 = 0), rt(i) = ⟨pt, ℓt⟩ − ℓt(i), and [x]+ =
max{x, 0}. A simple upgrade of the algorithm, called Regret Matching+ (RM+), makes the
following modification:

pt+1(i) ∝ R̃t(i)

where R̃t(i) = [R̃t−1(i) + rt(i)]+ (with R̃0 = 0). (See if you can spot the similarity
between RM versus RM+ and lazy OGD versus non-lazy OGD.)

(i) (4pts) Follow the same ideas from HW1 Problems 2(a) and 2(b) to show that for any time
step e, we have

∑N
i=1 R̃

2
e(i) ≤ eN .

(ii) (4pts) Further prove R̃e(i) ≥
∑e
t=s rt(i) for any expert i and any starting time step s ≤ e,

and conclude that RM+ is a weakly adaptive algorithm.

(b) Next, consider running OMD with a strongly convex regularizer (see Problem 1 withmt = 0
so that wt = w′

t). Combining Eq. (3) and Eq. (4) and dropping some nonpositive terms, we
have the following per-round regret bound

⟨wt − u, ℓt⟩ ≤ 1
ηDψ(u,wt)− 1

ηDψ(u,wt+1) + ηG2.

where G is such that ∥ℓt∥⋆ ≤ G for all t.

(i) (3pts) Starting from this per-round regret bound, prove that for any interval I = [s, e], we
have the following interval regret bound

RI = max
u∈Ω

e∑
t=s

⟨wt − u, ℓt⟩ ≤
1

η
B̄ψ + η|I|G2,

where B̄ψ = maxw,w′∈ΩDψ(w,w
′), and then pick an appropriate η independent of I to

further conclude that OMD is weakly adaptive as long as B̄ψ is finite. (You are encouraged
to think about whether FTRL enjoys a similar result.)

(ii) (6pts) From HW1 we know that OGD is OMD with ψ(w) = 1
2 ∥w∥

2
2, and thus B̄ψ =

maxw,w′∈Ω
1
2 ∥w − w′∥22 is bounded for any bounded decision set Ω. On the other

hand, Hedge is OMD with ψ(p) =
∑N
i=1 p(i) ln p(i), and B̄ψ becomes unbounded

since Dψ(p, q) =
∑N
i=1 p(i) ln

p(i)
q(i) is the KL divergence between two distributions and

can be unbounded if q(i) = 0 for some i in the support of p. One way to fix this
is to change the decision set of OMD from the simplex ∆(N) to a clipped simplex
Ω = {p ∈ ∆(N) : p(i) ≥ δ, ∀i} for some parameter δ ∈ (0, 1/N). That is, the al-
gorithm is now

pt+1 = argmin
p∈Ω

⟨p, ℓt⟩+
1

η
Dψ(p, pt) = argmin

p∈Ω
⟨p, ℓt⟩+

1

η

N∑
i=1

p(i) ln
p(i)

pt(i)
.

Pick an appropriate δ and an appropriate η (both independent of I) to show that the algo-
rithm above enjoys for all interval I:

RI = max
p∈∆(N)

e∑
t=s

⟨pt − p, ℓt⟩ = O(
√
T ln(NT)).

(Hint: make sure to consider the difference between RI and maxp∈Ω

∑e
t=s ⟨pt − p, ℓt⟩.)

3

4. (Confidence-Rated Experts) The confidence-rated expert problem is a generalization of the
sleeping expert problem. Instead of being either asleep (at(i) = 0) or awake (at(i) = 1) at
each round t, each expert can provide a “confidence score” at(i) ∈ [0, 1] for the advice that
she provides for this round (the larger the score, the more confident the expert). Formally, the
learning protocol is as follows: for each round t = 1, . . . , T ,

• each expert i provides an arbitrary confidence score at(i) ∈ [0, 1], revealed to the learner;
• the learner decides a distribution pt ∈ ∆(N) with the restriction that no weights are put on

zero-confidence experts, that is, pt(i) = 0 if at(i) = 0;
• the environment decides and reveals the loss ℓt(i) for each expert i.1

The confidence-rated regret of the learner against expert i is defined as RT (i) =∑T
t=1 at(i) ⟨pt − ei, ℓt⟩ (where ei is the i-th basis vector). This is clearly a direct generaliza-

tion of the sleeping expert problem from binary at(i) to real value at(i).
In fact, one can also directly generalize the reduction from sleeping experts to regular experts
discussed in Lecture 5 to this case. The resulting algorithm is as follows (convince yourself that
this indeed recovers Algorithm 1 of Lecture 5 when at(i) is binary).

Algorithm 1: Reduction from Confidence-Rate Experts to Regular Experts
Input: a regular expert algorithm E
for t = 1, . . . , T do

let p̂t ∈ ∆(N) be the decision of E at round t
observe at from the environment
play pt ∈ ∆(N) such that pt(i) ∝ at(i)p̂t(i)
observe the loss vector ℓt
set ℓ̂t(i) = at(i)ℓt(i) + (1− at(i)) ⟨pt, ℓt⟩ for all i
feed ℓ̂t to E

(a) (4pts) Prove that for each t,
〈
p̂t, ℓ̂t

〉
= ⟨pt, ℓt⟩ holds.

(b) (3pts) Further show that for each t and i, at(i) ⟨pt − ei, ℓt⟩ =
〈
p̂t − ei, ℓ̂t

〉
holds.

(c) (2pts) Finally, suppose that the given regular expert algorithm E ensures for each i:∑T
t=1

〈
p̂t − ei, ℓ̂t

〉
= 2

√∑T
t=1

〈
p̂t − ei, ℓ̂t

〉2

lnN (basically the same as Eq. (1) of Lec-

ture 5). Prove that Algorithm 1 ensures for each i:

RT (i) =

T∑
t=1

at(i) ⟨pt − ei, ℓt⟩ = 2

√√√√ T∑
t=1

a2t (i) ⟨pt − ei, ℓt⟩2 lnN. (5)

1For simplicity, we assume that the loss is defined for zero-confidence experts as well. One can verify that
this does not affect any of the following discussions.

4

5. (Long-Term Memory) The switching regret bound Õ(
√
ST) discussed in Lecture 5 only cares

about the number of switches S. What it does not capture is the possibly periodic phenomenon
in practice. For example, in a recommendation system, one can imagine that a switch happens in
users’ preferences every now and then (e.g. every season), but it is reasonable to imagine that the
current preferences are similar to some preferences in the past (e.g. this spring is similar to the
last spring). Intuitively, an algorithm with some kind of “long-term memory” should be able to
exploit this periodic phenomenon and provide a better guarantee.
Formally, consider the expert problem and let j1, . . . , jT ∈ [N] be a sequence of compara-
tors such that there are S − 1 switches:

∑T
t=2 1{jt ̸= jt−1} = S − 1, but in addition the

set U = {j1, . . . , jT } only has n distinct elements for some n ≪ S, implying that there are
many “switching-backs” in this sequence. In this exercise, you need to analyze an algorithm
whose dynamic regret against such a sequence RT (j1, . . . , jT) =

∑T
t=1 ⟨pt − ejt , ℓt⟩ is of order

O(
√
T (S lnT + n lnN)), improving the typical switching regret bound O(

√
TS ln(NT)) =

O(
√
T (S lnT + S lnN)).

The algorithm is again by reduction. In particular, we make use of a confidence-rated expert
algorithm C (see Problem 4) working over the N experts, and N regular expert algorithms
E1, . . . , EN , each of which working on two imaginary experts called “Awake” and “Asleep”.
At each round t, each Ei proposes a distribution over these two imaginary experts, which we
denote as qit = (at(i), 1− at(i)) ∈ ∆(2). The complete reduction is shown below.

Algorithm 2: Reduction for Long-Term Memory
Input: a parameter η ∈ (0, 1/5], a confidence-rated expert algorithm C, and N regular expert
algorithms E1, . . . , EN working over the two imaginary experts “Awake” and “Asleep”
for t = 1, . . . , T do

∀i, obtain distribution qit = (at(i), 1− at(i)) ∈ ∆(2) from Ei
treat at(1), . . . , at(N) as the confidence scores and feed them to C
obtain and play the distribution pt ∈ ∆(N) output from C
observe the loss vector ℓt ∈ [0, 1]N

feed ℓt to C
∀i, feed the loss vector git = (5η − rt(i), 0) ∈ [−1, 2]2 to Ei where rt(i) = ⟨pt − ei, ℓt⟩

(a) (3pts) Suppose that the confidence-rated expert algorithm C satisfies Eq. (5). Prove that for
each j ∈ U = {j1, . . . , jT }, we have

T∑
t=1

at(j)rt(j) ≤ 2

√√√√ T∑
t=1

at(j) lnN ≤ lnN

η
+ η

T∑
t=1

at(j).

(b) (6pts) Suppose that each regular expert algorithm Ei ensures the following switching regret
bound: for any sequence b1, . . . , bT ∈ {1, 2} with 1 +

∑T
t=2 1{bt ̸= bt−1} = Sb,

T∑
t=1

〈
qit, g

i
t

〉
−

T∑
t=1

git(bt) ≤
Sb lnT

η
+ η

T∑
t=1

∑
k∈{1,2}

qit(k)g
i
t(k)

2

(you are encouraged to think about which algorithms actually satisfy this). Then, for each
j ∈ U , pick an appropriate sequence of b1, . . . , bT , apply this switching regret bound, and
rearranging to show

∑
t:jt=j

rt(j) ≤
T∑
t=1

at(j)rt(j)− η

T∑
t=1

at(j) +
Sj lnT

η
+ 5ηTj

where Tj = |{t : jt = j}| and Sj = 1 +
∑T
t=2 1{exactly one of jt and jt−1 is j}.

5

(c) (6pts) Combine the results from the last two questions to conclude the dynamic regret bound

RT (j1, . . . , jT) =

T∑
t=1

⟨pt − ejt , ℓt⟩ = O(
√
T (S lnT + n lnN))

when η is optimally tuned (which can depend on everything including S and n).

6

