
CSCI 659 Homework 3
Fall 2022

Instructor: Haipeng Luo

This homework is due on 11/27, 11:59pm. See course website for more instructions on finishing
and submitting your homework as well as the late policy. Total points: 60.

1. (Improved Analysis of FTRL for Bandits) Consider the FTRL algorithm

pt = argmin
p∈∆(K)

〈
p,
∑
s<t

ℓ̂s

〉
+

1

η
ψ(p) (1)

where η > 0 is a learning rate, ψ is the Tsallis entropy ψ(p) = 1−
∑K

a=1 p(a)
β

1−β with a parameter

β ∈ (0, 1), and ℓ̂1, . . . , ℓ̂T are arbitrary loss vectors. In Theorem 3 of Lecture 6, we prove a
local-norm bound for this algorithm by showing the key step〈

pt − pt+1, ℓ̂t

〉
− 1

η
Dψ(pt+1, pt) ≤

η

2
∥ℓ̂t∥2∇−2ψ(pt)

=
η

2β

K∑
a=1

pt(a)
2−β ℓ̂t(a)

2 (2)

as long as ℓ̂t(a) ≥ 0. In this exercise, you need to prove the same statement (up to a constant of
2) under the weaker condition:

ηpt(a)
1−β ℓ̂t(a) ≥

β

1− β

(
e

β−1
β − 1

)
, ∀t ∈ [T ], a ∈ [K] (3)

(it is weaker because the right-hand side is a negative number). Note that when β → 1, this
reduces to the condition ηℓ̂t(a) ≥ −1 that we have seen for Hedge/Exp3. (While technical, this
exercise will be helpful for Problems 2 and 3.)

(a) (3pts) The first step is still to bound ⟨pt − pt+1, ℓ̂t⟩ − 1
ηDψ(pt+1, pt) by ⟨pt − qt, ℓ̂t⟩ −

1
ηDψ(qt, pt) where qt = maxq∈RK

+
⟨pt − q, ℓ̂t⟩− 1

ηDψ(q, pt). Prove that under condition (3),
we have

∇ψ(qt) = ∇ψ(pt)− ηℓ̂t, (4)
or equivalently for all a,

1

qt(a)1−β
=

1

pt(a)1−β
+

1− β

β
ηℓ̂t(a). (5)

(b) (4pts) Use Eq. (4) to prove〈
pt − qt, ℓ̂t

〉
− 1

η
Dψ(qt, pt) =

1

η
Dψ(pt, qt),

and use Eq. (5) to further prove

Dψ(pt, qt) =

K∑
a=1

(
qt(a)

β − pt(a)
β + ηpt(a)ℓ̂t(a)

)
.



(c) (4pts) Use Eq. (5) and the fact (1 + x)α ≤ 1 + αx + α(α − 1)x2 for any α < 0 and
x ≥ e1/α − 1 to prove that the following holds under condition (3):

qt(a)
β − pt(a)

β + ηpt(a)ℓ̂t(a) ≤
η2

β
pt(a)

2−β ℓ̂t(a)
2.

(Hint: you will need to apply the fact with α = β
β−1 .)

(d) (3pts) Combining the three steps above, we have shown〈
pt − pt+1, ℓ̂t

〉
− 1

η
Dψ(pt+1, pt) ≤

η

β

K∑
a=1

pt(a)
2−β ℓ̂t(a)

2,

only two times worse compared to Eq. (2), but under the weaker condition (3). One benefit
of this result is that it also implies the following: in MAB, when running Algorithm (1) with
ℓ̂1, . . . , ℓ̂T being the inverse importance weighted loss estimators for ℓ1, . . . , ℓT ∈ [0, 1]K ,
we have for any arbitrary a⋆ ∈ [K]:〈

pt − pt+1, ℓ̂t

〉
− 1

η
Dψ(pt+1, pt) ≤

η

β

K∑
a=1

pt(a)
2−β

(
ℓ̂t(a)− ℓt(a

⋆)
)2
,

as long as η ≤ β
1−β

(
1− e

β−1
β

)
. Explain why this is true. (Hint: recall the cheating

predictor trick discussed in Lecture 3 and consider running FTRL (1) on a different but
equivalent loss sequence.)

2



2. (Best-of-Both-Worlds for Tsallis Entropy) In this exercise, you need prove that FTRL with
Tsallis entropy (β = 1/2) and a time-varying learning rate, that is,

pt = argmin
p∈∆(K)

〈
p,
∑
s<t

ℓ̂s

〉
+

1

ηt
ψ(p)

where ψ(p) = −2
∑K
a=1

√
p(a), ηt = 1

2
√
t
, and ℓ̂1, . . . , ℓ̂T are the inverse importance weighted

loss estimators, satisfies Eq. (3) of Lecture 7, which further implies that it satisfies the strong
best-of-both-worlds property according to Theorem 3 therein.

(a) (3pts) Let Φηt = minp∈∆(K)

〈
p,
∑
s≤t ℓ̂s

〉
+ 1

ηψ(p) and p′t+1 be the minimizer in the defi-

nition of Φηtt . Prove the following two inequalities (hint: use Lemma 2 of Lecture 2 for the
first one):

Φηtt−1 − Φηtt ≤ −
〈
p′t+1, ℓ̂t

〉
− 1

ηt
Dψ(p

′
t+1, pt)

Φηtt − Φ
ηt+1

t ≤
(

1

ηt
− 1

ηt+1

)
ψ(pt+1).

(b) (4pts) Use the previous results to prove that for any distribution p ∈ ∆(K),

T∑
t=1

〈
pt − p, ℓ̂t

〉
≤

T∑
t=1

(
1

ηt
− 1

ηt−1

)
(ψ(p)− ψ(pt))︸ ︷︷ ︸

penalty term

+

T∑
t=1

(〈
pt − p′t+1, ℓ̂t

〉
− 1

ηt
Dψ(p

′
t+1, pt)

)
︸ ︷︷ ︸

stability&negative term

,

where we define 1/η0 = 0 for convenience. (Note that when ηt stays the same for all t ≥ 1,
this bound exactly recovers Lemma 3 of Lecture 2.)

(c) (3pts) Prove that for any action a⋆ ∈ [K], the per-round penalty term satisfies(
1

ηt
− 1

ηt−1

)
(ψ(p)− ψ(pt)) ≤ 4

∑
a̸=a⋆

√
pt(a)

t
.

(d) (6pts) For the per-round stability&negative term, since ηt = 1
2
√
t

≤ 1
2 ≤ 1 − 1

e =

β
1−β

(
1− e

β−1
β

)
(recall β = 1/2), we can apply the results from Problem 1(d), which

says: for any a⋆ ∈ [K],〈
pt − p′t+1, ℓ̂t

〉
− 1

ηt
Dψ(p

′
t+1, pt) ≤ 2ηt

K∑
a=1

pt(a)
3
2

(
ℓ̂t(a)− ℓt(a

⋆)
)2
.

Prove Et
[∑K

a=1 pt(a)
3
2

(
ℓ̂t(a)− ℓt(a

⋆)
)2]

≤ 3
∑
a ̸=a⋆

√
pt(a) where Et is the condi-

tional expectation given everything before round t. (Therefore, combining all steps, we
have shown Eq. (3) of Lecture 7 for this algorithm.)
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3. (Log-Barrier Regularizer) Consider running the following FTRL algorithm for MAB with an
oblivious adversary:

pt = argmin
p∈∆(K)

〈
p,
∑
s<t

ℓ̂s

〉
+

1

η
ψ(p)

where η > 0 is a fixed learning rate, ψ(p) = −
∑K
a=1 ln p(a) is the log-barrier regularizer,

and ℓ̂1, . . . , ℓ̂T are the inverse importance weighted loss estimators. By the same machinery
introduced in Lecture 6, it can be shown that this algorithm ensures for any p ∈ ∆(K):

T∑
t=1

〈
pt − p, ℓ̂t

〉
≤ ψ(p)− ψ(p1)

η
+
η

2

T∑
t=1

∥∥∥ℓ̂t∥∥∥2
∇−2ψ(pt)

=
ψ(p)− ψ(p1)

η
+
η

2

T∑
t=1

K∑
a=1

pt(a)
2ℓ̂t(a)

2. (6)

(You do not need to prove this fact, but are encouraged to verify it yourself.)

(a) (4pts) Let a⋆ be the fixed optimal action in hindsight. To derive the expected regret bound
of this algorithm using Eq. (6), you will find that we cannot simply pick p = ea⋆ (the
distribution that concentrates on action a⋆), since ψ(p) = +∞ in this case. Instead, pick a
p that is close to a⋆ and prove the following two statements:

E[RT ] ≤ 1 +
K lnT

η
+ E

[
η

2

T∑
t=1

K∑
a=1

pt(a)
2ℓ̂t(a)

2

]
(7)

= 1 +
K lnT

η
+ E

[
η

2

T∑
t=1

ℓt(at)
2

]
. (8)

(b) (3pts) With the optimal η, Eq. (8) shows that the regret of this algorithm is O(
√
TK lnT ),

slightly worse than Exp3 or FTRL with Tsallis entropy. However, one benefit of this algo-
rithm is that it actually ensures a small-loss bound Õ(

√
L⋆K+K) whereL⋆ =

∑T
t=1 ℓt(a

⋆)
is the total loss of the optimal action. To see this, manipulate Eq. (8) to prove

E[RT ] ≤ 2 +
2K lnT

η
+ ηL⋆,

as long as η ≤ 1, which then leads to the claimed small-loss bound if η = min{1,
√

K lnT
L⋆ }.

(c) By the same reasoning as in Problem 1(d), one can also improve Eq. (7) to

E[RT ] ≤ 1 +
K lnT

η
+ E

[
η

T∑
t=1

K∑
a=1

pt(a)
2(ℓ̂t(a)− ℓt(at))

2

]
,

which, together with a doubling trick on tuning η, leads to

E[RT ] ≤ B

√√√√(K lnT )E

[
T∑
t=1

K∑
a=1

pt(a)2(ℓ̂t(a)− ℓt(at))2

]
(9)

for some constant B > 0.

(i) (6pts) Let Et be the conditional expectation given everything before round t. Prove that for
any action a ∈ [K], we have Et

[
(ℓ̂t(a)− ℓt(at))

2
]
≤ 1−pt(a)

pt(a)
and

Et

[
K∑
a=1

pt(a)
2(ℓ̂t(a)− ℓt(at))

2

]
≤ 2(1− pt(a

⋆))

for any action a⋆ ∈ [K].
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(ii) (5pts) Consider the same condition stated in Theorem 3 of Lecture 7: the environment is
such that

E[RT ] ≥ E

 T∑
t=1

∑
a ̸=a⋆

pt(a)∆(a)

− C

for some action a⋆, gap measures ∆(a) > 0 for a ̸= a⋆, and a constant C > 0. Combine
Eq. (9) and the result of the last question to prove that this algorithm satisfies

E[RT ] = O

(
K lnT

∆min
+

√
CK lnT

∆min

)
,

where ∆min = mina̸=a⋆ ∆(a) (that is, a weaker best-of-both-worlds result). (Hint: read
the proof of Theorem 5 in Lecture 3 again.)
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4. (Impossibility of Strongly Adaptive Algorithms) In this exercise, you need to show that
strongly adaptive algorithms are impossible for the adversarial MAB problem even with only
two actions, that is, no algorithm can guarantee E[RI ] ≤ B

√
|I| for all interval I simultane-

ously, where B is an absolute constant.

(a) (4pts) We prove by contradiction. Suppose that such a strongly adaptive algorithm A exists.
Consider running it in a 2-armed bandit problem where ℓt(1) is always 1/2 and ℓt(2) is
always 1 for all t. Prove that there must exist an interval IA of length

√
T

4B (assumed to be an
integer for simplicity), where the total expected number of times A selects action 2 is less
than 1/2.

(b) (4pts) Continuing with the last question, use Markov’s inequality (link) to show that with
probability at least 1/2, A never picks action 2 on interval IA.

(c) (4pts) Finally, consider a new environment that is different from the previous one only on
interval IA, where ℓt(2) is now always 0 (while ℓt(1) stays the same) for all t ∈ IA.
Prove that running the same algorithm A on this environment gives E[RIA ] = Ω(

√
T ), a

contradiction to the strongly adaptive property which says E[RIA ] ≤ B
√

|IA| = O(T 1/4).
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https://en.wikipedia.org/wiki/Markov%27s_inequality

