CSCI 659 Homework 3

Fall 2022

Instructor: Haipeng Luo

This homework is due on $\mathbf{1 1} / \mathbf{2 7}, \mathbf{1 1 : 5 9 p m}$. See course website for more instructions on finishing and submitting your homework as well as the late policy. Total points: 60.

1. (Improved Analysis of FTRL for Bandits) Consider the FTRL algorithm

$$
\begin{equation*}
p_{t}=\underset{p \in \Delta(K)}{\operatorname{argmin}}\left\langle p, \sum_{s<t} \hat{\ell}_{s}\right\rangle+\frac{1}{\eta} \psi(p) \tag{1}
\end{equation*}
$$

where $\eta>0$ is a learning rate, ψ is the Tsallis entropy $\psi(p)=\frac{1-\sum_{a=1}^{K} p(a)^{\beta}}{1-\beta}$ with a parameter $\beta \in(0,1)$, and $\widehat{\ell}_{1}, \ldots, \widehat{\ell}_{T}$ are arbitrary loss vectors. In Theorem 3 of Lecture 6 , we prove a local-norm bound for this algorithm by showing the key step

$$
\begin{equation*}
\left\langle p_{t}-p_{t+1}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta} D_{\psi}\left(p_{t+1}, p_{t}\right) \leq \frac{\eta}{2}\left\|\widehat{\ell}_{t}\right\|_{\nabla^{-2} \psi\left(p_{t}\right)}^{2}=\frac{\eta}{2 \beta} \sum_{a=1}^{K} p_{t}(a)^{2-\beta} \widehat{\ell}_{t}(a)^{2} \tag{2}
\end{equation*}
$$

as long as $\widehat{\ell}_{t}(a) \geq 0$. In this exercise, you need to prove the same statement (up to a constant of 2) under the weaker condition:

$$
\begin{equation*}
\eta p_{t}(a)^{1-\beta} \widehat{\ell}_{t}(a) \geq \frac{\beta}{1-\beta}\left(e^{\frac{\beta-1}{\beta}}-1\right), \quad \forall t \in[T], a \in[K] \tag{3}
\end{equation*}
$$

(it is weaker because the right-hand side is a negative number). Note that when $\beta \rightarrow 1$, this reduces to the condition $\eta \widehat{\ell}_{t}(a) \geq-1$ that we have seen for Hedge/Exp3. (While technical, this exercise will be helpful for Problems 2 and 3.)
(a) (3pts) The first step is still to bound $\left\langle p_{t}-p_{t+1}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta} D_{\psi}\left(p_{t+1}, p_{t}\right)$ by $\left\langle p_{t}-q_{t}, \widehat{\ell}_{t}\right\rangle-$ $\frac{1}{\eta} D_{\psi}\left(q_{t}, p_{t}\right)$ where $q_{t}=\operatorname{argmax}_{q \in \mathbb{R}_{+}^{K}}\left\langle p_{t}-q, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta} D_{\psi}\left(q, p_{t}\right)$. Prove that under condition (3), we have

$$
\begin{equation*}
\nabla \psi\left(q_{t}\right)=\nabla \psi\left(p_{t}\right)-\eta \widehat{\ell}_{t} \tag{4}
\end{equation*}
$$

or equivalently for all a,

$$
\begin{equation*}
\frac{1}{q_{t}(a)^{1-\beta}}=\frac{1}{p_{t}(a)^{1-\beta}}+\frac{1-\beta}{\beta} \eta \widehat{\ell}_{t}(a) \tag{5}
\end{equation*}
$$

Proof. The gradient of the concave function $f(q)=\left\langle p_{t}-q, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta} D_{\psi}\left(q, p_{t}\right)$ is $-\widehat{\ell}_{t}-$ $\frac{1}{\eta}\left(\nabla \psi(q)-\nabla \psi\left(p_{t}\right)\right)$. If we can find a point $q^{\star} \in \mathbb{R}_{+}^{K}$ such that $\nabla f\left(q^{\star}\right)=\mathbf{0}$, then it must be the maximizer q_{t}, in which case both Eq. (4) and Eq. (5) are simple rewriting of $\nabla f\left(q_{t}\right)=\mathbf{0}$. Indeed, such q^{\star} exists since the right-hand side of Eq. (5) is

$$
\frac{1}{p_{t}(a)^{1-\beta}}\left(1+\frac{1-\beta}{\beta} \eta p_{t}(a)^{1-\beta} \widehat{\ell}_{t}(a)\right) \geq \frac{e^{\frac{\beta-1}{\beta}}}{p_{t}(a)^{1-\beta}}>0
$$

where the first inequality uses condition (3).
(b) (4pts) Use Eq. (4) to prove

$$
\left\langle p_{t}-q_{t}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta} D_{\psi}\left(q_{t}, p_{t}\right)=\frac{1}{\eta} D_{\psi}\left(p_{t}, q_{t}\right),
$$

and use Eq. (5) to further prove

$$
D_{\psi}\left(p_{t}, q_{t}\right)=\sum_{a=1}^{K}\left(q_{t}(a)^{\beta}-p_{t}(a)^{\beta}+\eta p_{t}(a) \widehat{\ell}_{t}(a)\right) .
$$

Proof. Both are by direct calculations:

$$
\begin{align*}
& \left\langle p_{t}-q_{t}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta} D_{\psi}\left(q_{t}, p_{t}\right) \\
& =\frac{1}{\eta}\left\langle p_{t}-q_{t}, \nabla \psi\left(p_{t}\right)-\nabla \psi\left(q_{t}\right)\right\rangle-\frac{1}{\eta} D_{\psi}\left(q_{t}, p_{t}\right) \tag{4}\\
& =\frac{1}{\eta}\left\langle p_{t}-q_{t}, \nabla \psi\left(p_{t}\right)-\nabla \psi\left(q_{t}\right)\right\rangle-\frac{1}{\eta}\left(\psi\left(q_{t}\right)-\psi\left(p_{t}\right)-\left\langle\nabla \psi\left(p_{t}\right), q_{t}-p_{t}\right\rangle\right)
\end{align*}
$$

(definition of Bregman divergence)

$$
=\frac{1}{\eta}\left(\psi\left(p_{t}\right)-\psi\left(q_{t}\right)-\left\langle\nabla \psi\left(q_{t}\right), p_{t}-q_{t}\right\rangle\right)=\frac{1}{\eta} D_{\psi}\left(p_{t}, q_{t}\right),
$$

and

$$
\begin{align*}
& D_{\psi}\left(p_{t}, q_{t}\right) \\
& =\psi\left(p_{t}\right)-\psi\left(q_{t}\right)-\left\langle\nabla \psi\left(q_{t}\right), p_{t}-q_{t}\right\rangle \\
& =\frac{1}{1-\beta} \sum_{a=1}^{K}\left(q_{t}(a)^{\beta}-p_{t}(a)^{\beta}+\beta q_{t}(a)^{\beta-1}\left(p_{t}(a)-q_{t}(a)\right)\right) \\
& =\frac{1}{1-\beta} \sum_{a=1}^{K}\left((1-\beta) q_{t}(a)^{\beta}-p_{t}(a)^{\beta}+\beta q_{t}(a)^{\beta-1} p_{t}(a)\right) \\
& =\frac{1}{1-\beta} \sum_{a=1}^{K}\left((1-\beta) q_{t}(a)^{\beta}-p_{t}(a)^{\beta}+\beta\left(\frac{1}{p_{t}(a)^{1-\beta}}+\frac{1-\beta}{\beta} \eta \widehat{\ell}_{t}(a)\right) p_{t}(a)\right) \tag{5}
\end{align*}
$$

$$
=\sum_{a=1}^{K}\left(q_{t}(a)^{\beta}-p_{t}(a)^{\beta}+\eta p_{t}(a) \widehat{\ell}_{t}(a)\right) .
$$

(c) (4pts) Use Eq. (5) and the fact $(1+x)^{\alpha} \leq 1+\alpha x+\alpha(\alpha-1) x^{2}$ for any $\alpha<0$ and $x \geq e^{1 / \alpha}-1$ to prove that the following holds under condition (3):

$$
q_{t}(a)^{\beta}-p_{t}(a)^{\beta}+\eta p_{t}(a) \widehat{\ell}_{t}(a) \leq \frac{\eta^{2}}{\beta} p_{t}(a)^{2-\beta} \widehat{\ell}_{t}(a)^{2} .
$$

(Hint: you will need to apply the fact with $\alpha=\frac{\beta}{\beta-1}$.)
Proof. Using Eq. (5), we rewrite $q_{t}(a)^{\beta}$ as

$$
q_{t}(a)^{\beta}=p_{t}(a)^{\beta}\left(1+\frac{1-\beta}{\beta} \eta p_{t}(a)^{1-\beta} \widehat{\ell}_{t}(a)\right)^{\frac{\beta}{\beta-1}}
$$

Then we apply the provided inequality with $\alpha=\frac{\beta}{\beta-1}<0$ and $x=\frac{1-\beta}{\beta} p_{t}(a)^{1-\beta} \eta \widehat{\ell}_{t}(a)$, which is at least $e^{1 / \alpha}-1$ under condition (3). This shows

$$
\begin{aligned}
q_{t}(a)^{\beta} & \leq p_{t}(a)^{\beta}\left(1-\eta p_{t}(a)^{1-\beta} \widehat{\ell}_{t}(a)+\frac{\eta^{2}}{\beta} p_{t}(a)^{2-2 \beta} \widehat{\ell}_{t}(a)^{2}\right) \\
& =p_{t}(a)^{\beta}-\eta p_{t}(a) \widehat{\ell}_{t}(a)+\frac{\eta^{2}}{\beta} p_{t}(a)^{2-\beta} \widehat{\ell}_{t}(a)^{2},
\end{aligned}
$$

which proves the statement.
(d) (3pts) Combining the three steps above, we have shown

$$
\left\langle p_{t}-p_{t+1}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta} D_{\psi}\left(p_{t+1}, p_{t}\right) \leq \frac{\eta}{\beta} \sum_{a=1}^{K} p_{t}(a)^{2-\beta} \widehat{\ell}_{t}(a)^{2}
$$

only two times worse compared to Eq. (2), but under the weaker condition (3). One benefit of this result is that it also implies the following: in MAB, when running Algorithm (1) with $\widehat{\ell}_{1}, \ldots, \widehat{\ell}_{T}$ being the inverse importance weighted loss estimators for $\ell_{1}, \ldots, \ell_{T} \in[0,1]^{K}$, we have for any arbitrary $a^{\star} \in[K]$:

$$
\left\langle p_{t}-p_{t+1}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta} D_{\psi}\left(p_{t+1}, p_{t}\right) \leq \frac{\eta}{\beta} \sum_{a=1}^{K} p_{t}(a)^{2-\beta}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a^{\star}\right)\right)^{2},
$$

as long as $\eta \leq \frac{\beta}{1-\beta}\left(1-e^{\frac{\beta-1}{\beta}}\right)$. Explain why this is true. (Hint: recall the cheating predictor trick discussed in Lecture 3 and consider running FTRL (1) on a different but equivalent loss sequence.)

Proof. Note that Eq. (1) is equivalent to running FTRL with an imaginary loss sequence $\widehat{\ell}_{1}-$ $\ell_{1}\left(a^{\star}\right) \mathbf{1}, \ldots, \widehat{\ell}_{T}-\ell_{T}\left(a^{\star}\right) \mathbf{1}$, that is,

$$
p_{t}=\underset{p \in \Delta(K)}{\operatorname{argmin}}\left\langle p, \sum_{s<t}\left(\widehat{\ell}_{s}-\ell_{s}\left(a^{\star}\right) \mathbf{1}\right)\right\rangle+\frac{1}{\eta} \psi(p),
$$

where $\mathbf{1}$ is the all-one vector, since for any $p \in \Delta(K),\left\langle p, \ell_{s}\left(a^{\star}\right) \mathbf{1}\right\rangle=\ell_{s}\left(a^{\star}\right)$ is a constant and does not affect the optimization problem. Moreover, by the condition on η and the facts $\widehat{\ell}_{t}(a) \geq 0$ and $\ell_{t}\left(a^{\star}\right) \in[0,1]$, we have

$$
\eta p_{t}(a)^{1-\beta}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a^{\star}\right)\right) \geq-\eta \ell_{t}\left(a^{\star}\right) \geq-\eta \geq \frac{\beta}{1-\beta}\left(e^{\frac{\beta-1}{\beta}}-1\right)
$$

and thus condition (3) holds for the imaginary loss sequence and the claimed bound holds.
2. (Best-of-Both-Worlds for Tsallis Entropy) In this exercise, you need prove that FTRL with Tsallis entropy ($\beta=1 / 2$) and a time-varying learning rate, that is,

$$
p_{t}=\underset{p \in \Delta(K)}{\operatorname{argmin}}\left\langle p, \sum_{s<t} \hat{\ell}_{s}\right\rangle+\frac{1}{\eta_{t}} \psi(p)
$$

where $\psi(p)=-2 \sum_{a=1}^{K} \sqrt{p(a)}, \eta_{t}=\frac{1}{2 \sqrt{t}}$, and $\widehat{\ell}_{1}, \ldots, \widehat{\ell}_{T}$ are the inverse importance weighted loss estimators, satisfies Eq. (3) of Lecture 7, which further implies that it satisfies the strong best-of-both-worlds property according to Theorem 3 therein.
(a) (3pts) Let $\Phi_{t}^{\eta}=\min _{p \in \Delta(K)}\left\langle p, \sum_{s \leq t} \widehat{\ell}_{s}\right\rangle+\frac{1}{\eta} \psi(p)$ and p_{t+1}^{\prime} be the minimizer in the definition of $\Phi_{t}^{\eta_{t}}$. Prove the following two inequalities (hint: use Lemma 2 of Lecture 2 for the first one):

$$
\begin{aligned}
\Phi_{t-1}^{\eta_{t}}-\Phi_{t}^{\eta_{t}} & \leq-\left\langle p_{t+1}^{\prime}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta_{t}} D_{\psi}\left(p_{t+1}^{\prime}, p_{t}\right) \\
\Phi_{t}^{\eta_{t}}-\Phi_{t}^{\eta_{t+1}} & \leq\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t+1}}\right) \psi\left(p_{t+1}\right)
\end{aligned}
$$

Proof. Since $\Phi_{t-1}^{\eta_{t}}$ and $\Phi_{t}^{\eta_{t}}$ are defined with the same learning rate, and p_{t} and p_{t+1}^{\prime} are respectively the minimizer in their definition, we can apply Lemma 2 of Lecture 2 to obtain

$$
\begin{aligned}
\Phi_{t-1}^{\eta_{t}}-\Phi_{t}^{\eta_{t}} & \leq\left\langle p_{t+1}^{\prime}, \sum_{s<t} \widehat{\ell}_{s}-\sum_{s \leq t} \widehat{\ell}_{s}\right\rangle-D_{\frac{1}{\eta_{t}} \psi}\left(p_{t+1}^{\prime}, p_{t}\right) \\
& =-\left\langle p_{t+1}^{\prime}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta_{t}} D_{\psi}\left(p_{t+1}^{\prime}, p_{t}\right)
\end{aligned}
$$

proving the first statement. The second statement is by definition:

$$
\Phi_{t}^{\eta_{t}}-\Phi_{t}^{\eta_{t+1}} \leq\left\langle p_{t+1}, \sum_{s \leq t} \widehat{\ell}_{s}\right\rangle+\frac{1}{\eta_{t}} \psi\left(p_{t+1}\right)-\Phi_{t}^{\eta_{t+1}}=\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t+1}}\right) \psi\left(p_{t+1}\right) .
$$

(b) (4pts) Use the previous results to prove that for any distribution $p \in \Delta(K)$,

$$
\begin{aligned}
\sum_{t=1}^{T}\left\langle p_{t}-p, \widehat{\ell}_{t}\right\rangle \leq & \underbrace{\sum_{t=1}^{T}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right)\left(\psi(p)-\psi\left(p_{t}\right)\right)}_{\text {penalty term }} \\
& +\underbrace{\sum_{t=1}^{T}\left(\left\langle p_{t}-p_{t+1}^{\prime}, \hat{\ell}_{t}\right\rangle-\frac{1}{\eta_{t}} D_{\psi}\left(p_{t+1}^{\prime}, p_{t}\right)\right)}_{\text {stability\&negative term }}
\end{aligned}
$$

where we define $1 / \eta_{0}=0$ for convenience. (Note that when η_{t} stays the same for all $t \geq 1$, this bound exactly recovers Lemma 3 of Lecture 2.)
Proof. Using the first result from the last question, we have

$$
\begin{aligned}
\sum_{t=1}^{T}\left\langle p_{t}, \widehat{\ell}_{t}\right\rangle & \leq \sum_{t=1}^{T}\left(\Phi_{t}^{\eta_{t}}-\Phi_{t-1}^{\eta_{t}}\right)+\text { stability\&negative term } \\
& =\Phi_{T}^{\eta_{T}}-\Phi_{0}^{\eta_{1}}+\sum_{t=2}^{T}\left(\Phi_{t-1}^{\eta_{t-1}}-\Phi_{t-1}^{\eta_{t}}\right)+\text { stability\&negative term }
\end{aligned}
$$

Further using the second result from the last question, we continue with

$$
\sum_{t=1}^{T}\left\langle p_{t}, \widehat{\ell}_{t}\right\rangle \leq \Phi_{T}^{\eta_{T}}-\Phi_{0}^{\eta_{1}}-\sum_{t=2}^{T}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right) \psi\left(p_{t}\right)+\text { stability\&negative term. }
$$

Finally, noting $\Phi_{0}^{\eta_{1}}=\frac{1}{\eta_{1}} \psi\left(p_{1}\right)$ and

$$
\Phi_{T}^{\eta_{T}} \leq\left\langle p, \sum_{t=1}^{T} \widehat{\ell}_{t}\right\rangle+\frac{1}{\eta_{T}} \psi(p)=\left\langle p, \sum_{t=1}^{T} \widehat{\ell}_{t}\right\rangle+\sum_{t=1}^{T}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right) \psi(p)
$$

competes the proof after rearranging.
(c) (3pts) Prove that for any action $a^{\star} \in[K]$, the per-round penalty term satisfies

$$
\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right)\left(\psi(p)-\psi\left(p_{t}\right)\right) \leq 4 \sum_{a \neq a^{\star}} \sqrt{\frac{p_{t}(a)}{t}}
$$

Proof. Note that $\psi(p)$ is maximized when p concentrates on one action and thus

$$
\psi(p)-\psi\left(p_{t}\right) \leq 2\left(\sum_{a=1}^{K} \sqrt{p_{t}(a)}-1\right) \leq 2 \sum_{a \neq a^{\star}} \sqrt{p_{t}(a)}
$$

On the other than, using the specific value of the learning rate $\eta_{t}=\frac{1}{2 \sqrt{t}}$, we have

$$
\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}=2(\sqrt{t}-\sqrt{t-1})=\frac{2}{\sqrt{t}+\sqrt{t-1}} \leq \frac{2}{\sqrt{t}}
$$

Combining these two facts proves the statement.
(d) (6pts) For the per-round stability\&negative term, since $\eta_{t}=\frac{1}{2 \sqrt{t}} \leq \frac{1}{2} \leq 1-\frac{1}{e}=$ $\frac{\beta}{1-\beta}\left(1-e^{\frac{\beta-1}{\beta}}\right)$ (recall $\beta=1 / 2$), we can apply the results from Problem 1(d), which says: for any $a^{\star} \in[K]$,

$$
\left\langle p_{t}-p_{t+1}^{\prime}, \widehat{\ell}_{t}\right\rangle-\frac{1}{\eta_{t}} D_{\psi}\left(p_{t+1}^{\prime}, p_{t}\right) \leq 2 \eta_{t} \sum_{a=1}^{K} p_{t}(a)^{\frac{3}{2}}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a^{\star}\right)\right)^{2}
$$

Prove $\mathbb{E}_{t}\left[\sum_{a=1}^{K} p_{t}(a)^{\frac{3}{2}}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a^{\star}\right)\right)^{2}\right] \leq 3 \sum_{a \neq a^{\star}} \sqrt{p_{t}(a)}$ where \mathbb{E}_{t} is the conditional expectation given everything before round t. (Therefore, combining all steps, we have shown Eq. (3) of Lecture 7 for this algorithm.)
Proof. We proceed as follows:

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\sum_{a=1}^{K} p_{t}(a)^{\frac{3}{2}}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a^{\star}\right)\right)^{2}\right] \\
& =\mathbb{E}_{t}\left[\sum_{a=1}^{K} p_{t}(a)^{\frac{3}{2}}\left(\widehat{\ell}_{t}(a)^{2}-2 \widehat{\ell}_{t}(a) \ell_{t}\left(a^{\star}\right)+\ell_{t}\left(a^{\star}\right)^{2}\right)\right] \\
& =\sum_{a=1}^{K} p_{t}(a)^{\frac{3}{2}}\left(\frac{\ell_{t}(a)^{2}}{p_{t}(a)}-2 \ell_{t}(a) \ell_{t}\left(a^{\star}\right)+\ell_{t}\left(a^{\star}\right)^{2}\right) \quad(\text { Lemmas } 1 \text { and } 2 \text { of Lecture 6) } \\
& =\sum_{a=1}^{K}\left(\sqrt{p_{t}(a)} \ell_{t}(a)^{2}-p_{t}(a)^{\frac{3}{2}} \ell_{t}(a) \ell_{t}\left(a^{\star}\right)\right)+\sum_{a=1}^{K} p_{t}(a)^{\frac{3}{2}}\left(\ell_{t}\left(a^{\star}\right)^{2}-\ell_{t}(a) \ell_{t}\left(a^{\star}\right)\right)
\end{aligned}
$$

For the first summation, the terms corresponding to $a \neq a^{\star}$ are together bounded by $\sum_{a \neq a^{\star}} \sqrt{p_{t}(a)}$ (by ignoring the second negative term); the term corresponding to $a=a^{\star}$ is

$$
\sqrt{p_{t}\left(a^{\star}\right)}\left(1-p_{t}\left(a^{\star}\right)\right) \ell_{t}\left(a^{\star}\right)^{2} \leq 1-p_{t}\left(a^{\star}\right)=\sum_{a \neq a^{\star}} p_{t}(a) \leq \sum_{a \neq a^{\star}} \sqrt{p_{t}(a)}
$$

Similarly, for the second summation, the terms corresponding to $a \neq a^{\star}$ are together bounded by $\sum_{a \neq a^{\star}} \sqrt{p_{t}(a)}$ (again by ignoring the second negative term); the term corresponding to $a=a^{\star}$ is simply 0 . Combining all these bounds finishes the proof.
3. (Log-Barrier Regularizer) Consider running the following FTRL algorithm for MAB with an oblivious adversary:

$$
p_{t}=\underset{p \in \Delta(K)}{\operatorname{argmin}}\left\langle p, \sum_{s<t} \hat{\ell}_{s}\right\rangle+\frac{1}{\eta} \psi(p)
$$

where $\eta>0$ is a fixed learning rate, $\psi(p)=-\sum_{a=1}^{K} \ln p(a)$ is the log-barrier regularizer, and $\widehat{\ell}_{1}, \ldots, \widehat{\ell}_{T}$ are the inverse importance weighted loss estimators. By the same machinery introduced in Lecture 6, it can be shown that this algorithm ensures for any $p \in \Delta(K)$:

$$
\begin{align*}
\sum_{t=1}^{T}\left\langle p_{t}-p, \widehat{\ell}_{t}\right\rangle & \leq \frac{\psi(p)-\psi\left(p_{1}\right)}{\eta}+\frac{\eta}{2} \sum_{t=1}^{T}\left\|\widehat{\ell}_{t}\right\|_{\nabla^{-2} \psi\left(p_{t}\right)}^{2} \\
& =\frac{\psi(p)-\psi\left(p_{1}\right)}{\eta}+\frac{\eta}{2} \sum_{t=1}^{T} \sum_{a=1}^{K} p_{t}(a)^{2} \widehat{\ell}_{t}(a)^{2} \tag{6}
\end{align*}
$$

(You do not need to prove this fact, but are encouraged to verify it yourself.)
(a) (4pts) Let a^{\star} be the fixed optimal action in hindsight. To derive the expected regret bound of this algorithm using Eq. (6), you will find that we cannot simply pick $p=e_{a^{\star}}$ (the distribution that concentrates on action a^{\star}), since $\psi(p)=+\infty$ in this case. Instead, pick a p that is close to a^{\star} and prove the following two statements:

$$
\begin{align*}
\mathbb{E}\left[\mathcal{R}_{T}\right] & \leq 1+\frac{K \ln T}{\eta}+\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \sum_{a=1}^{K} p_{t}(a)^{2} \widehat{\ell}_{t}(a)^{2}\right] \tag{7}\\
& =1+\frac{K \ln T}{\eta}+\mathbb{E}\left[\frac{\eta}{2} \sum_{t=1}^{T} \ell_{t}\left(a_{t}\right)^{2}\right] \tag{8}
\end{align*}
$$

Proof. Let $p=\left(1-\frac{1}{K T}\right) e_{a^{\star}}+\frac{1}{K T} \mathbf{1}$, so that

$$
\psi(p)-\psi\left(p_{1}\right)=\sum_{a=1}^{K} \ln \frac{p_{1}(a)}{p(a)}=\sum_{a=1}^{K} \ln \frac{1}{K p(a)} \leq K \ln T
$$

and

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{T}\right] & =\mathbb{E}\left[\sum_{t=1}^{T}\left\langle p_{t}-e_{a^{\star}}, \ell_{t}\right\rangle\right] \leq \mathbb{E}\left[\sum_{t=1}^{T}\left\langle p_{t}-p, \ell_{t}\right\rangle\right]+\frac{1}{K T} \sum_{t=1}^{T}\left\langle\mathbf{1}, \ell_{t}\right\rangle \\
& \leq \mathbb{E}\left[\sum_{t=1}^{T}\left\langle p_{t}-p, \widehat{\ell}_{t}\right\rangle\right]+1
\end{aligned}
$$

Combining these with Eq. (6) proves Eq. (7). Eq. (8) is simply by the definition of the loss estimator: $\sum_{a=1}^{K} p_{t}(a)^{2} \widehat{\ell}_{t}(a)^{2}=\sum_{a=1}^{K} p_{t}(a)^{2} \frac{\ell_{t}(a)^{2}}{p_{t}(a)^{2}} \mathbf{1}\left\{a=a_{t}\right\}=\ell_{t}\left(a_{t}\right)^{2}$.
(b) (3pts) With the optimal η, Eq. (8) shows that the regret of this algorithm is $\mathcal{O}(\sqrt{T K \ln T})$, slightly worse than Exp3 or FTRL with Tsallis entropy. However, one benefit of this algorithm is that it actually ensures a small-loss bound $\widetilde{\mathcal{O}}\left(\sqrt{L^{\star} K}+K\right)$ where $L^{\star}=\sum_{t=1}^{T} \ell_{t}\left(a^{\star}\right)$ is the total loss of the optimal action. To see this, manipulate Eq. (8) to prove

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq 2+\frac{2 K \ln T}{\eta}+\eta L^{\star}
$$

as long as $\eta \leq 1$, which then leads to the claimed small-loss bound if $\eta=\min \left\{1, \sqrt{\frac{K \ln T}{L^{\star}}}\right\}$.
Proof. First, bound $\ell_{t}\left(a_{t}\right)^{2}$ by $\ell_{t}\left(a_{t}\right)$ in Eq. (8). Then, use the definition of regret $\mathbb{E}\left[\mathcal{R}_{T}\right]=$ $\mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(a_{t}\right)\right]-L^{\star}$ and rearrange Eq. (8) to arrive at:

$$
\left(1-\frac{\eta}{2}\right) \mathbb{E}\left[\sum_{t=1}^{T} \ell_{t}\left(a_{t}\right)\right]-L^{\star} \leq 1+\frac{K \ln T}{\eta}
$$

which is equivalent to

$$
\left(1-\frac{\eta}{2}\right) \mathbb{E}\left[\mathcal{R}_{T}\right] \leq 1+\frac{K \ln T}{\eta}+\frac{\eta}{2} L^{\star}
$$

Dividing both sides by $1-\frac{\eta}{2}$ and lower bounding it by $1 / 2$ (due to the condition $\eta \leq 1$) finishes the proof.
(c) By the same reasoning as in Problem 1(d), one can also improve Eq. (7) to

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq 1+\frac{K \ln T}{\eta}+\mathbb{E}\left[\eta \sum_{t=1}^{T} \sum_{a=1}^{K} p_{t}(a)^{2}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a_{t}\right)\right)^{2}\right]
$$

which, together with a doubling trick on tuning η, leads to

$$
\begin{equation*}
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq B \sqrt{(K \ln T) \mathbb{E}\left[\sum_{t=1}^{T} \sum_{a=1}^{K} p_{t}(a)^{2}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a_{t}\right)\right)^{2}\right]} \tag{9}
\end{equation*}
$$

for some constant $B>0$.
(i) (6 pts) Let \mathbb{E}_{t} be the conditional expectation given everything before round t. Prove that for any action $a \in[K]$, we have $\mathbb{E}_{t}\left[\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a_{t}\right)\right)^{2}\right] \leq \frac{1-p_{t}(a)}{p_{t}(a)}$ and

$$
\mathbb{E}_{t}\left[\sum_{a=1}^{K} p_{t}(a)^{2}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a_{t}\right)\right)^{2}\right] \leq 2\left(1-p_{t}\left(a^{\star}\right)\right)
$$

for any action $a^{\star} \in[K]$.
Proof. By definitions, we have

$$
\begin{aligned}
\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a_{t}\right)\right)^{2} & =\left(\frac{\ell_{t}\left(a_{t}\right) \mathbf{1}\left\{a \neq a_{t}\right\}}{p_{t}\left(a_{t}\right)}-\ell_{t}\left(a_{t}\right)\right)^{2} \\
& =\frac{\left(\mathbf{1}\left\{a \neq a_{t}\right\}-p_{t}\left(a_{t}\right)\right)^{2} \ell_{t}\left(a_{t}\right)^{2}}{p_{t}\left(a_{t}\right)^{2}} \leq \frac{\left(\mathbf{1}\left\{a \neq a_{t}\right\}-p_{t}\left(a_{t}\right)\right)^{2}}{p_{t}\left(a_{t}\right)^{2}}
\end{aligned}
$$

and thus

$$
\mathbb{E}_{t}\left[\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a_{t}\right)\right)^{2}\right] \leq p_{t}(a) \frac{\left(1-p_{t}(a)\right)^{2}}{p_{t}(a)^{2}}+\sum_{b \neq a}^{K} p_{t}(b)=\frac{1-p_{t}(a)}{p_{t}(a)}
$$

proving the first statement. The second statement holds consequently:

$$
\begin{aligned}
& \mathbb{E}_{t}\left[\sum_{a=1}^{K} p_{t}(a)^{2}\left(\widehat{\ell}_{t}(a)-\ell_{t}\left(a_{t}\right)\right)^{2}\right] \leq \sum_{a=1}^{K} p_{t}(a)^{2} \frac{1-p_{t}(a)}{p_{t}(a)} \\
& =\sum_{a=1}^{K} p_{t}(a)\left(1-p_{t}(a)\right) \leq 1-p_{t}\left(a^{\star}\right)+\sum_{a \neq a^{\star}} p_{t}(a)=2\left(1-p_{t}\left(a^{\star}\right)\right)
\end{aligned}
$$

(ii) (5pts) Consider the same condition stated in Theorem 3 of Lecture 7: the environment is such that

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \geq \mathbb{E}\left[\sum_{t=1}^{T} \sum_{a \neq a^{\star}} p_{t}(a) \Delta(a)\right]-C
$$

for some action a^{\star}, gap measures $\Delta(a)>0$ for $a \neq a^{\star}$, and a constant $C>0$. Combine Eq. (9) and the result of the last question to prove that this algorithm satisfies

$$
\mathbb{E}\left[\mathcal{R}_{T}\right]=\mathcal{O}\left(\frac{K \ln T}{\Delta_{\min }}+\sqrt{\frac{C K \ln T}{\Delta_{\min }}}\right)
$$

where $\Delta_{\min }=\min _{a \neq a^{\star}} \Delta(a)$ (that is, a weaker best-of-both-worlds result). (Hint: read the proof of Theorem 5 in Lecture 3 again.)

Proof. Combining Eq. (9) and the last question, we have

$$
\begin{aligned}
\mathbb{E}\left[\mathcal{R}_{T}\right] & \leq B \sqrt{(2 K \ln T) \mathbb{E}\left[\sum_{t=1}^{T} 1-p_{t}\left(a^{\star}\right)\right]} \\
& =B \sqrt{\frac{2 K \ln T}{\Delta_{\min }} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{a \neq a^{\star}} p_{t}(a) \Delta_{\min }\right]} \\
& \leq B \sqrt{\frac{2 K \ln T}{\Delta_{\min }} \mathbb{E}\left[\sum_{t=1}^{T} \sum_{a \neq a^{\star}} p_{t}(a) \Delta(a)\right]} \\
& \leq B \sqrt{\frac{2 K \ln T}{\Delta_{\min }}\left(\mathbb{E}\left[\mathcal{R}_{T}\right]+C\right)} \quad \text { (condition of the environment) } \\
& \leq B \sqrt{\frac{2 K \ln T}{\Delta_{\min }}}\left(\sqrt{\mathbb{E}\left[\mathcal{R}_{T}\right]}+\sqrt{C}\right) .
\end{aligned}
$$

Finally, using the fact $x \leq b \sqrt{x}+c \Rightarrow x \leq b^{2}+2 c$ proves

$$
\mathbb{E}\left[\mathcal{R}_{T}\right] \leq \frac{2 B^{2} K \ln T}{\Delta_{\min }}+2 B \sqrt{\frac{2 C K \ln T}{\Delta_{\min }}} .
$$

4. (Impossibility of Strongly Adaptive Algorithms) In this exercise, you need to show that strongly adaptive algorithms are impossible for the adversarial MAB problem even with only two actions, that is, no algorithm can guarantee $\mathbb{E}\left[\mathcal{R}_{\mathcal{I}}\right] \leq B \sqrt{|\mathcal{I}|}$ for all interval \mathcal{I} simultaneously, where B is an absolute constant.
(a) (4pts) We prove by contradiction. Suppose that such a strongly adaptive algorithm \mathcal{A} exists. Consider running it in a 2 -armed bandit problem where $\ell_{t}(1)$ is always $1 / 2$ and $\ell_{t}(2)$ is always 1 for all t. Prove that there must exist an interval $\mathcal{I}_{\mathcal{A}}$ of length $\frac{\sqrt{T}}{4 B}$ (assumed to be an integer for simplicity), where the total expected number of times \mathcal{A} selects action 2 is at most $1 / 2$.
Proof. Clearly, in this environment the expected regret of the algorithm equals one half of the expected number of times action 2 is selected. Partition the entire T rounds evenly into $4 B \sqrt{T}$ intervals, each of length $\frac{\sqrt{T}}{4 B}$. If in every one of these intervals, the expected number of times \mathcal{A} selects action 2 is larger than $1 / 2$, then the total number of times action 2 is selected is larger than $2 B \sqrt{T}$, which is a contradiction to the fact that \mathcal{A} guarantees $\mathbb{E}\left[\mathcal{R}_{[1, T]}\right] \leq B \sqrt{T}$. This proves the claimed statement.
(b) (4pts) Continuing with the last question, use Markov's inequality (link) to show that with probability at least $1 / 2, \mathcal{A}$ never picks action 2 on interval $\mathcal{I}_{\mathcal{A}}$.
Proof. Let n be the number of times \mathcal{A} selects action 2 on interval $\mathcal{I}_{\mathcal{A}}$, which satisfies $\mathbb{E}[n] \leq 1 / 2$ according to the last question. Directly applying Markov's inequality tells us $\operatorname{Pr}(n \geq 1) \leq \mathbb{E}[n] \leq \frac{1}{2}$, and thus $\operatorname{Pr}(n<1) \geq \frac{1}{2}$. Noting that $n<1$ is the same as \mathcal{A} never selecting action 2 on interval $\mathcal{I}_{\mathcal{A}}$ finishes the proof.
(c) (4pts) Finally, consider a new environment that is different from the previous one only on interval $\mathcal{I}_{\mathcal{A}}$, where $\ell_{t}(2)$ is now always 0 (while $\ell_{t}(1)$ stays the same) for all $t \in \mathcal{I}_{\mathcal{A}}$. Prove that running the same algorithm \mathcal{A} in this environment gives $\mathbb{E}\left[\mathcal{R}_{\mathcal{I}_{\mathcal{A}}}\right]=\Omega(\sqrt{T})$, a contradiction to the strongly adaptive property which says $\mathbb{E}\left[\mathcal{R}_{\mathcal{I}_{\mathcal{A}}}\right] \leq B \sqrt{\left|\mathcal{I}_{\mathcal{A}}\right|}=\mathcal{O}\left(T^{1 / 4}\right)$.
Proof. Note that in this new environment, with probability at least $1 / 2, \mathcal{A}$ behaves exactly the same as in the previous environment, because it never picks action 2 on $\mathcal{I}_{\mathcal{A}}$ and thus never observes anything different from the previous environment. On the other hand, action 2 is the better action on $\mathcal{I}_{\mathcal{A}}$ with no loss at all, so not picking action 2 at all on $\mathcal{I}_{\mathcal{A}}$ incurs $\frac{1}{2}\left|\mathcal{I}_{\mathcal{A}}\right|$ regret. Therefore, $\mathbb{E}\left[\mathcal{R}_{\mathcal{I}_{\mathcal{A}}}\right] \geq \frac{1}{2} \cdot \frac{1}{2}\left|\mathcal{I}_{\mathcal{A}}\right|=\Omega(\sqrt{T})$, proving the statement.
