
CSCI 659 Lecture 1
Fall 2022

Instructor: Haipeng Luo

1 Overview of Online Learning

Online learning (also known as online optimization, sequential decision making, etc.) has been play-
ing a crucial role in machine learning and many real-life applications. Its foundation is supported
by elegant and deep theory, which is the main topic of this course, but before even telling you what
online learning is, let me start with a couple of impactful applications of online learning to convince
you of its importance:

• ADAGRAD [Duchi et al., 2011], ADAM [Kingma and Ba, 2015], and several other most popular
optimization algorithms for training machine learning models including neural nets, are derived
from an online learning framework;

• regret minimization, the central goal of online learning, is arguably the most efficient and scal-
able way for solving games (e.g., finding Nash equilibria) — for example, it is the cornerstone
for superhuman AI for Poker [Bowling et al., 2015], a game with 1013 states;

• multi-armed bandits, an online learning framework fundamental for studying exploration versus
exploitation tradeoff, has been used in building recommendation systems in many tech compa-
nies [Agarwal et al., 2016];

• machine learning algorithms that preserve privacy are gaining increasing attention in recent
years — it turns out that, theoretically speaking, private learning and online learning are equiv-
alent [Alon et al., 2022].

Hopefully now you are convinced that online learning is important. Below let’s start looking at
several more concrete instances of online learning.

• spam detection (online classification/regression): At each time t = 1, 2, . . .

– receive an email xt ∈ Rd;
– predict whether it is a spam ŷt ∈ {−1,+1};
– see its true label yt ∈ {−1,+1} (spam or not).

• sequential investment (universal portfolio): Start with capital W1. At each day t = 1, 2, . . .

– decide pt ∈ ∆(N)
def
= {p ∈ RN

+ :
∑N

i=1 p(i) = 1} and invest Wtpt(i) on asset i;
– at the end of the day observe relative prices rt ∈ RN

+ such that the capital on asset i becomes
Wtpt(i)rt(i);

– arrive at total capital Wt+1 = Wt ⟨pt, rt⟩.
• aggregating weather prediction (the expert problem): At each day t = 1, 2, . . .

– obtain temperature predictions from N experts/models for today;
– make the final prediction by randomly following an expert according to pt ∈ ∆(N);
– at the end of the day observe the loss of each model ℓt ∈ [0, 1]N .

• product recommendation (multi-armed bandits): At each time t = 1, 2, . . .

– randomly recommend one of the K products a to a customer visiting the website;
– observe the loss of this product ℓt(a) (e.g. 0 if clicked, 1 otherwise), but not the losses for

the other products.

• multiple-product recommendation (combinatorial bandits): At each time t = 1, 2, . . .

– randomly recommend k of the K products to a customer visiting the website;
– observe the losses of the k recommended products but not the other ones.

• personalized product recommendation (contextual bandits): Given N policies π1, . . . , πN , each
of which is a mapping from X to [K]

def
= {1, . . . ,K}. At each time t = 1, 2, . . .

– observe the contextual information xt ∈ X of a customer (e.g. gender, IP address, purchase
history, etc);

– randomly select one of the N policies πt and recommend product πt(xt);
– observe the loss of this product ℓt(πt(xt)) but not the other ones.

2 A Unified Model

All of the examples in the last section can be (essentially) captured by a learning model called Online
Convex Optimization (OCO), first proposed by Zinkevich [2003]. OCO can be viewed as a game
between a learner/player and an environment/adversary. Before the game starts, a fixed compact
convex set Ω is given to the learner as the action space. The game then proceeds for T rounds for
some integer T . At each round t = 1, . . . , T ,

1. the learner first picks a point wt ∈ Ω;

2. the environment then picks a convex loss function ft : Ω → R;

3. the learner suffers loss ft(wt), and observes some information about ft.

The table below summarizes how OCO captures all the aforementioned examples.

Problems Ω ft Observations

linear classification

linear regression
e.g. {w : ∥w∥2 ≤ 1}

ft(w) = ℓ(⟨w, xt⟩ , yt), e.g.

logistic loss: ℓ(ŷ, y) = ln(1 + e−ŷy)

or square loss: ℓ(ŷ, y) = (ŷ − y)2

xy and yt
thus entire ft

universal portfolio ∆(N)
ft(p) = − ln(⟨p, rt⟩)

(note the unboundedness)
rt, thus entire ft

the expert problem ∆(N) ft(p) = ⟨p, ℓt⟩ ℓt, thus entire ft

multi-armed bandits ∆(K) ft(p) = ⟨p, ℓt⟩
only one

entry of ℓt

combinatorial bandits e.g. {w ∈ [0, 1]K :
∑K

i=1 w(i) = k} ft(w) = ⟨w, ℓt⟩
k entries

of ℓt

contextual bandits ∆(N)
ft(w) =

∑N
j=1 w(j)ℓt(π

j(xt))

(note the loss structure among policies)
only one

entry of ℓt

A couple of remarks are in order.

Why convexity? This is mainly because a) many problems are indeed convex and b) convexity
allows efficient and provable algorithms. Of course, neural nets, the currently dominating machine
learning models in many areas, are non-convex. Extending the theory of online learning to the
non-convex regime is an important research direction, but note that even in the traditional “offline”
setting, little is known currently.

Also note that for some problems, the action set is naturally discrete (e.g. all the bandit examples),
but it can still be easily captured by OCO via convexifying the discrete action set (i.e., taking the
convex hull).

2

Feedback model. As illustrated by these examples, there are several possible feedback models in
OCO, roughly categorized into the following three:

• full-information setting: learner observes ft (or sometimes just (sub)gradient ∇ft(wt));

• bandit setting: learner observes only ft(wt);

• other partial information settings (sometimes not even the loss of the selected action).

The first half of this course will focus on the full full-information setting, while the second half
focuses on the bandit setting.

Types of Environment. So far, we have not discussed how the environment decides the loss func-
tions. Depending on its power, there are several possible settings (all of which allow the environment
to have knowledge about the learner’s algorithm, but not her randomness, ahead of time):

• stochastic setting: f1, . . . , fT are i.i.d. samples of a fixed and unknown distribution;

• oblivious adversary: f1, . . . , fT are arbitrary, but decided before the game starts (i.e. indepen-
dent of the learner’s actions);

• non-oblivious/adaptive adversary: for each t, ft depends on w1, . . . , wt.

In this course we will mostly focus on the more general adversarial settings.

2.1 Goal of the Learner: Regret Minimization

The classical goal of OCO is to minimize the learner’s (static) regret against the best fixed action in
hindsight:

RT
def
=

T∑
t=1

ft(wt)−min
w∈Ω

T∑
t=1

ft(w).

Note that this could be a random variable where the randomness might come from the learner and/or
the environment. Intuitively, this is measuring how much we “regret” for not always picking the
best fixed action in retrospect. If the regret is sublinear in T , that is, RT = o(T) (in which case
the learner is often called “no-regret”), then limT→∞ RT /T = 0 and thus on average the learner
is doing almost as well as the best fixed action in hindsight, which is a pretty strong guarantee.
However, two very natural questions arise upon closer examination of this performance measure:

1. Why is it fair to compete with a fixed action while the learner can vary her actions over time?
And why is it reasonable anyway given that the loss functions are changing over time and probably

no single action is reasonably good overall?

For the first part of the question, note that competing with a fixed action is already highly nontrivial,
since this fixed action is chosen with perfect knowledge of the entire loss functions, while the learner
receives information (sometimes only partial information) about them on the fly. That said, also note
that the regret can indeed be negative exactly because of this reason if the environment is benign.

The second part of the question is a valid concern, and there are many stronger regret measures pro-
posed to exactly address this issue, including interval/switching/dynamic regret and internal/swap
regret, some of which will be covered later in this course.

2. Why do we assume that the environment still chooses the same sequence of loss functions in
retrospect while the learner has changed her behavior to always picking a fixed action?

First note that at least for a stochastic environment or an oblivious adversary, this assumption indeed
holds (since the loss functions are chosen independent of the learner’s decisions). However, this is
indeed a valid concern for adaptive adversary, and a stronger regret measure called policy regret was
proposed to exactly address this issue.

However, despite all these issues, studying static regret is still extremely meaningful for two rea-
sons. First, static regret is the foundation of all other stronger regret measures. Algorithms for these
stronger measures are most often designed by extending techniques from the static regret literature or

3

sometimes even by reducing the problem to minimizing static regret. Second, later in this course we
will see examples in solving games via online learning, where the environment is definitely chang-
ing in an adaptive way, yet minimizing static regret still has strong implications for convergence to
equilibra and optimal social welfare. Therefore, designing (static) regret minimization algorithm
and proving their regret bounds has always been the central theme of online learning.

3 Connection to Statistical Learning

Before diving further into online learning, let’s take a step back and discuss the connections and dif-
ferences between online learning and the classical machine learning paradigm: statistical learning.

In statistical learning, a set of training examples z1, . . . , zT ∈ Z is given to the learner where each
example zt is an i.i.d. sample of some unknown distribution D. Based on these training examples,
the learner outputs a predictor w̄ ∈ Ω for some compact convex set Ω. For some loss function
ℓ : Ω × Z → [0, 1], the training error of the learner is defined as 1

T

∑T
t=1 ℓ(w̄, zt) while the

generalization error is defined as L(w̄) def
= Ez∼Dℓ(w̄, z). Note that this quantity is itself a random

variable since w̄ is random due to the randomness of the training set. The goal of the learner is
usually to have small generalization error with high probability.

As one can see, distributional assumptions are fundamental in the definition of statistical learning.
On the other hand, online learning does not necessarily assume any distributional distributions,
which makes it a much more robust model. In fact, even if the data are entirely adversarial, which
is indeed the case for applications such as spam detection or playing games, meaningful and strong
guarantees can still be derived.

Another key advantage is that online learning algorithms are usually more memory-efficient, in the
sense that they usually do not need to store data from the past. That is, at each round, a new data
point is used to update the current state of the algorithm and then discarded. On the other hand,
most statistical learning algorithms require storing the entire training set and touching each data
point multiple times.

Finally and perhaps most importantly, one can in fact use an online learning algorithm to solve a
statistical learning problem, meaning that online learning is only more general. This can be done via
the following online-to-batch reduction [Cesa-Bianchi et al., 2004], which essentially lets an online
learning algorithm make exactly one pass to the training set.

Algorithm 1: Online-to-Batch Reduction
Input: training set {z1, . . . , zT }, an online learning algorithm A with action space Ω
for t = 1, . . . , T do

let wt be the output of A for this round
feed A with loss function ft(w) = ℓ(w, zt)

Output (Option I): uniformly at random sample t̄ from {1, . . . , T}, then w̄ = wt̄

Output (Option II): w̄ = 1
T

∑T
t=1 wt if L(w) is convex in w

The reduction enjoys the following guarantee.

Theorem 1. Suppose that A enjoys the following regret bound E[RT] ≤ B(T) for some function
B. Then the generalization error of the output w̄ of Algorithm 1 satisfies

E[L(w̄)] ≤ L(w⋆) +
B(T)

T

where w⋆ ∈ argminw∈Ω L(w) is the optimal predictor.

Proof of Theorem 1. First focus on Option I. By definitions, we have (pay close attention to what
randomness each expectation E[·] is with respect to)

E[L(w̄)] =
1

T

T∑
t=1

E[L(wt)] =
1

T

T∑
t=1

E[Ez∼Dℓ(wt, z)]

4

=
1

T

T∑
t=1

E[ℓ(wt, zt)] ≤ E

[
min
w∈Ω

1

T

T∑
t=1

ℓ(w, zt)

]
+

B(T)

T

≤ 1

T

T∑
t=1

E[ℓ(w⋆, zt)] +
B(T)

T

=
1

T

T∑
t=1

L(w⋆) +
B(T)

T
= L(w⋆) +

B(T)

T
.

For Option II, simply notice that by the convexity of L and Jensen’s inequality:

L(w̄) = L

(
1

T

T∑
t=1

wt

)
≤ 1

T

T∑
t=1

L(wt).

The rest of the proof is identical to Option I.

Therefore, as long as A is no-regret (i.e. B(T) = o(T)), then the generalization error of w̄ is
arbitrarily close to the optimal error when the sample size T is large enough. For example, for many
problems we can show B(T) = O(

√
T), which implies a convergence rate of 1/

√
T to the optimal

generalization error and is often known to be optimal. We note that although we present an in-
expectation guarantee here, the same holds up to an additional O(

√
ln(1/δ)/T) term with probability

at least 1− δ by directly applying certain concentration inequalities (see e.g. [Luo, 2017]).

This illustrates that online learning algorithms can be used for traditional statistical learning prob-
lems as well, which is also the reason why algorithms such as ADAGRAD and ADAM are all derived
from the OCO setting, but mostly used in training models with a fixed training set in practice.
Question. Why making only one pass of the training set is important to Algorithm 1? Can you
identify the step in the proof that will break as long as one training example is passed to A more
than once?

4 The Expert Problem and the Hedge Algorithm

Now we start discussing how to solve online learning problems. We defer the general OCO case to
the next lecture, and focus on one special case, the expert problem, in the rest of this lecture. It turns
out that this problem plays some fundamental role in online learning (and other related topics), as
we will see soon in this course. The expert problem is originated from [Freund and Schapire, 1997].
Recall that in this problem, at each round t the learner decides a distribution pt ∈ ∆(N) over N
experts, and then suffers loss ⟨pt, ℓt⟩ for some loss vector ℓt ∈ [0, 1]N decided by the environment.
How do we ensure sublinear regret in this problem?

The first naive algorithm that comes to one’s mind is probably the follow the leader (FTL) approach,
which puts all the weights to the current best expert argmaxi∈[N] −

∑t−1
s=1 ℓs(i). However, it is not

difficult to see that such an approach in fact could suffer linear regret in the worst case: simply
consider the case where N = 2, ℓ1 = (0.5, 0), and for t ≥ 2, ℓt alternates between (0, 1) and (1, 0).

It turns out that, however, simply replacing the “max” in this naive algorithm by some “softmax”
would change the situation greatly. In fact, this leads to the the classical algorithm called Hedge [Lit-
tlestone and Warmuth, 1994, Freund and Schapire, 1997]. The same algorithm is also known as mul-
tiplicative weights update, exponential weights, and many others, and was discovered independently
in many different areas. We present the pseudocode below.

Algorithm 2: Hedge
Input: learning rate η > 0 (also called step size, temperature, etc.)
Initialization: let L0 ∈ RN be the all-zero vector
for t = 1, . . . , T do

compute pt ∈ ∆(N) such that pt(i) ∝ exp(−ηLt−1(i))
play pt and observe loss vector ℓt ∈ [0, 1]N

update Lt = Lt−1 + ℓt

5

We will discuss more intuition of this algorithm in the next lecture when putting it into a more
general framework, but it is clear that this algorithm is at least doing something sensible: the better
an expert looks based on the past cumulative loss, the more weight we put on this expert, but at the
same time we do not act as extremely as the FTL approach and always make sure that every expert
gets some non-zero weight. We also point out that this is definitely not the only algorithm for this
problem, and there are many other reasonable ways to spread the weights and ensure low regret.

The regret for this algorithm can be written as:

RT =

T∑
t=1

⟨pt, ℓt⟩ − min
p∈∆(N)

T∑
t=1

⟨p, ℓt⟩ =
T∑

t=1

⟨pt, ℓt⟩ −
T∑

t=1

ℓt(i
⋆)

where i⋆ ∈ argmini
∑T

t=1 ℓt(i) is the best expert in hindsight. Below we will prove a bound for
any loss sequence ℓ1, . . . , ℓT .
Theorem 2. Hedge with learning rate η guarantees for any loss sequence ℓ1, . . . , ℓT ∈ [0, 1]N :

RT ≤ lnN

η
+ η

T∑
t=1

N∑
i=1

pt(i)ℓ
2
t (i) (1)

≤ lnN

η
+ Tη, (2)

which is of order O(
√
T lnN) if η is optimally set to

√
(lnN)/T .

There are many different proofs that lead to bound (2), but we will present a “potential-based” proof
that uses bound (1) as an intermediate step, which will turn out to be very useful later on.

Proof. Define potential Φt = 1
η ln

(∑N
i=1 exp(−ηLt(i))

)
. First consider how much the potential

can increase between two consecutive rounds:

Φt − Φt−1 =
1

η
ln

(∑N
i=1 exp(−ηLt(i))∑N

i=1 exp(−ηLt−1(i))

)
=

1

η
ln

(∑N
i=1 exp(−ηLt−1(i)) exp(−ηℓt(i))∑N

i=1 exp(−ηLt−1(i))

)

=
1

η
ln

(
N∑
i=1

pt(i) exp(−ηℓt(i))

)

≤ 1

η
ln

(
N∑
i=1

pt(i)
(
1− ηℓt(i) + η2ℓ2t (i)

))
(e−y ≤ 1− y + y2 for all y ≥ −1)

=
1

η
ln

(
1− η ⟨pt, ℓt⟩+ η2

N∑
i=1

pt(i)ℓ
2
t (i)

)

≤ −⟨pt, ℓt⟩+ η

N∑
i=1

pt(i)ℓ
2
t (i). (ln(1 + y) ≤ y)

Summing over t, telescoping, and rearranging gives

T∑
t=1

⟨pt, ℓt⟩ ≤ Φ0 − ΦT + η

T∑
t=1

N∑
i=1

pt(i)ℓ
2
t (i)

≤ lnN

η
− 1

η
ln (exp(−ηLT (i

⋆))) + η

T∑
t=1

N∑
i=1

pt(i)ℓ
2
t (i)

≤ lnN

η
+ LT (i

⋆) + η

T∑
t=1

N∑
i=1

pt(i)ℓ
2
t (i),

which proves Eq. (1). Eq. (2) follows immediately by the boundedness of losses.

6

One might wonder how to come up with such a proof and the specific form of “potential” that seems
to come from nowhere. We will not go deep into this question, but only point out that a) the potential
does come from somewhere and in fact can be “derived” in a sense from a principled framework,
and b) in the next lecture we will discuss a different and more general and intuitive proof.

Question. Does Theorem 2 hold for an oblivious adversary or an adaptive adversary? If the
learner randomly selects an expert it according to pt at each time t, and we measure the regret
by
∑T

t=1 ℓt(it) −
∑T

t=1 ℓt(i
⋆), can we still obtain a similar regret bound (in expectation or with

high probability)? If so, does it hold for an oblivious adversary or an adaptive adversary?

5 Lower bound for the Expert Problem

One important thing to note here is that the regret of Hedge has only logarithmic dependence on
N , which is extremely important for problems with a huge number of experts as we will discuss in
future lectures. But even if this regret bound already looks very good, how do we know whether we
can do even better or not? In general, how can we tell whether a regret upper bound is satisfactory or
not? The notion of minimax regret can be used to answer this question exactly. Intuitively, minimax
regret is the smallest possible worst-case regret one can achieve. For example, the minimax regret
of the expert problem with an oblivious adversary can be defined as

min
A

max
ℓ1,...,ℓT

EA[RT]

where A is any legitimate expert algorithm and EA highlights the randomness with respect to the
algorithm itself. Note that RT depends on both A and all the losses even if the dependence is not
explicitly spelled out. The existence of the Hedge algorithm already shows that

min
A

max
ℓ1,...,ℓT

EA[RT] ≤ 2
√
T lnN.

If we can further show a Ω(
√
T lnN) lower bound, that is, no algorithm can do better than

O(
√
T lnN) in the worst case, then we call this bound the minimax optimal regret. The follow-

ing theorem essentially shows that this is indeed the case (and thus Hedge is minimax optimal).

Theorem 3. For any algorithm, we have

sup
T,N

max
ℓ1,...,ℓT

EA[RT]√
T lnN

≥ 1√
2
.

How do we prove such a lower bound? It seemingly requires us to construct a worst-case loss
sequence for any given algorithm, which is quite difficult given that an algorithm is a very complex
object. Instead, a common technique is to construct some randomized environment, and then argue
that all algorithms have to suffer certain regret in expectation, which in turn proves that for every
algorithm, there exists a bad sequence leading to such regret, without even explicitly constructing it.

Proof. Let D be the uniform distribution over {0, 1}. We have

max
ℓ1,...,ℓT

EA[RT] ≥ E
ℓ1,...,ℓT

iid∼DN
EA[RT]

=

T∑
t=1

EA,ℓ1,...,ℓt [⟨pt, ℓt⟩]− Eℓ1,...,ℓT

[
min
i∈[N]

T∑
t=1

ℓt(i)

]

=

T∑
t=1

EA,ℓ1,...,ℓt−1 ⟨pt,Eℓt [ℓt]⟩ − Eℓ1,...,ℓT

[
min
i∈[N]

T∑
t=1

ℓt(i)

]

= T/2− Eℓ1,...,ℓT

[
min
i∈[N]

T∑
t=1

ℓt(i)

]

= Eℓ1,...,ℓT

[
max
i∈[N]

T∑
t=1

(12 − ℓt(i))

]

7

=
1

2
Eσ1,...,σT

[
max
i∈[N]

T∑
t=1

σt(i)

]
,

where σt(i) for i ∈ [N], t ∈ [T] are i.i.d. Rademacher random variables (i.e. −1 with probability
0.5 and 1 with probability 0.5). Note that at this point we have converted the problem to calculating
a simple quantity that is independent of the algorithm and also has no sequential structure. Using
the following standard result from probability theory (see for example [Cesa-Bianchi and Lugosi,
2006, Lemmas A.11 and A.12]) completes the proof.

lim
T→∞

lim
N→∞

Eσ1,...,σT

[
maxi∈[N]

∑T
t=1 σt(i)

]
√
T lnN

=
√
2.

Note that this lower bound is asymptotic — it does not tell us for a specific N and T , what the
optimal regret is. For a non-asymptotic lower bound, see for example [Orabona and Pál, 2015].

References
A. Agarwal, S. Bird, M. Cozowicz, L. Hoang, J. Langford, S. Lee, J. Li, D. Melamed, G. Oshri,

O. Ribas, S. Sen, and A. Slivkins. A multiworld testing decision service. arXiv:1606.03966,
2016.

Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, and Shay Moran. Private and online learn-
ability are equivalent. ACM Journal of the ACM (JACM), 2022.

Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit hold’em
poker is solved. Science, 347(6218):145–149, 2015.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. Cambridge University
Press, 2006.

Nicolò Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of on-line
learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057, 2004.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Proceedings of
the 3rd International Conference on Learning Representations, 2015.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information and
Computation, 108:212–261, 1994.

Haipeng Luo. Lecture notes 1, introduction to online learning, 2017. URL https://
haipeng-luo.net/courses/CSCI699/lecture1.pdf.

Francesco Orabona and Dávid Pál. Optimal non-asymptotic lower bound on the minimax regret of
learning with expert advice. arXiv preprint arXiv:1511.02176, 2015.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, 2003.

8

https://haipeng-luo.net/courses/CSCI699/lecture1.pdf
https://haipeng-luo.net/courses/CSCI699/lecture1.pdf

	Overview of Online Learning
	A Unified Model
	Goal of the Learner: Regret Minimization

	Connection to Statistical Learning
	The Expert Problem and the Hedge Algorithm
	Lower bound for the Expert Problem

