
CSCI 659 Lecture 10
Fall 2022

Instructor: Haipeng Luo

1 Online Reinforcement Learning

In this lecture, we discuss how online learning has been extended to and combined with another
important and popular area of machine learning: reinforcement learning (RL). RL can be seen as a
generalization of MAB by incorporating the concept of states and the transition among them driven
by the learner’s actions. The reward/loss of the learner depends on not only her chosen action, but
also the state that she is currently in. This allows RL to capture many more exciting applications
(such as playing games or controlling robots), but also leads to one key challenge compared to other
problems discussed so far: long-term planing, that is, a smart learner should not focus too much
on the short-term reward generated by the current action, but should instead plan ahead in order to
reach a region of states with high rewards in the future.

Formally, RL is often captured by a Markov Decision Process (MDP), which is a Markov chain
driven by a learner’s decisions. There are many variants of MDPs. Here, we focus on a variant
called finite-horizon tabular MDPs, defined via a tuple (X,A,P, ℓ):

1. X is a finite state space that can be partitioned into H layers X1, . . . , XH for some fixed param-
eter H , where X1 contains only an initial state xinit.

2. A is a finite action space containing the available actions for the learner at each state.
3. P is a transition function so that P (·|x, a) (for x /∈ XH) is the distribution of the next state

after taking action a at state x (note the Markovian assumption here: the next state only depends
on the current state and action, but not the past). It is assumed that P (x′|x, a) is not zero only
when x ∈ Xh and x′ ∈ Xh+1 for some h < H , that is, transition can only happen between
consecutive layers.

4. Finally, ℓ : X × A → [0, 1] is a loss function with ℓ(x, a) specifying the loss of taking action a
at state x.

A policy π is a mapping that maps each state in X to a distribution π(·|x) over the actions in
A. Starting from the initial state xinit, if the learner acts according to π (that is, take an action
sampled from π(·|x) when at state x), then an episode x1, a1, . . . , xH , aH of H steps is generated
with x1 = xinit, ah ∼ π(·|xh), and xh+1 ∼ P (·|xh, ah). The expected total loss of the learner
suffered in this episode is denoted by V π(xinit; ℓ) = E[

∑H
h=1 ℓ(xh, ah)]. More generally, we denote

the expected loss starting from any state x and following π afterwards as V π(x; ℓ), which can be
written Ea∼π(·|x)[Qπ(x, a; ℓ)] where

Qπ(x, a; ℓ) = ℓ(x, a) + 1{x /∈ XH}Ex′∼P (·|x,a)[V
π(x′; ℓ)] (1)

is the so-called Q-function (specifying the expected loss starting from x, taking action a, and fol-
lowing π afterwards) and the above is known as the Bellman equation. While this definition looks
recursive, it is really not since the transition is always from one layer to the next one, making
V π(x; ℓ) well-defined in a backward manner. Traditional RL concerns about finding the (approxi-
mately) optimal policy that minimizes V π(xinit; ℓ) when P (and sometimes ℓ as well) is unknown,
using as few episodes as possible.

We emphasize that assuming a layer structure is really without loss of generality since such a struc-
ture can always be created artificially by considering an expanded state space X × [H] where each
state is duplicated H times, each with a different step index. The real restriction of a finite-horizon
MDP is that it only considers interaction of a fixed (H) number of steps, after which the learner
is reset to the initial state, making any “wrong” actions always recoverable in a sense. There are
many other variants of MDP that address this limitation, such as the stochastic shortest path model
where the interaction stops only when a certain goal state is reached, or the infinite-horizon model
where the interaction never stops and one cares about either the average loss of the learner or her
discounted total loss.
Question 1. Assuming a fixed initial state is also in a sense without loss of generality, and the same
model can deal with the case where the initial state is drawn from a fixed distribution. Why?

Online RL. In online RL, a topic that receives increasing interest in more recent RL studies, the
learner deals with a potentially changing MDP with the goal of minimizing regret. Specifically,
consider a finite-horizon MDP with a fixed state space X , a fixed action space A, and a fixed tran-
sition function P . The learner interacts with the MDP through T episodes, where at each episode
t = 1, . . . , T :

1. the learner decides a policy πt while an oblivious adversary decides a loss function ℓt : X×A→
[0, 1];

2. the learner starts from the initial state xinit, acts according to πt, and ends at the terminate state
xH after H steps, generating and observing a trajectory {(xt,h, at,h, ℓt(xt,h, at,h))}Hh=1.

Let V πt (x) be a shorthand for V π(x; ℓt). The goal of the learner is to minimize her expected regret,
defined as

E[RT] = E

[
T∑
t=1

V πt
t (xinit)

]
−

T∑
t=1

V π
⋆

t (xinit)

where π⋆ ∈ argminπ
∑T
t=1 V

π
t (xinit) is the overall optimal policy in hindsight. More concretely, we

would like to design an efficient algorithm with (sublinear in T) regret and time/space complexity
that are both polynomial in |X|, |A|, and H .

Note that the feedback on the loss function is bandit-type, that is, the learner does not observe the
entire ℓt at the end of episode t, but only its value for those visited state-action pairs. In fact, it is
clear that adversarial MAB is exactly a special case of this setup with H = 1.

One might wonder why we only allow the loss function to be changing over time, but not the transi-
tion P as well. It turns out that, if we allow P to also be adversarially chosen, then in the worst case
the regret can be as bad as Ω(2H

√
T); see [Tian et al., 2021, Lemma 1]. Thus, we assume a fixed

P throughout. In fact, for simplicity, we will also by default assume that P is known to the learner
in the following discussions and only briefly mention what modifications are needed to handle un-
known P . Note that unlike the traditional RL setup where the MDP is fixed and thus knowing P
significantly simplifies the problem, online RL is still highly non-trivial even with known P due to
the changing loss functions.

2 FTRL over the Occupancy Measure Space

It is not difficult to see that V πt (xinit) is in fact nonconvex in π (try to convince yourself), making
it difficult to directly perform FTRL over the policy space. It turns out that, however, it is possible
to view this as a linear problem over a different space. Specifically, any policy π induces a corre-
sponding occupancy measure qπ : X × A → [0, 1] such that qπ(x, a) is the probability of visiting
state-action pair (x, a) when the learner starts from the initial state and acts according to π. By see-
ing qπ and a loss function ℓ as |X||A|-dimensional vectors, we can then write V π(xinit; ℓ) as ⟨qπ, ℓ⟩
and thus the expected regret as

E[RT] = E

[
T∑
t=1

⟨qt − q⋆, ℓt⟩

]
where qt = qπt and q⋆ = qπ

⋆

. Importantly, this translates the problem into an online linear opti-
mization problem!

2

This naturally suggests performing FTRL over the space of occupancy measures to directly come
up with qt. Specifically, let Ω = {qπ : π is a policy} be the space of all valid occupancy measures.
While it might not be clear at first glance, this set is in fact a relatively simple polytope with O(|X|)
linear constraints, as shown by the following lemma.
Lemma 1. The set of valid occupancy measures Ω can be equivalently written as

Ω =

{
q ∈ [0, 1]|X|×|A| : q(xinit) = 1 and∑
x∈Xh

∑
a∈A

q(x, a)P (x′|x, a) = q(x′), ∀x′ ∈ Xh+1 and h ∈ [H − 1],

}
where q(x) is a shorthand for

∑
a∈A q(x, a).

Proof. For any π, the induced occupancy measure qπ must belong to this polytope since the first
constraint trivially holds, and the second constraint says that the probability of visiting state x′ is the
sum of probabilities of visiting a state-action pair (x, a) in the last layer and then transiting to x′,
which is also trivially true by definition.

On the other hand, for some q that belongs to this polytope, it corresponds to the occupancy measure
induced by the policy π with π(a|x) ∝ q(x, a) (if q(x) ̸= 0, this means π(a|x) = q(x, a)/q(x);
otherwise, π(·|x) can be an arbitrary distribution overA). To verify this, we need to argue qπ(x, a) =
q(x, a) for any (x, a) pair, which can be done via a simple induction on the layer index: when
x = xinit, this holds since qπ(xinit, a) = π(a|xinit) = q(xinit, a)/q(xinit) = q(xinit, a) using the first
constraint q(xinit) = 1; now assuming qπ(x, a) = q(x, a) for any (x, a) ∈ Xh × A, then for any
(x′, a′) ∈ Xh+1 ×A, we have

qπ(x′, a′) =

(∑
x∈Xh

∑
a∈A

qπ(x, a)P (x′|x, a)

)
π(a′|x′) (definition of occupancy measure)

=

(∑
x∈Xh

∑
a∈A

q(x, a)P (x′|x, a)

)
π(a′|x′) (inductive assumption)

= q(x′)π(a′|x′) (second constraint of the polytope)

= q(x′, a′), (definition of π)

which finishes the proof.

Note that the proof also tells us how to extract a policy π from its induced occupancy measure qπ
by simply normalizing qπ(x, ·) at each state x. Thus, after obtaining qt from FTRL, we can extract
the policy πt in this way. It remains to construct loss estimators for ℓt since we only observe its
value for H state-action pairs. Due to the similarity with MAB, it is natural to again use the inverse
importance weighting idea to construct ℓ̂t as

ℓ̂t(x, a) =
ℓt(x, a)

qt(x, a)
1t(x, a) (2)

where 1t(x, a) is 1 if (x, a) is visited during episode t and 0 otherwise (so there are at most H non-
zero entries in ℓ̂t, one for each layer). The following properties are direct generalization of those
from MAB.
Lemma 2. The estimator defined in Eq. (2) satisfies Et[ℓ̂t(x, a)] = ℓt(x, a) (unbiasedness) and
Et[ℓ̂t(x, a)2] = ℓt(x,a)

2

qt(x,a)
≤ 1

qt(x,a)
.

Proof. Both are based on direct calculations using the fact Et[1t(x, a)] = qt(x, a).

This concludes the design of the algorithm, formally shown below with a general regularizer. To
come up with a concrete regularizer, we can again take inspiration from MAB. For example, we
can use the generalized Shannon entropy regularizer ψ(q) =

∑
(x,a)∈X×A q(x, a) ln q(x, a). The

resulting algorithm was proposed by [Zimin and Neu, 2013] and ensures the following regret bound.

3

Algorithm 1: FTRL for Finite-Horizon MDPs
Input: learning rate η > 0 and a regularizer ψ defined on the occupancy measure space Ω
for t = 1, . . . , T do

compute qt = argminq∈Ω

〈
q,
∑
s<t ℓ̂s

〉
+ 1

ηψ(q)

extract policy πt such that πt(a|x) ∝ qt(x, a)
execute policy πt and observe trajectory {(xt,h, at,h, ℓt(xt,h, at,h))}Hh=1

construct estimator ℓ̂t based on Eq. (2)

Theorem 1. Algorithm 1 with regularizer ψ(q) =
∑

(x,a)∈X×A q(x, a) ln q(x, a) ensures E[RT] ≤
H ln(|X||A|)

η + η|X||A|T , which is Õ(
√
H|X||A|T) after picking the optimal η.

Proof. By the exact same analysis as Hedge, one can show (we have seen several approaches by
now and you should verify this yourself):

T∑
t=1

〈
qt − q⋆, ℓ̂t

〉
≤ Bψ

η
+ η

T∑
t=1

∑
(x,a)∈X×A

qt(x, a)ℓ̂t(x, a)
2

where Bψ is the range of ψ and is at most

max
q∈Ω

∑
(x,a)∈X×A

q(x, a) ln
1

q(x, a)
= max

q∈Ω

∑
h∈[H]

 ∑
(x,a)∈Xh×A

q(x, a) ln
1

q(x, a)

≤
∑
h∈[H]

ln(|Xh||A|) ≤ H ln(|X||A|)

where the first inequality is by realizing
∑

(x,a)∈Xh×A q(x, a) = 1 (based on the definition of occu-
pancy measure) and treating

∑
(x,a)∈Xh×A q(x, a) ln

1
q(x,a) as the Shannon entropy of a distribution

over |Xh||A| elements, which is thus at most ln(|Xh||A|). The rest of the proof is simply by taking
expectation and applying Lemma 2.

Ignoring logarithmic terms, this regret bound is known to be optimal. When H = 1 (and thus |X| =
1 as well), the algorithm/regret also recovers Exp3. Moreover, the algorithm can be implemented
in time/space polynomial in all the parameters since the FTRL optimization is a convex problem
defined over a simple polytope with O(|X|) constraints.
Question 2. What happens if we use a direct generalization of Tsallis entropy, such as ψ(q) =

−2
∑

(x,a)∈X×A
√
q(x, a), as the regularizer?

Handling Unknown Transition. When P is unknown (the more interesting situation), we need
to handle two issues in Algorithm 1: first, the decision set Ω is no longer known ahead of time, and
second, the exact loss estimator defined in Eq. (2) is also no longer constructable since qt, the occu-
pancy measure of πt, is unknown. To deal with both issues, we need to apply the optimism principle
again. Indeed, the challenge coming from unknown transition is very much similar to that in solving
stochastic MAB, since both are about adaptively getting samples from fixed unknown distributions.
(So interestingly, this problem combines the challenges of both stochastic and adversarial MAB.)

Specifically, at each time t, we build a confidence set Pt that contains the true transition P with high
probability. We omit the concrete form of Pt but point out that it is based on standard concentration
inequalities and in spirit similar to the confidence set of the loss of each arm in stochastic MAB. Let
qπ,P̂ be the occupancy measure induced by policy π for an MDP with transition function P̂ (so the
earlier notation qπ is simply a shorthand for qπ,P). Then, we make the following two modifications
to Algorithm 1:

• replace the unknown decision set Ω in FTRL with Ωt = {qπ,P̂ : P̂ ∈ Pt, π is a policy}, the set
of all plausible occupancy measures, which incorporates optimism into the FTRL update.

4

• similarly, when constructing the loss estimator, replace the unknown qt(x, a) = qπt,P (x, a)

with maxP̂∈Pt
qπt,P̂ (x, a), the largest plausible probability of visiting (x, a), thus incorporating

optimism into the loss estimators as well.

It turns out that the resulting algorithm is still implementable in polynomial time. By carefully
analyzing the error coming from the transition estimation, Jin et al. [2020] showed that this algorithm
ensures O(H|X|

√
|A|T) regret, which only exhibits a small gap compared to the best known lower

bound Ω(H
√
|X||A|T). Closing this gap (with any algorithm, even inefficient ones) is still open.

3 Policy Optimization Methods

Earlier, we mentioned that V π(xinit; ℓ) is nonconvex in π, but this in fact does not immediately rule
out the possibility of optimizing directly over the policy space. Such approaches are generally called
policy optimization methods. Here, we introduce one such method, which in a sense decomposes
the online RL problem into |X| different instances of the adversarial MAB problem, one for each
state. This is enabled by the following simple yet fundamental performance difference lemma.

Lemma 3. For any loss function ℓ and any two policies π and π⋆, the difference of their expected
total losses starting from the initial state can be decomposed as

V π(xinit; ℓ)− V π
⋆

(xinit; ℓ) =
∑
x∈X

q⋆(x)
∑
a∈A

(π(a|x)− π⋆(a|x))Qπ(x, a; ℓ)

where q⋆ is a shorthand for qπ
⋆

.

Proof. This is by direct calculations (below,
∑
x means

∑
x∈X and

∑
x,a means

∑
x∈X,a∈A):

V π(xinit; ℓ)− V π
⋆

(xinit; ℓ)

= V π(xinit; ℓ)−
∑
x,a

q⋆(x, a)ℓ(x, a)

= V π(xinit; ℓ)−
∑
x,a

q⋆(x, a)

(
Qπ(x, a; ℓ)− 1{x /∈ XH}

∑
x′

P (x′|x, a)V π(x′; ℓ)

)
(Bellman equation (1))

= V π(xinit; ℓ) +
∑
x′

∑
x,a

1{x /∈ XH}q⋆(x, a)P (x′|x, a)V π(x′; ℓ)−
∑
x,a

q⋆(x, a)Qπ(x, a; ℓ)

= V π(xinit; ℓ) +
∑

x′ ̸=xinit

q⋆(x′)V π(x′; ℓ)−
∑
x,a

q⋆(x, a)Qπ(x, a; ℓ)

(
∑
x,a 1{x /∈ XH}q⋆(x, a)P (x′|x, a) = q⋆(x′) if x′ ̸= xinit)

=
∑
x′

q⋆(x′)V π(x′; ℓ)−
∑
x,a

q⋆(x, a)Qπ(x, a; ℓ) (q⋆(xinit) = 1)

=
∑
x,a

q⋆(x)π(a|x)Qπ(x, a; ℓ)−
∑
x,a

q⋆(x)π⋆(a|x)Qπ(x, a; ℓ),

where the last step changes the name of the variable x′ to x and uses the definition V π(x; ℓ) =∑
a π(a|x)Qπ(x, a; ℓ).

Below is a direct consequence of the performance difference lemma.

Corollary 1. Denote Qπt(x, a; ℓt) by Qt(x, a). Then the expected regret of the learner can be
decomposed as

E[RT] = E

[∑
x∈X

q⋆(x)

T∑
t=1

⟨πt(·|x)− π⋆(·|x), Qt(x, ·)⟩

]
.

5

Note that for each x, the term
∑T
t=1 ⟨πt(·|x)− π⋆(·|x), Qt(x, ·)⟩ is exactly the regret of a |A|-armed

bandit problem, with Qt(x, ·) being the “loss vector” for this MAB instance. Thus, Corollary 1
indicates that the regret of the online RL problem can be written as the weighted average of some
MAB regret over all states, where the weight for each state is its (unknown) probability of being
visited by π⋆.

This suggests the following algorithmic idea: simply run an adversarial MAB algorithm on each
state x to decide πt(·|x). We emphasize that it is critical to use an adversarial MAB algorithm here,
even if the loss functions ℓ1, . . . , ℓT are stochastic (thus the online RL problem is a stochastic one).
This is because Qt(x, ·) is the Q-function with respect to πt, and πt itself is changing over time in a
potentially complicated way, making the corresponding MAB instance non-stochastic.

One slight difference compared to a standard MAB problem is that after selecting an action a, we
do not exactly observe Qt(x, a). However, we can still naturally construct an estimator Q̂t for Qt
using some loss estimator ℓ̂t and the transition function P (again assumed to be known for now) via:
Q̂t(x, a) = Qπt(x, a; ℓ̂t). For example, if we again use the unbiased loss estimator of Eq. (2), then
clearly Q̂t is also an unbiased estimator for Qt.

The issue of this estimator is that its variance is quite different from that of ℓ̂t, making it difficult
to control the local-norm from the MAB regret. For example, if we use Exp3 to solve the MAB
problem at each state, then the local-norm for time t is E[

∑
a∈A πt(a|x)Q̂t(x, a)2], which does not

enjoy the critical variance cancellation effect any more. In fact, it is even difficult to control the
magnitude of Q̂t(x, a) in this case, since the importance weight qt(x, a) in Eq. (2) can be arbitrarily
small (making ℓ̂t(x, a) arbitrarily large). Also note that unlike some other problems we have seen
(such as Problem 3(b)(ii) of HW2), there is no way to modify the algorithm to enforce a lower bound
on qt(x, a), since it might be the case that the transition of the MDP is such that regardless of how
the learner behaves, the probability of visiting state x is always tiny.

To fix this issue, we have to sacrifice a little bit of the unbiasedness and add a small value to the
importance weight. This leads to the following algorithm, taken from [Shani et al., 2020].

Algorithm 2: Policy Optimization
Input: parameter γ > 0, learning rate η > 0, and a regularizer ψ defined over ∆(A)
for t = 1, . . . , T do

for each state x, define πt(·|x) = argminp∈∆(A)

〈
p,
∑
s<t Q̂s(·, x)

〉
+ 1

ηψ(p)

execute policy πt and observe trajectory {(xt,h, at,h, ℓt(xt,h, at,h))}Hh=1

construct Q-function estimator Q̂t such that Q̂t(x, a) = Qπt(x, a; ℓ̂t) where

ℓ̂t(x, a) =
ℓt(x, a)

qt(x, a) + γ
1t(x, a) (3)

The following lemma summarizes the bias and variance of the estimators.

Lemma 4. The loss estimator defined in Eq. (3) satisfies 0 ≤ ℓt(x, a) − Et[ℓt(x, a)] ≤ γℓt(x,a)
qt(x,a)

and V πt(xinit; ℓt) − Et[V πt(xinit; ℓ̂t)] ≤ γ|X||A|. Also, the corresponding Q-function estimator
Q̂t(x, a) = Qπt(x, a; ℓ̂t) satisfies Et[Q̂t(x, a)2] ≤ H2

γ .

Proof. To prove the first statement, note that

ℓt(x, a)− Et[ℓt(x, a)] = ℓt(x, a)

(
1− qt(x, a)

qt(x, a) + γ

)
=

γℓt(x, a)

qt(x, a) + γ
,

which is clearly nonnegative and at most γℓt(x,a)qt(x,a)
. Using this upper bound, we can prove the second

statement:

V πt(xinit; ℓt)− Et[V πt(xinit; ℓ̂t)] =
〈
qt, ℓt − Et[ℓ̂t]

〉
≤
∑
x,a

qt(x, a)
γℓt(x, a)

qt(x, a)
≤ γ|X||A|.

6

To prove the last statement, note that the range of ℓ̂t(x, a) is [0, 1/γ], and thus Q̂t(x, a), being theQ-
function with respect to ℓ̂t, is in the range [0, H/γ]. Therefore, Et[Q̂t(x, a)2] ≤ H

γ Et[Q̂t(x, a)] ≤
H
γ Qt(x, a) ≤

H2

γ .

This lemma tells us that the loss estimator is underestimating the true loss, but even if the amount of
underestimation can be very large for a specific (x, a) pair, importantly, the overall underestimation
of the expected loss of πt itself is only γ|X||A|. On the other hand, what this bias buys us is an
explicit control on the variance of the Q-function estimator (which is at most H2/γ). Together,
these facts allow us to prove the following regret bound.
Theorem 2. With the entropy regularizerψ(p) =

∑
a∈A p(a) ln p(a), Algorithm 2 ensures E[RT] ≤

γ|X||A|T + H ln |A|
η + ηH3T

γ , which is Õ((T 2H4|X||A|)1/3) after picking the optimal γ and η.

Proof. First, we decompose the regret as:

E[RT] = E

[
T∑
t=1

(V πt
t (xinit)− V π

⋆

t (xinit))

]

= E

[
T∑
t=1

(V πt(xinit; ℓt)− V πt(xinit; ℓ̂t)) +

T∑
t=1

(V πt(xinit; ℓ̂t)− V π
⋆

(xinit; ℓt))

]

≤ γ|X||A|T + E

[
T∑
t=1

(V πt(xinit; ℓ̂t)− V π
⋆

(xinit; ℓ̂t))

]
where the last step uses Lemma 4. We then apply the performance difference lemma to the second
term:

T∑
t=1

(V πt(xinit; ℓ̂t)− V π
⋆

(xinit; ℓ̂t)) =
∑
x∈X

q⋆(x)

T∑
t=1

〈
πt(·|x)− π⋆(·|x), Q̂t(x, ·)

〉
.

For each state x, note that πt(·|x) is obtained by Hedge with the Q-function estimators as inputs.
Thus, we can apply the regret bound of Hedge to obtain:

T∑
t=1

〈
πt(·|x)− π⋆(·|x), Q̂t(·, x)

〉
≤ ln |A|

η
+ η

T∑
t=1

∑
a∈A

πt(a|x)Q̂t(x, a)2,

which is at most ln |A|
η + ηH2T

γ after taking expectation on both sides and using Lemma 4. Finally,
using

∑
x∈X q

⋆(x) = H and combining everything finishes the proof.

As one can see in this analysis, because we are not able to make use of the critical variance can-
cellation effect from the local-norm term and instead directly enforce an H2/γ upper bound on the
variance, the final regret bound we obtain is of order T 2/3 instead of

√
T . However, compared to

Algorithm 1, policy optimization methods like Algorithm 2 are even more efficient since it does not
require solving a convex problem over the occupancy measure space. In fact, it is not even neces-
sary to actually run an MAB algorithm for every state at every round; instead, it suffices to compute
πt(·|x) only when x is actually visited. Due to this property, policy optimization methods can even
be generalized to problems with an infinite number of states.

3.1 A Different Q-Function Estimator and Extra Bonuses

Is there a way to enjoy both the nice properties of policy optimization methods and the
√
T -type

regret bound simultaneously? As mentioned, the variance cancellation is critical if we want
√
T -

type regret, and that requires a more careful treatment of the variance of the Q-function estimator.
To this end, we study a different (and in a sense simpler) estimator for some parameter γ ≥ 0:

Q̂t(x, a) =
Lt,h

qt(x, a) + γ
1t(x, a) where h is s.t. x ∈ Xh and Lt,h =

H∑
k=h

ℓt(xt,k, at,k). (4)

7

Note that Lt,h is the total loss suffered (and observed) by the learner starting from step h at round
t, which by definition has conditional expectation Qt(xt,h, at,h) (given everything up to step h).
Therefore, when γ = 0, Q̂t(x, a) is indeed an unbiased estimator for Qt(x, a). The advantage of
this estimator is that its variance is in a simple form similar to its bias, as summarized below.

Lemma 5. The Q-function estimator defined in Eq. (4) satisfies 0 ≤ Qt(x, a) − Et[Q̂t(x, a)] ≤
γH

qt(x,a)+γ
and Et[Q̂t(x, a)2] ≤ H2

qt(x,a)+γ
.

Proof. To analyze the bias, note that

Et[Q̂t(x, a)] = Et[1t(x, a)]Et
[

Lt,h
qt(x, a) + γ

∣∣∣1t(x, a) = 1

]
= qt(x, a)

Qt(x, a)

qt(x, a) + γ
,

and thus 0 ≤ Qt(x, a)− Et[Q̂t(x, a)] = γQt(x,a)
qt(x,a)+γ

≤ γH
qt(x,a)+γ

. Similarly, the variance is

Et[Q̂t(x, a)2] = Et[1t(x, a)]Et

[
L2
t,h

(qt(x, a) + γ)2

∣∣∣1t(x, a) = 1

]
≤ qt(x, a)H

2

(qt(x, a) + γ)2
≤ H2

qt(x, a) + γ
,

proving the second statement.

If we run Hedge at each state with this Q-function estimator as inputs, then based on Corollary 1,
Lemma 4, and the Hedge regret bound, we have

E[RT] = E

[∑
x∈X

q⋆(x)

T∑
t=1

⟨πt(·|x)− π⋆(·|x), Qt(x, ·)⟩

]

≤ E

[∑
x∈X

q⋆(x)

T∑
t=1

(〈
πt(·|x)− π⋆(·|x), Q̂t(x, ·)

〉
+
〈
πt(·|x), Qt(x, ·)− Q̂t(x, ·)

〉)]

≤ H ln |A|
η

+ E

[∑
x∈X

q⋆(x)

T∑
t=1

∑
a∈A

ηH2πt(a|x)
qt(x, a) + γ

]
+ E

[∑
x∈X

q⋆(x)

T∑
t=1

∑
a∈A

γHπt(a|x)
qt(x, a) + γ

]
. (5)

By taking γ = ηH and defining a “bonus” function bt(x) =
∑
a∈A

2γHπt(a|x)
qt(x,a)+γ

for each state, the

regret bound above can be simplified as H ln |A|
η +

∑T
t=1 E[V π

⋆

(xinit; bt)] (by seeing bt as function on
X ×A so that bt(x, a) = bt(x) for all a). While V π

⋆

(xinit; bt) itself is still not well bounded due to
the mismatch between π⋆ and πt (in the definition of bt), note that V πt(xinit; bt) is on the other hand
nicely bounded: V πt(xinit; bt) =

∑
x∈X qt(x)bt(x) =

∑
x∈X

∑
a∈A

2γHqt(x,a)
qt(x,a)+γ

≤ 2γH|X||A|. So

is there a way to somehow move from V π
⋆

(xinit; bt) to V πt(xinit; bt)?

In fact, we have seen the opposite of such techniques in Section 2 of Lecture 3 where by adding an
extra penalty term to the losses fed to Hedge, we were able to turn a bound η

∑
i pt(i)(ℓt(i)−mt(i))

2

(in terms of the learner’s strategy pt) to a bound η(ℓt(i⋆)−mt(i
⋆))2 (in terms of the optimal action

i⋆). This suggests that if we want the opposite effect, we need to subtract a bonus term from the loss
ℓt, and that bonus term is exactly bt. This intuitively encourages more exploration to less frequently
visited states (since bt is large when qt(x) is small), and algorithmically amounts to subtracting a
bonus Bt(x, a) = Qπ(x, a; bt) from the Q-function estimator fed to Hedge (or any other MAB
algorithm). We summarize the algorithm and its regret guarantee below.
Theorem 3. With the entropy regularizerψ(p) =

∑
a∈A p(a) ln p(a), Algorithm 3 ensures E[RT] ≤

H ln |A|
η + 2ηH2|X||A|T + 4ηH5T , which is Õ(

√
H3|X||A|T +H3

√
T) using the optimal η.

Proof. First, decompose the regret in the following way

E[RT] = E

[
T∑
t=1

(V πt(xinit; ℓt)− V π
⋆

t (xinit; ℓt))

]

= E

[
T∑
t=1

(V πt(xinit; ℓt − bt)− V π
⋆

t (xinit; ℓt − bt))

]
+ E

[
T∑
t=1

(V πt(xinit; bt)− V π
⋆

t (xinit; bt))

]

8

Algorithm 3: Policy Optimization with Bonuses

Input: parameter γ = ηH , learning rate η ≤ 1
2H2 , and a regularizer ψ defined over ∆(A)

for t = 1, . . . , T do
for each state x, define πt(·|x) = argminp∈∆(A)

〈
p,
∑
s<t(Q̂s(·, x)−Bs(x, a))

〉
+ 1

ηψ(p)

execute policy πt and observe trajectory {(xt,h, at,h, ℓt(xt,h, at,h))}Hh=1

construct Q-function estimator Q̂t as in Eq. (4) and a bonus Q-function Bt with
Bt(x, a) = Qπt(x, a; bt) and bt(x, a′) =

∑
a∈A

2γHπt(a|x)
qt(x,a)+γ

for all a′ ∈ A

≤ E

[∑
x∈X

q⋆(x)

T∑
t=1

⟨πt(·|x)− π⋆(·|x), Qt(x, ·)−Bt(x, ·)⟩

]
+ 2γH|X||A|T − E

[
T∑
t=1

V π
⋆

t (xinit; bt)

]

where the last step uses Corollary 1 and the earlier calculation V πt(xinit; bt) ≤ 2γH|X||A|. Impor-
tantly, the last negative term helps us cancel the large bias and variance coming from the first term.
Indeed, we can further upper bound the first term by (since Q̂t is an underestimator)

E

[∑
x∈X

q⋆(x)

T∑
t=1

(〈
πt(·|x)− π⋆(·|x), Q̂t(x, ·)−Bt(x, ·)

〉
+
〈
πt(·|x), Qt(x, ·)− Q̂t(x, ·)

〉)]
.

(6)
Since bt(x, a) ≤ 2H and consequently Bt(x, a) ≤ 2H2, under the condition η ≤ 1

2H2 , we have
η(Q̂t(x, a) − Bt(x, a)) ≥ −1, satisfying the condition for Hedge’s local-norm regret bound. Ap-
plying it, we see that compared to Eq. (5), which is H ln |A|

η +
∑T
t=1 E[V π

⋆

(xinit; bt)], the only extra
term in Eq. (6), coming from the local-norm term of Hedge, is

ηE

[∑
x∈X

q⋆(x)

T∑
t=1

∑
a∈A

πt(a|x)Bt(x, a)2
]
≤ 4ηH4E

[∑
x∈X

q⋆(x)

T∑
t=1

∑
a∈A

πt(a|x)

]
= 4ηH5T.

Combining everything (and importantly canceling V π
⋆

(xinit; bt) with −V π⋆

(xinit; bt)) shows
E[RT] ≤ H ln |A|

η + 2γH|X||A|T + 4ηH5T . Plugging in γ = ηH finishes the proof.

Therefore, Algorithm 3 not only enjoys the nice properties of policy optimization methods, but
also achieves a regret bound that is only worse by some H factors compared to the optimal bound
O(
√
H|X||A|T) (achieved by Algorithm 1). In fact, the term Õ(H3

√
T) can be further improved to

Õ(H4) by slightly enlarging the bonus function. For this improvement, as well as how to deal with
unknown transition (which uses similar ideas discussed earlier) and how to generalize the algorithm
to MDPs with an infinite number states and a certain linear structure, see [Luo et al., 2021].

Question 3. Once again, in both Algorithms 2 and 3, what happens if we use Tsallis entropy, such
as ψ(p) = −2

∑
a∈A

√
p(a), as the regularizer?

References
Chi Jin, Tiancheng Jin, Haipeng Luo, Suvrit Sra, and Tiancheng Yu. Learning adversarial markov

decision processes with bandit feedback and unknown transition. In International Conference on
Machine Learning, pages 4860–4869. PMLR, 2020.

Haipeng Luo, Chen-Yu Wei, and Chung-Wei Lee. Policy optimization in adversarial mdps: Im-
proved exploration via dilated bonuses. Advances in Neural Information Processing Systems, 34:
22931–22942, 2021.

Lior Shani, Yonathan Efroni, Aviv Rosenberg, and Shie Mannor. Optimistic policy optimization with
bandit feedback. In International Conference on Machine Learning, pages 8604–8613. PMLR,
2020.

9

Yi Tian, Yuanhao Wang, Tiancheng Yu, and Suvrit Sra. Online learning in unknown markov games.
In International conference on machine learning, pages 10279–10288. PMLR, 2021.

Alexander Zimin and Gergely Neu. Online learning in episodic markovian decision processes by
relative entropy policy search. Advances in neural information processing systems, 26, 2013.

10

	Online Reinforcement Learning
	FTRL over the Occupancy Measure Space
	Policy Optimization Methods
	A Different Q-Function Estimator and Extra Bonuses

