
CSCI 659 Lecture 2
Fall 2022

Instructor: Haipeng Luo

1 A General Algorithmic Framework

In the last lecture, we discussed a special case of OCO, that is, the expert problem, and the classical
Hedge algorithm for this problem. For a general OCO problem, how should we design a no-regret
algorithm? (Recall the OCO setting: each round the learner decides wt ∈ Ω, while the environment
decides a convex loss function ft : Ω → R).

Before any further discussion, we first make the following observation: it is sufficient to solve the
case where each ft is a linear function. To see this, notice that by convexity, we have ft(wt) −
ft(w) ≤ ⟨∇ft(wt), wt − w⟩ (draw a picture to convince yourself) and thus

max
w∈Ω

T∑
t=1

(ft(wt)− ft(w)) ≤ max
w∈Ω

T∑
t=1

⟨∇ft(wt), wt − w⟩ .

Therefore, we only need to solve a different OCO instance where the loss function f ′t(w) = ⟨ℓt, w⟩
is linear with ℓt = ∇ft(wt). There are a couple of things worth noticing in this argument:

• First, this shows that knowing the gradient of ft at the played action wt is already enough, and
we do not really need full information about ft. More importantly, many algorithms (such as
those to be discussed in this lecture) only need to store the cumulative gradients, leading to
T -independent space complexity.

• Second, in this reduction, the linear loss function generally becomes adaptively chosen (that is,
dependent on wt), even if the original adversary is oblivious (unless ft itself is a linear function).
Therefore, we do generally need an algorithm that is able to deal with an adaptive adversary.

• Third, while this reduction is sufficient to derive some regret bounds, it might not be the best
way to do so, especially if ft has some curvature making the linear approximation too loose.

In light of this reduction, for the rest of this lecture, we assume that the loss functions are linear and
parameterized by ℓ1, . . . , ℓT .

1.1 The Importance of Stability

Once again, the natural first attempt is the FTL approach: wt = argminw∈Ω

〈
w,
∑t−1
s=1 ℓs

〉
, which

we already know suffers linear regret in the worst case. If we take a closer look at the worst case
instance discussed in Lecture 1, we see that FTL exhibits highly unstable behavior — it alternates
betweens two very different decisions. Motivated by this, we explore the idea of stabilizing the
algorithm. This might not sound very intuitive at first glance: the loss functions can be changing in
some arbitrary way, so why is it a good thing to have a stable learner? One answer is that, recall that
the goal of the learner is only to compete with a fixed action, so there is really no point in “chasing”
the loss functions all the time. Instead, one should stick around and not move too far away from the
current best fixed action.

To make this intuition more formal, in this lecture we consider stabilizing the FTL approach by
adding an auxiliary loss function Ψ : Ω → R that is differentiable and convex:

wt ∈ argmin
w∈Ω

〈
w,

t−1∑
s=1

ℓs

〉
+Ψ(w), (1)

and we will discuss two different types of Ψ, leading to two different classical approaches. Before
that, we first derive an intermediate regret bound for this general form, which will further illustrate
the importance of stability and the role of Ψ.

First, recall that the Bregman divergence DΨ : Ω× Ω → R+ with respect to Ψ is defined as

DΨ(w, u) = Ψ(w)−Ψ(u)− ⟨∇Ψ(u), w − u⟩ ,

which is simply the gap between Ψ and its first order approximation at u. Note that this is always
nonnegative due to the convexity of Ψ and zero when w = u, but in general asymmetric between w
and u (thus not a metric). Taylor theorem also tells us that there exists ξ between w and u such that
DΨ(w, u) =

1
2∥w − u∥2∇2Ψ(ξ),

1 meaning that the Bregman divergence is roughly measuring some
squared quadratic norm of w − u.
Question 1. What is the Bregman divergence with respect to a linear function? What about a
quadratic function?

We will be using the following simple fact.
Lemma 1. Suppose that F : Ω → R is convex and differentiable, and w⋆ ∈ Ω minimizes F . Then
F (w⋆) ≤ F (w)−DF (w,w

⋆) holds for any w ∈ Ω.

Proof. By definition, this is equivalent to ⟨∇F (w⋆), w − w⋆⟩ ≥ 0, which is exactly the first-order
optimality condition for w⋆ being a minimizer of Φ.

What this lemma says is that w⋆ being a minimizer of F actually tells us a bit more than the trivial
fact F (w⋆) ≤ F (w). With this, we prove the following useful lemma.
Lemma 2. Let w⋆ ∈ Ω be a minimizer of the function ⟨w,L⟩ + Ψ(w) for some arbitrary L and Φ
be its minimum value; similarly, let w̄⋆ and Φ̄ be a minimizer and the minimum value respectively
of the function

〈
w, L̄

〉
+Ψ(w) for some arbitrary L̄. Then we have

Φ̄− Φ ≤
〈
w⋆, L̄− L

〉
−DΨ(w

⋆, w̄⋆).

Proof. Simply apply Lemma 1 with F (w) =
〈
w, L̄

〉
+Ψ(w) and note that DF = DΨ:

Φ̄− Φ = F (w̄⋆)− Φ (by definition)
≤ F (w⋆)− Φ−DΨ(w

⋆, w̄⋆) (Lemma 1)

=
〈
w⋆, L̄− L

〉
−DΨ(w

⋆, w̄⋆). (by definition)

Now we are ready to show the following intermediate regret bound.
Lemma 3. Algorithm described by Eq. (1) ensures for any u ∈ Ω:

T∑
t=1

⟨wt − u, ℓt⟩ ≤ Ψ(u)−min
w∈Ω

Ψ(w)︸ ︷︷ ︸
penalty term

+

T∑
t=1

⟨wt − wt+1, ℓt⟩︸ ︷︷ ︸
stability term

−
T∑
t=1

DΨ(wt+1, wt)

≤ BΨ +

T∑
t=1

⟨wt − wt+1, ℓt⟩ −
T∑
t=1

DΨ(wt+1, wt),

where BΨ = maxw∈Ω Ψ(w)−minw∈Ω Ψ(w) is the range of Ψ.

1For a PSD matrix M , the notation ∥w∥M denotes
√
w⊤Mw, which is equivalent to ∥M

1
2w∥2.

2

In this bound, the first term is the penalty or error term, caused by the fact that Eq. (1) is not directly
minimizing the cumulative loss, but instead that plus the auxiliary term Ψ. The second term, called
stability term, exactly demonstrates why having a stable algorithm is important: the closer wt and
wt+1 are (in terms of their loss for the loss function at time t precisely), the smaller the regret.
Finally, for this lecture, we can simply ignore the third nonpositive term, but in the future we will
see that this is critical in some cases. In fact, after ignoring this term and rearranging, Lemma 3 is
simply saying (try to verify yourself)

Ψ(w1) +

T∑
t=1

⟨wt+1, ℓt⟩ ≤ Ψ(u) +

T∑
t=1

⟨u, ℓt⟩

for any u ∈ Ω, that is, the one-step lookahead strategy wt+1, has negative regret (when the auxiliary
loss is considered as well). This is often known as the Be-the-Leader lemma (where the leader refers
to the one-step lookahead strategy).

Proof of Lemma 3. Let Φt = minw∈Ω

〈
w,
∑
s≤t ℓs

〉
+ Ψ(w) =

〈
wt+1,

∑
s≤t ℓs

〉
+ Ψ(wt+1).

Then Lemma 2 tells us

Φt−1 − Φt ≤ −⟨wt+1, ℓt⟩ −DΨ(wt+1, wt).

Adding ⟨wt, ℓt⟩ to both sides, summing over t, telescoping, and rearranging leads to

T∑
t=1

⟨wt, ℓt⟩ − ΦT ≤ −Φ0 +

T∑
t=1

⟨wt − wt+1, ℓt⟩ −
T∑
t=1

DΨ(wt+1, wt).

It thus remains to point out that Φ0 = Ψ(w1) = minw∈Ω Ψ(w) and ΦT ≤
〈
u,
∑
s≤T ℓs

〉
+ Ψ(u)

for any u by definition.

Therefore, our goal will be to find Ψ that stabilizes the algorithm while having a relatively small
penalty. In the rest of this lecture, we discuss two general approaches to doing so.

2 Follow the Regularized Leader

The first approach is by taking Ψ to be some strongly convex function, often called a regularizer, to
stabilize the algorithm. This approach is called Follow-the-Regularized-Leader, or FTRL for short.
Note that regularization is also a widely-used technique in statistical learning (in fact, being able to
stabilize the learning algorithm is one explanation of why it helps reduce generalization error).

Formally, let Ψ = 1
ηψ for some learning rate η > 0 and a strongly convex function ψ : Ω → R.

Strong convexity means: for any w, u ∈ Ω, the following holds:2

ψ(u)− ψ(w) ≤ ⟨∇ψ(u), u− w⟩ − 1
2 ∥u− w∥2 (2)

for some norm ∥·∥. The following observations might help you understand this concept better:

• Compared to the convexity property ψ(u)−ψ(w) ≤ ⟨∇ψ(u), u− w⟩, there is an extra nonpos-
itive term in the right-hand side of Eq. (2) (thus indeed “stronger”).

• Rearranging Eq. (2) gives 1
2 ∥w − u∥2 + ⟨∇ψ(u), w − u⟩+ψ(u) ≤ ψ(w), which, for quadratic

norm ∥·∥, says that at any point w, the function ψ(w) is completely above a certain quadratic
(the left-hand side) with the same function value and gradient at u, thus illustrating a certain
curvature of ψ.

• By definition, Eq. (2) is the same as 1
2 ∥w − u∥2 ≤ Dψ(w, u) =

1
2∥w − u∥2∇2Ψ(ξ) for some ξ

between u and w, so strong convexity provides a nice lower bound for the Bregman divergence.

2More precisely, this is the definition of ψ being 1-strongly convex. Due to the scaling parameter of 1/η, it
does not matter whether ψ is 1-strongly convex or α-strongly convex for some other parameter α.

3

Due to the curvature, the minimizer of a strongly convex function is unique (try to verify this your-
self), and more importantly, does not move significantly when the function is slightly changed, that
is, the minimizer is stable. Formally, we prove the following.
Lemma 4. Let w⋆ = argminw∈Ω ⟨w,L⟩ + 1

ηψ(w) and w̄⋆ = argminw∈Ω

〈
w, L̄

〉
+ 1

ηψ(w) for
some arbitrary L and L̄, η > 0, and strongly convex ψ (with respect to some norm ∥·∥). We have

∥w⋆ − w̄⋆∥2 ≤ η
〈
w⋆ − w̄⋆, L̄− L

〉
, (3)

and consequently
∥w⋆ − w̄⋆∥ ≤ η∥L− L̄∥⋆, (4)

where ∥ · ∥⋆ is the dual norm.3

Proof. Similar to Lemma 2, define Φ = ⟨w⋆, L⟩+ 1
ηψ(w

⋆) and Φ̄ =
〈
w̄⋆, L̄

〉
+ 1

ηψ(w̄
⋆). Then we

have
Φ̄− Φ ≤

〈
w⋆, L̄− L

〉
− 1

ηDψ(w
⋆, w̄⋆) (Lemma 2)

≤
〈
w⋆, L̄− L

〉
− 1

2η∥w
⋆ − w̄⋆∥2. (definition of strong convexity)

On the other hand, noticing the symmetry between Φ̄ and Φ, we in fact also have
Φ− Φ̄ ≤

〈
w̄⋆, L− L̄

〉
− 1

ηDψ(w̄
⋆, w⋆) (Lemma 2)

≤
〈
w̄⋆, L− L̄

〉
− 1

2η∥w
⋆ − w̄⋆∥2. (definition of strong convexity)

Summing up the two inequalities and rearranging proves Eq. (3). To prove Eq. (4), it suffices to
further apply Hölder’s inequality:〈

w⋆ − w̄⋆, L− L̄
〉
≤ ∥w⋆ − w̄⋆∥∥L− L̄∥⋆

and divide both sides by ∥w⋆ − w̄⋆∥.

Note that the stability level is naturally controlled by the parameter η. Combining this stability
lemma and the intermediate regret bound Lemma 3, we obtain the following regret bound for FTRL,
where one see that the tradeoff between the penalty term and stability term is exactly governed by η.
Theorem 1. The FTRL strategy: wt = argminw∈Ω

〈
w,
∑
s<t ℓs

〉
+ 1

ηψ(w) ensures for any loss
sequence ℓ1, . . . , ℓT :

RT = max
w∈Ω

T∑
t=1

⟨wt − w, ℓt⟩ ≤
Bψ
η

+ η

T∑
t=1

∥ℓt∥2⋆ .

Therefore, if we further have maxt ∥ℓt∥⋆ ≤ G for some G > 0, then setting η =
√

Bψ
TG2 leads to

regret bound RT = O(G
√
TBψ).

Proof. Note that by the definition of FTRL, Lemma 4 exactly tells us ∥wt − wt+1∥ ≤ η∥ℓt∥⋆.
Therefore, the regret can be bounded as

RT ≤ Bψ
η

+

T∑
t=1

⟨wt − wt+1, ℓt⟩ (Lemma 3)

≤ Bψ
η

+

T∑
t=1

∥wt − wt+1∥∥ℓt∥⋆ (Hölder’s inequality)

≤ Bψ
η

+ η

T∑
t=1

∥ℓt∥2⋆, (Lemma 4)

which finishes the proof.

We conclude by pointing out that having a uniform bound G on ∥ℓt∥⋆, which we recall is just
∥∇ft(wt)∥⋆, is simply saying that the loss function ft is G-Lipschitz with respect to the norm ∥·∥⋆.

3Given a norm ∥·∥ (called primal norm), its dual norm is defined as ∥u∥⋆ = max∥w∥≤1 ⟨u,w⟩. The most
important examples of primal-dual norm pair for this course are (∥ · ∥2, ∥ · ∥2) and (∥ · ∥1, ∥ · ∥∞).

4

3 Instances of FTRL

We now discuss concrete instantiations of FTRL for different problems.

3.1 Online Gradient Descent

For an arbitrary action space Ω, we can pick ψ(w) = 1
2 ∥w∥

2
2, a very standard regularizer in machine

learning. The induced FTRL is thus

wt = argmin
w∈Ω

〈
w,
∑
s<t

ℓs

〉
+

1

2η
∥w∥22 = argmin

w∈Ω

∥∥∥∥∥w + η
∑
s<t

ℓs

∥∥∥∥∥
2

2

,

which means wt is the L2 projection of ut = −η
∑
s<t ℓs onto Ω. This algorithm is called (lazy)

Online Gradient Descent (OGD) [Zinkevich, 2003], which can be equivalently written as (after
plugging in the original meaning of ℓt, that is, ∇ft(wt))

ut+1 = ut − η∇ft(wt); wt+1 = argmin
w∈Ω

∥w − ut+1∥2 .

A closely related variant (which enjoys similar regret bounds and is also referred to as OGD) is the
following strategy that actively projects:

ut+1 = wt − η∇ft(wt); wt+1 = argmin
w∈Ω

∥w − ut+1∥2 .

If ft stays the same over time, then the strategy above is apparently the standard gradient descent
for optimizing this function. OGD shows that even if the function is changing over time, making a
gradient descent step at each round is still a good strategy.

To apply the general regret bound from Theorem 1, we point out that ψ(w) = 1
2 ∥w∥

2
2 is strongly

convex with respect to the L2 norm (verify it yourself). The dual norm of the L2 norm is itself, so if
G is such that maxt ∥∇ft(wt)∥2 ≤ G, then the regret of OGD is bounded by

RT ≤
maxw∈Ω ∥w∥22

2η
+ ηTG2 = O

(
max
w∈Ω

∥w∥2G
√
T

)
,

where the last step is by picking the optimal η. It can be shown that this bound is minimax optimal.

Examples Consider the online regression problem where Ω = {w ∈ Rd : ∥w∥2 ≤ 1} is a set of
linear predictors with bounded norm, and ft(w) = 1

2 (⟨w, xt⟩−yt)
2 is the square loss for an example

xt ∈ {x ∈ Rd : ∥x∥2 ≤ 1} and its label yt ∈ [−1, 1]. Then because ∇ft(w) = (⟨w, xt⟩ − yt)xt,
we have G = 2 and maxw∈Ω ∥w∥2 = 1, and therefore OGD has regret O(

√
T), independent of the

dimension of the problem d.

Next consider using OGD for the expert problem (where Ω = ∆(N) and ℓt ∈ [0, 1]N). In this
case we have maxp∈∆(N) ∥p∥2 ≤ maxp∈∆(N) ∥p∥1 = 1, and ∥ℓt∥2 ≤

√
N . Thus OGD’s regret is

O(
√
TN) in this case, which has exponentially worse dependence on N compared to Hedge.

3.2 Recovering Hedge for the Expert Problem

OGD fails to achieve the optimal regret bound for the expert problem because the squared L2 norm
regularizer does not fully exploit the particular structure of the problem. Instead, for the simplex, a
classical regularizer is the (negative) Shannon entropy function (we switch the notation from w to p
for convention): ψ(p) =

∑N
i=1 p(i) ln p(i). Then one can verify that the induced FTRL strategy

pt = argmin
p∈∆(N)

〈
p,
∑
s<t

ℓs

〉
+

1

η

N∑
i=1

p(i) ln p(i)

is exactly the Hedge algorithm, that is, pt(i) ∝ exp(−η
∑
s<t ℓs(i)) (verify this yourself). In other

words, Hedge is just one special case of FTRL. This also gives us more intuition about Hedge: the
negative entropy is minimized when p is the uniform distribution, so Hedge is trying to minimize the

5

cumulative loss while not being too far away from the uniform distribution (in case some currently
bad experts become good in the future).

To apply the FTRL regret bound, we use the fact that the entropy function is strongly convex with
respect to the L1 norm. To see this, note that it suffices to prove ∥p− q∥21 ≤ ∥p− q∥2∇2ψ(ξ) for any
ξ ∈ ∆(N) between two distributions p and q, which is indeed true via a direct application of the
Cauchy-Schwarz inequality:

∥p− q∥21 =

(
N∑
i=1

|p(i)− q(i)|

)2

=

(
N∑
i=1

√
ξ(i) · |p(i)− q(i)|√

ξ(i)

)2

≤

(
N∑
i=1

ξ(i)

)(
N∑
i=1

(p(i)− q(i))2

ξ(i)

)
= ∥p− q∥2∇2ψ(ξ).

(5)

Therefore, to apply the general regret bound in Theorem 1, it suffices to do the following two simple
calculations: first, the range of the entropy function is Bψ = lnN ; second, the dual norm of the
L1 norm is the L∞ norm, and by the definition of the problem (that ℓt is a vector in [0, 1]N), we
have ∥ℓt∥∞ ≤ 1 (note that this step is the key improvement compared to using OGD in this setting).
Combining these facts, Theorem 1 implies the following regret bound for Hedge: RT ≤ lnN

η +Tη,
the same bound we proved last time using a different potential-based argument.

Question 2. In this case, can you recognize the connection between the Φt defined in the proof of
Lemma 3, and the potential function (using the same notation Φt) we used in Lecture 1?

3.3 Combinatorial Problems

Next, we consider a generalization of the expert problem that has a certain combinatorial structure.
Let S = {v1, . . . , vM} be a set of combinatorial actions such that vj ∈ {0, 1}N and maxj ∥vj∥1 ≤
m for some integerm ≤ N . Roughly speaking, the learner needs to select one of these combinatorial
actions at each time. For randomized strategy, this means that the decision space for the learner is
the convex hull of S, that is, Ω =

{∑M
j=1 p(j)vj : p ∈ ∆(M)

}
⊆ [0, 1]N , so that each point in Ω

specifies a distribution over these combinatorial actions. We consider linear loss functions ft(w) =
⟨w, ℓt⟩ for some ℓt ∈ [0, 1]N . Note that if w =

∑M
j=1 p(j)vj , then ⟨w, ℓt⟩ =

∑M
j=1 p(j) ⟨vj , ℓt⟩ is

clearly the expected loss if one selects a random combinatorial action according to p.

The expert problem is clearly a special case where S consists of all the standard basis vectors in
RN and m = 1. Another example is the so-called m-set problem, where each combinatorial action
corresponds to a set of m experts (that is, instead of picking one expert each time, we now need to
pick m of them). Formally, in this case we have S = {v ∈ {0, 1}N : ∥v∥1 = m} and Ω = {w ∈
[0, 1]N : ∥w∥1 = m} (recall the multiple-product recommendation example in Lecture 1).

Yet another important example is the online shortest path problem (useful for online routing for
example). In this problem, a direct acyclic graph with N edges, a source vertex, and a destination
vertex is given. Each round the player first randomly picks a path to send a package, then the loss
(e.g. delay) for each edge is revealed, and the player suffers the total loss of all the edges on the
selected path. This can be formulated as a special case of the above combinatorial problem by setting
S to be the set of all paths starting from the source and ending at the destination (that is, a path is
represented by a vector in {0, 1}N so that each coordinate indicates whether the corresponding edge
is on the path or not). Ω is now the set of all unit flows for this graph. Also note that m is the length
of the longest path in S.

How do we solve such problems? The first natural approach is to reduce it to another standard expert
problem. Earlier we point out that the latter is a special case of the former, but in fact the reverse is
also true: we can simply treat each of the M combinatorial actions vj as an expert with loss ⟨vj , ℓt⟩
at time t. Noticing that now the loss of each expert can be at most m, we see that applying Hedge to

this problem leads to a regret bound of O(m
√
T lnM) = O

(
m
√
T ln

(
N
m

))
= O

(
m
√
mT ln N

m

)
.

From this discussion we see again the importance of having only logarithmic dependence on the
total number of experts: M is potentially exponential in m, so we can only afford lnM in the

6

regret. However, this does not address the computational issue since running Hedge (naively) for
this problem does still require O(M) time complexity.

To address this, we consider another approach: run FTRL directly over Ω with a suitable regular-
izer. The regularizer we use is the generalized entropy ψ(w) = m

∑N
i=1 w(i) lnw(i), which looks

identical to the standard entropy except for being scaled up by m and extended from the simplex to
the space of Ω. The induced FTRL strategy:

wt = argmin
w∈Ω

〈
w,
∑
s<t

ℓs

〉
+
m

η

N∑
i=1

w(i) lnw(i)

is an N -dimensional convex problem with a polytope constraint set Ω. Therefore, as long as Ω is
not too complicated, that is, described by poly(N,m) number of linear constraints (which is indeed
the case for m-set and online shortest path), then one can apply any standard convex optimization
method (such as the Interior Point Method) to find wt efficiently.

After addressing the computational issue, we now consider the regret of this method. Via an ar-
gument similar to Eq. (5), one can show that the generalized entropy is also strongly convex with
respect to the L1 norm (verify it yourself). In addition, the range of ψ is now Bψ ≤ m2 ln N

m , and

we still have ∥ℓt∥∞ ≤ 1. Applying Theorem 1 thus shows a regret bound of m
2 ln N

m

η + ηT , which is

O
(
m
√
T ln N

m

)
with the optimal η and is

√
m times better than what Hedge achieves. To conclude,

by directly applying FTRL with a suitable regularizer over Ω, we not only resolve the computational
issue, but also achieve an even better regret bound (optimal in fact).

4 Follow the Perturbed Leader

Even though the FTRL strategy for the combinatorial problems amounts to solving a convex problem
that often admits polynomial time complexity, the actual running time might still be quite large. Is
there a more efficient approach? In particular, is it possible to solve this problem based on only an
offline linear optimization oracle that solves problems of the form argminw∈Ω ⟨w,L⟩? Notice that
for m-set, this simply corresponds to finding the m smallest coordinates, while for online shortest
path, this corresponds to finding the shortest path of a given graph, which are all “simple” problems.

Motivated by these questions, researchers developed another type of no-regret algorithms called
Follow-the-Perturbed-Leader (FTPL) [Kalai and Vempala, 2005]. The idea is to introduce stability
via random perturbation/noise. Specifically, we let Ψ(w) be a (random) linear function ⟨w, ℓ0⟩
where ℓ0 is drawn from some distribution, and the strategy at time t is simply

wt ∈ argmin
w∈Ω

〈
w,

t−1∑
s=0

ℓs

〉
,

which can clearly be solved by one call to the aforementioned linear optimization oracle, making
the algorithm highly efficient.

Why is FTPL stable? The key is really in the randomness of ℓ0, since we already know that linear
functions do not admit stable minimizers. However, if the distribution of ℓ0 is dispersed enough, then
in expectation the minimizer should not change significantly between two rounds. To illustrates this
idea, we focus on the combinatorial setup and one particular distribution of the noise, and prove the
following stability lemma (even though the same idea is applicable more generally). For simplicity,
we assume wt is always selected as one of the combinatorial actions v ∈ S (since the minimum
value of a linear function over a polytope can always be achieved by one of its vertices), and the tie
is broken in some deterministic way. Also, we restrict our attention to an oblivious adversary who
decides the loss sequence ahead of time, so that the only randomness in the following discussion
comes from ℓ0. (To deal with adaptive adversary, it turns out that it suffices to resample ℓ0 at every
time to avoid leaking the randomness to the adversary; see [Hutter and Poland, 2005, Lemma 12].)
Lemma 5. For the combinatorial problem described in Section 3.3, consider running the FTPL
strategy wt ∈ argminw∈Ω

〈
w,
∑t−1
s=0 ℓs

〉
where each coordinate of ℓ0 is an i.i.d. sample of the

Laplace distribution with density function h(x) = η
2e

−η|x| for some parameter η > 0. Then we
have E[⟨wt − wt+1, ℓt⟩] ≤ ηNm.

7

Proof. Slightly abusing the notation, let h(ℓ0) = ΠNi=1h(ℓ0(i)) =
η
2e

−η∥ℓ0∥1 be the density function
of the noise vector. For any combinatorial action vj ∈ S, define pt(j) to be the probability of the
event wt = vj (with respect to the randomness of ℓ0), which can be written as

pt(j) =

∫
ℓ0∈RN

1

[
vj = argmin

w∈Ω

〈
w,

t−1∑
s=0

ℓs

〉]
h(ℓ0)dℓ0

=

∫
ℓ0∈RN

1

[
vj = argmin

w∈Ω

〈
w,

t∑
s=0

ℓs

〉]
h(ℓ0 + ℓt)dℓ0.

(change of variable: from ℓ0 to ℓ0 + ℓt)

Since h(ℓ0 + ℓt) =
η
2e

−η∥ℓ0+ℓt∥1 ≤ η
2e

−η∥ℓ0∥1+η∥ℓt∥1 = h(ℓ0)e
η∥ℓt∥1 , we continue with

pt(j) ≤ eη∥ℓt∥1

∫
ℓ0∈RN

1

[
vj = argmin

w∈Ω

〈
w,

t∑
s=0

ℓs

〉]
h(ℓ0)dℓ0 = eη∥ℓt∥1pt+1(j).

Finally, this means

E[⟨wt − wt+1, ℓt⟩] =
M∑
j=1

(pt(j)− pt+1(j)) ⟨vj , ℓt⟩ ≤
M∑
j=1

(1− e−η∥ℓt∥1)pt(j) ⟨vj , ℓt⟩

≤
M∑
j=1

η∥ℓt∥1 · pt(j) ⟨vj , ℓt⟩ ≤ ηNm

M∑
j=1

pt(j) = ηNm,

where the second inequality uses the fact 1− e−z ≤ z for all z.

With this stability lemma, we prove the following regret bound.
Theorem 2. The FTPL strategy described in Lemma 5 ensures E[RT] ≤ 2m

η (1 + lnN) + ηTNm,

which is O(m
√
TN lnN) with the optimally tuned η.

Proof. It suffices to apply Lemma 3 and figure out the expected value of maxw ⟨w, ℓ0⟩ −
minw ⟨w, ℓ0⟩, which by symmetry of the Laplace distribution, is 2E[maxw∈Ω ⟨w, ℓ0⟩], and bounded
by 2mE[∥ℓ0∥∞]. For any value of b > 0, we further bound E[∥ℓ0∥∞] as

E[∥ℓ0∥∞] =

∫ ∞

0

Pr [∥ℓ0∥∞ ≥ x] dx ≤ b+

∫ ∞

b

Pr [∥ℓ0∥∞ ≥ x] dx

≤ b+

N∑
i=1

∫ ∞

b

Pr [|ℓ0(i)| ≥ x] dx = b+N

∫ ∞

b

e−ηxdx = b+
N

η
e−ηb,

where the first equality uses the standard fact: for any nonnegative random variable X with density
function g, E[X] =

∫∞
0
xg(x)dx =

∫∞
0

∫ x
0
g(x)dydx =

∫∞
0

∫∞
y
g(x)dxdy =

∫∞
0

Pr[X ≥ y]dy;
and the second inequality is by a union bound. Picking b = 1

η lnN leads to the minimum upper
bound 1

η (1 + lnN). Combining this fact, Lemma 5, and Lemma 3 thus finishes the proof.

We conclude with two remarks. First, the role of η is exactly the same as the learning rate in FTRL,
that is, to balance between the penalty term and the stability term. Second, the regret bound we
prove above has the undesirable

√
N dependence. However, this is merely an artifact of the loose

analysis of the stability term. In HW1, we will improve it and replace the
√
N dependence with

√
m,

which then basically matches the regret bound of running Hedge inefficiently over all combinatorial
actions, while enjoying the favorable time complexity of one linear optimization per round.

References
Marcus Hutter and Jan Poland. Adaptive online prediction by following the perturbed leader. Journal

of Machine Learning Research, 6(Apr):639–660, 2005.

8

Adam Kalai and Santosh Vempala. Efficient algorithms for online decision problems. Journal of
Computer and System Sciences, 71(3):291–307, 2005.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning, 2003.

9

	A General Algorithmic Framework
	The Importance of Stability

	Follow the Regularized Leader
	Instances of FTRL
	Online Gradient Descent
	Recovering Hedge for the Expert Problem
	Combinatorial Problems

	Follow the Perturbed Leader

