
CSCI 659 Lecture 3
Fall 2022

Instructor: Haipeng Luo

1 Adaptive Algorithms and Optimistic FTRL

While being able to deal with adversarial environments is one key advantage of online learning
algorithms, they might be overly conservative exactly for the same reason. Indeed, even if the
algorithm is minimax optimal, all we know is that in the worst case, it behaves optimally, but it is
totally possible that in some benign cases, it performs worse than what one should hope for. Ideally,
we want an algorithm that is robust in the worst case, but at the same time able to adapt to easier
instances automatically with better than worst-case regret.

There are many different ways to define “easy” instances, each of which might lead to quite different
algorithm design. In this lecture, we focus on one particular setup where at the beginning of each
round, the learner has access to some prediction about what might happen for this round before
making her decision. Formally, we consider the following variant of the OCO setup (recall that
assuming linear loss functions is without loss of generality): at each round t = 1, . . . , T ,

1. the learner first obtains mt ∈ Rd, a predictor for the loss vector ℓt of this round,

2. the learner then decides her action wt ∈ Ω;

3. the environment decides the loss vector ℓt;

4. the learner suffers loss ⟨wt, ℓt⟩ and observes ℓt.

For now, you should think of mt as some external information. Instead of assuming that it is a good
predictor, our goal is to design an algorithm whose regret naturally depends on how accurate these
predictors are: the more accurate they are, the smaller the regret. Later, we will discuss how to come
up with these predictors on our own (so no extra external information is needed).

It turns out that a small change to the FTRL framework is enough to incorporate this extra pre-
dictor and lead to strong guarantees.1 The resulting algorithm, called Optimistic or Predictive
FTRL [Rakhlin and Sridharan, 2013], simply adds mt to the current cumulative losses:

wt = argmin
w∈Ω

〈
w,mt +

∑
s<t

ℓs

〉
+

1

η
ψ(w)

where as before ψ is a regularizer and η is a learning rate. The algorithm is “optimistic” in the sense
that it believes mt is close to ℓt and thus directly includes it when calculating the cumulative loss.
Note that if mt is indeed ℓt, then the above strategy is exactly the (t+1)-th action of vanilla FTRL,
which has constant regret based on the Be-the-Leader lemma discussed last week. In fact, these
iterates from the vanilla FTRL will play a crucial role in the analysis, and we now denote them by
w′

1, w
′
2, . . ., so that

w′
t+1 = argmin

w∈Ω

〈
w,
∑
s≤t

ℓs

〉
+

1

η
ψ(w).

1Similar modifications apply to FTPL as well. For simplicity, we focus on FTRL in this lecture.

Extending the techniques from last lecture, we prove the following intermediate regret bound (you
should compare this proof with that of Lemma 3 in Lecture 2).
Lemma 1. The optimistic FTRL strategy ensures for any u ∈ Ω:
T∑
t=1

⟨wt − u, ℓt⟩ ≤
ψ(u)− ψ(w′

1)

η
+

T∑
t=1

〈
wt − w′

t+1, ℓt −mt

〉
−

T∑
t=1

Dψ(wt, w
′
t) +Dψ(w

′
t+1, wt)

η
.

Proof. Define

Φt−1 = min
w∈Ω

〈
w,mt +

∑
s<t

ℓs

〉
+

1

η
ψ(w) =

〈
wt,mt +

∑
s<t

ℓs

〉
+
ψ(wt)

η
and

Φ′
t = min

w∈Ω

〈
w,
∑
s≤t

ℓs

〉
+

1

η
ψ(w) =

〈
w′
t+1,

∑
s≤t

ℓs

〉
+
ψ(w′

t+1)

η
.

Then by Lemma 2 of Lecture 2, we have

Φ′
t−1 − Φt−1 ≤ −⟨wt,mt⟩ −

1

η
Dψ(wt, w

′
t)

and
Φt−1 − Φ′

t ≤ −
〈
w′
t+1, ℓt −mt

〉
− 1

η
Dψ(w

′
t+1, wt).

Adding up both and rearranging shows

⟨wt, ℓt⟩ ≤ Φ′
t − Φ′

t−1 +
〈
wt − w′

t+1, ℓt −mt

〉
−
Dψ(wt, w

′
t) +Dψ(w

′
t+1, wt)

η
.

Finally, summing over t, telescoping, and realizing Φ′
T ≤

〈
u,
∑
t≤T ℓt

〉
+ ψ(u)

η and Φ′
0 =

ψ(w′
1)

η

finishes the proof.

An important distinction between this regret bound and that of vanilla FTRL is the improvement
in the stability term, which now depends on the difference between ℓt and its predicted value mt.
Indeed, this is even better illustrated when we use a strongly convex regularizer and obtain the
following final regret bound.
Theorem 1. Suppose that the regularizer ψ is strongly convex with respect to some norm ∥·∥ and
has range Bψ = maxu∈Ω ψ(u)−minu∈Ω ψ(u). Then Optimistic FTRL ensures

RT ≤ Bψ
η

+ η

T∑
t=1

∥ℓt −mt∥2⋆ −
1

4η

T∑
t=2

∥wt − wt−1∥2 .

Proof. It suffices to handle the stability term and the negative terms from the bound of Lemma 1.
Using Lemma 4 of Lecture 2, we immediately obtain

∥∥wt − w′
t+1

∥∥ ≤ η ∥ℓt −mt∥⋆, and thus
the stability term

〈
wt − w′

t+1, ℓt −mt

〉
is further bounded by η

∥∥wt − w′
t+1

∥∥ ∥ℓt −mt∥⋆ ≤
η ∥ℓt −mt∥2⋆. Next, for the term

∑T
t=1Dψ(wt, w

′
t) + Dψ(w

′
t+1, wt), we first drop Dψ(w1, w

′
1)

and Dψ(w
′
T+1, wT) (both nonnegative), and then shift the index to arrive at a lower bound:

T∑
t=2

Dψ(wt, w
′
t) +Dψ(w

′
t, wt−1),

which can be further lower bounded as

1

2

T∑
t=2

∥wt − w′
t∥

2
+ ∥w′

t − wt−1∥
2 (by strong convexity)

≥ 1

4

T∑
t=2

(∥wt − w′
t∥+ ∥w′

t − wt−1∥)
2 (a2 + b2 ≥ (a+b)2

2)

≥ 1

4

T∑
t=2

∥wt − wt−1∥2 . (triangle inequality)

Combining these with Lemma 1 finishes the proof.

2

For a moment, assume that we can set the learning rate as η =
√
Bψ/

∑T
t=1∥ℓt−mt∥

2
⋆. Then ignoring

the last negative term, we obtain a regret bound of order O
(√

Bψ
∑T
t=1 ∥ℓt −mt∥2⋆

)
, showing that

the performance of the algorithm indeed depends on how accurate the predictors mt are. The pre-
diction error

∑T
t=1 ∥ℓt −mt∥2⋆ thus serves as a measure of difficulty for this problem. For example,

if the predictors are perfect with zero error (that is, mt = ℓt), then we simply have zero regret. As a
less extreme example, if the predictors are somewhat accurate such that

∑T
t=1 ∥ℓt −mt∥2⋆ = o(T),

then the regret bound becomes o(
√
T) (ignoring the dependence on Bψ). On the other hand, even if

the predictors are all inaccurate with Θ(T) error (this is under a mild condition that ∥ℓt∥⋆ is bounded,
so ∥mt∥⋆ is naturally bounded as well), the regret bound simply recovers the O(

√
T) worst-case re-

gret of vanilla FTRL. In other words, optimistic FTRL is never worse than vanilla FTRL, but could
perform much better as long as we are not in the worst-case scenario.

The aforementioned choice of the learning rate η requires knowing the prediction error ahead of
time, which is rather unrealistic. However, this can be easily resolved. The simplest approach is the
doubling trick (which you have seen in HW1): make a guess on the value of the prediction error
(starting from 1 for example), optimally tune the algorithm based on this guess, and once the actual
error exceeds the guess, double the guess and restart the algorithm. This leads to the same regret
bound up to a constant factor for the exact same reason as the case you need to solve in HW1.

While this doubling trick is a very convenient and general way to resolve such tuning issues, it might
not be a practical one. Indeed, restarting the algorithm means completely discarding the previously
collected data, which often sounds unreasonable (if not absurd) to practitioners. Fortunately, most
of the time such tuning issues can also be resolved by a time-varying learning rate that follows the
form of the optimal tuning but with only the observed data. For example, in our case, using learning
rate ηt =

√
Bψ/

∑
s<t∥ℓs−ms∥

2
⋆ at time t would also lead to the same regret bound. We omit the

details and leave this as an exercise for interested readers.

Finally, the negative term − 1
4η

∑T
t=2 ∥wt − wt−1∥2 in the regret bound, which will be used to derive

something important in the next lecture, might seem a bit mysterious — it seemingly indicates that
the less stable the algorithm, the smaller the regret, exactly the opposite of what we showed before.
One explanation is: keep in mind that what Theorem 1 shows is an upper bound of the regret, and it
might not truly characterizes the behavior of the actual regret itself. In fact, if one takes a step back
and focuses on the term

〈
wt − w′

t+1, ℓt −mt

〉
− 1
ηDψ(w

′
t+1, wt) in Lemma 1, which is bounded by∥∥wt − w′

t+1

∥∥ ∥ℓt −mt∥⋆ −
1
2η

∥∥wt − w′
t+1

∥∥2, then by seeing this as a quadratic of
∥∥wt − w′

t+1

∥∥
whose range is in [0, η ∥ℓt −mt∥⋆] (based on our earlier analysis), we conclude that this upper
bound is again strictly increasing in

∥∥wt − w′
t+1

∥∥, thus in favor of stable algorithms and consistent
with our earlier intuition.

1.1 Constructing the Predictors

So far we have treated mt as some external information. Can we instead construct mt ourselves
without using any extra information? Intuitively, if we believe that the past loss vectors ℓ1, . . . , ℓt−1

are predictive for the current loss vector ℓt, then we should be able to come up with a reasonable
predictor mt based on ℓ1, . . . , ℓt−1. Indeed, we can treat this as another machine learning problem
such as time series forecasting (an example would be predicting the next word based on the first few
words of a sentence), which is often solved by autoregressive models (that is, predicting the next
value using a linear combination of past values). In fact, we can also treat this as another OCO
problem, where the learner is required to predict mt at each round, with loss function ∥ℓt −mt∥2⋆.

Here, we only spell out perhaps the simplest method: use the most recent loss vector as the predictor,

that is,mt = ℓt−1 (with arbitrary ℓ0). This leads to a bound of order O
(√

Bψ
∑T
t=1 ∥ℓt − ℓt−1∥2⋆

)
,

which depends on the variation of the loss sequence (often called the path length). Thus, as long
as the environment is not changing rapidly, the algorithm is able to exploit this fact and achieves
better performance. In the next lecture, we will see a concrete example of such slowly changing
environments.

3

Another remark is that the path length
∑T
t=1 ∥ℓt − ℓt−1∥2⋆ is always bounded by

T∑
t=1

∥ℓt − µ+ µ− ℓt−1∥2⋆ ≤ 2

T∑
t=1

(
∥ℓt − µ∥2⋆ + ∥µ− ℓt−1∥2⋆

)
= O

(
T∑
t=1

∥ℓt − µ∥2⋆

)
for any µ ∈ Rd. In particular, we can pick the µ that minimizes

∑T
t=1 ∥ℓt − µ∥2⋆, showing that our

time-varying predictors are overall never worse than a fixed predictor. For example, when ∥·∥ is
the L2 norm, then the optimal µ is simply the average loss 1

T

∑T
t=1 ℓt, and the bound becomes the

variance of the loss vectors. Note that there are clearly cases where the variance is much worse than
the path length though (try to come up with one yourself).

2 Refinement for the Expert Problem

For the rest of the lecture, we focus on the expert problem (switching the notation from w ∈ Ω
to p ∈ ∆(N) again). Applying Optimistic FTRL with the negative entropy regularizer, which
corresponds to the following strategy called Optimistic Hedge:

pt(i) ∝ exp

(
−η

(
mt(i) +

∑
s<t

ℓs(i)

))
,

we obtain a regret bound of order O
(√∑T

t=1 ∥ℓt −mt∥∞ lnN
)

(with the optimal tuning). This
bound depends on the worst prediction error among all experts at each time (due to the infinity
norm). Instead, is there a way to depend on, for example, only the prediction error for the optimal
expert?

To address this question, we first point out that the same algorithm above in fact enjoys a more
refined regret bound that depends on some weighted average of the prediction errors (weighted by
pt precisely), instead of the worst case one. This is done by analyzing the stability term more
carefully, without directly invoking strong convexity. The result is summarized in the following
theorem, and is in fact a generalization of the bound we proved in Theorem 2 of Lecture 1.
Theorem 2. As long as η|ℓt(i)−mt(i)| ≤ 1 holds for all t and i, Optimistic Hedge ensures

RT ≤ lnN

η
+ η

T∑
t=1

N∑
i=1

pt(i)(ℓt(i)−mt(i))
2.

Proof. Using Lemma 1, we have

RT ≤ lnN

η
+

T∑
t=1

(〈
pt − p′t+1, ℓt −mt

〉
− 1

η
Dψ(p

′
t+1, pt)

)
.

Note that we have kept one Bregman divergence term here (but dropped the other one Dψ(pt, p
′
t)),

which is crucial for the proof. Specifically, we will show
〈
pt − p′t+1, ℓt −mt

〉
− 1

ηDψ(p
′
t+1, pt) ≤

η
∑N
i=1 pt(i)(ℓt(i)−mt(i))

2, which then finishes the proof. Indeed, by definitions we have

p′t+1(i) ∝ exp
(
− η

∑
s≤t

ℓs(i)
)
∝ pt(i) exp (−η(ℓt(i)−mt(i))) .

Then, noticing that the Bregman divergence Dψ(p, q) with respect to the negative entropy is simply
the KL-divergence KL(p, q) =

∑N
i=1 p(i) ln

p(i)
q(i) , we have

−1

η
Dψ(p

′
t+1, pt) =

1

η

N∑
i=1

p′t+1(i) ln
pt(i)

p′t+1(i)

=
1

η

N∑
i=1

p′t+1(i) ln

∑N
j=1 pt(j) exp (−η(ℓt(j)−mt(j)))

exp (−η(ℓt(i)−mt(i)))

=
〈
p′t+1, ℓt −mt

〉
+

1

η
ln

 N∑
j=1

pt(j) exp (−η(ℓt(j)−mt(j)))

 .

4

The rest of the proof simply repeats what we did in Lecture 1:

1

η
ln

 N∑
j=1

pt(j) exp (−η(ℓt(j)−mt(j)))

≤ 1

η
ln

 N∑
j=1

pt(j)
(
1− η(ℓt(j)−mt(j)) + η2(ℓt(j)−mt(j))

2
)

(e−y ≤ 1− y + y2, ∀y ≥ −1)

=
1

η
ln

1− η ⟨pt, ℓt −mt⟩+ η2
N∑
j=1

pt(j)(ℓt(j)−mt(j))
2

≤ −⟨pt, ℓt −mt⟩+ η

N∑
j=1

pt(j)(ℓt(j)−mt(j))
2, (ln(1 + y) ≤ y)

where in the first inequality we use the condition η|ℓt(j)−mt(j)| ≤ 1 of the theorem.

With this refined regret bound, we make the following modification to the algorithm, which further
enables us to derive a bound only in terms of the prediction error of the best expert:

pt(i) ∝ exp

(
−η

(
mt(i) +

∑
s<t

(ℓs(i) + cs(i))

))
, (1)

where cs(i) = 4η(ℓs(i) − ms(i))
2 is sometimes referred to as a loss correction term. Compared

to Optimistic Hedge, this new algorithm adds the correction term to the loss of each expert at each
time, further penalizing those experts with a large prediction error. The regret of this algorithm
against any expert thus naturally depends on the prediction error for this expert, as shown below.
Theorem 3. As long as η|ℓt(i) −mt(i)| ≤ 1

4 holds for all t and i, Algorithm (1) ensures that for
any expert j ∈ [N], the regret against this expert is bounded as

T∑
t=1

⟨pt − ej , ℓt⟩ ≤
lnN

η
+ 4η

T∑
t=1

(ℓt(j)−mt(j))
2

(where ei is the standard basis vector with the i-th coordinate being 1).

Proof. First observe that Algorithm (1) is exactly feeding Optimistic Hedge with the loss vector
ℓt + ct (instead of just ℓt). This motivates us to apply Theorem 1 with ℓt replaced by ℓt + ct. To do
so, we first verify that the condition of Theorem 1 is indeed satisfied:

η|ℓt(i)−mt(i) + ct(i)| = η|ℓt(i)−mt(i) + 4η(ℓs(i)−ms(i))
2| (defintion of ct(i))

≤ η|ℓt(i)−mt(i)|(1 + 4η|ℓt(i)−mt(i)|)
≤ 2η|ℓt(i)−mt(i)| (2)

≤ 1
2 ,

where both of the last two inequalities use the condition η|ℓt(i)−mt(i)| ≤ 1
4 . Thus, we can indeed

apply Theorem 1 and obtain for any expert j ∈ [N]:
T∑
t=1

⟨pt − ej , ℓt + ct⟩ ≤
lnN

η
+ η

T∑
t=1

N∑
i=1

pt(i)(ℓt(i)−mt(i) + ct(i))
2

≤ lnN

η
+ 4η

T∑
t=1

N∑
i=1

pt(i)(ℓt(i)−mt(i))
2 (by Eq. (2))

=
lnN

η
+

T∑
t=1

⟨pt, ct⟩ , (definition of ct)

which then completes the proof after moving the term
∑T
t=1 ⟨pt − ej , ct⟩ to the right.

5

Let j⋆ ∈ argminj
∑T
t=1 ℓt(j) be an optimal expert. Then with the learning rate η set to

min
{
1/4,
√

lnN/
∑T
t=1(ℓt(j

⋆)−mt(j⋆))2
}

(we prevent this from going above 1
4 to make sure that the

condition η|ℓt(i)−mt(i)| ≤ 1
4 is always satisfied for losses/predictors in [0, 1]), we obtain the bound

RT = O
(√∑T

t=1(ℓt(j
⋆)−mt(j⋆))2 lnN +lnN

)
, which only depends on the prediction error of

the optimal expert. However, an obvious issue is that this tuning of the learning rate depends on the
knowledge of the best expert j⋆, which we clearly do not have ahead of time. Note that this issue is
very different from the tuning issue discussed earlier in Section 1, which as mentioned can be easily
solved via a time-varying learning rate. Here, the difficulty is that each expert requires a different
tuning. A natural attempt would be to let the learning rate vary not only over time, but also across
the experts, leading to the following algorithm

pt(i) ∝ exp

(
−ηt(i)

(
mt(i) +

∑
s<t

(ℓs(i) + cs(i))

))
, (3)

where we replace the fixed learning rate η in Eq. (1) with

ηt(i) = min

{
1

4
,

√
lnN∑

s<t(ℓt(i)−mt(i))2

}
. (4)

Unfortunately, no one has been able to prove (or disprove) that this works, and this tuning issue has
been referred to as the impossible tuning issue.

Somewhat surprisingly, a recent work by Chen et al. [2021] makes this “impossible tuning” possible,
and the solution is very close to the natural idea above. Recall that Algorithm (1) can be written as
the following Optimistic FTRL form:

pt = argmin
p∈∆(N)

〈
p,mt +

∑
s<t

(ℓs + cs)

〉
+Ψ(p), (5)

where Ψ(p) = 1
η

∑N
i=1 p(i) ln p(i) is the entropy regularizer with a fixed learning rate. The solution

of [Chen et al., 2021] is simply to replace Ψ with

Ψt(p) =

N∑
i=1

1

ηt(i)
p(i) ln p(i)

where ηt(i) is defined in the same way as Eq. (4).2 The first important thing to notice here is that
this is not the same algorithm as Eq. (3), even though they look very closely related. Indeed, by
writing down the Lagrangian and setting the gradient to zero, we see that the algorithm of [Chen
et al., 2021] is in fact the following:

pt(i) = exp

(
−ηt(i)

(
λ+mt(i) +

∑
s<t

(ℓs(i) + cs(i))

)
− 1

)
, (6)

for some Lagrangian multiplier λ that can be efficiently found via binary search based on the fact∑
i pt(i) = 1. Note that if ηt(i) does not vary over different i’s, then the above is indeed the same

as Eq. (3) since the factor exp (−ηt(i)λ− 1) simply becomes the constant previously hidden in the
∝ sign. But for general ηt(i) that varies over i, such as Eq. (4), there is no closed-form for λ, and
the two algorithms are thus indeed not equivalent.

Chen et al. [2021] prove the following guarantee of this algorithm: for any expert j,

T∑
t=1

⟨pt − ej , ℓt⟩ = O

√√√√ T∑

t=1

(ℓt(j)−mt(j))2 ln(NT) + ln(NT)

 . (7)

Other than the small extra lnT factor (which we will hide using the Õ(·) notation in
the remaining discussion), this guarantee is even stronger than our earlier goal RT =

O
(√∑T

t=1(ℓt(j
⋆)−mt(j⋆))2 lnN + lnN

)
(think about why the former could be strictly

stronger).
2There are other minor modifications of the algorithm that we omit here; see [Chen et al., 2021] if interested.

6

2.1 Implications

Why do we bother to spend so much effort to obtain regret bound (7), which in fact might not even
be better than the version stated in Theorem 2 with the weighted error? It turns out that there are
indeed many nice applications of Eq. (7). We explore some of these in the rest of this lecture and
will also see more in the future.

Application 1 First, consider not using any predictors at all, that is, mt = 0 (the all-zero vector).

Then Eq. (7) implies RT = Õ
(√∑T

t=1 ℓt(j
⋆)2 lnN + lnN

)
= Õ(

√
L⋆ lnN + lnN) where

L⋆ =
∑T
t=1 ℓt(j

⋆) is the loss of the best expert. Therefore, the better the optimal expert, the faster
our algorithm converges to such a good expert. This is often called a “small-loss” regret bound, and
we will see its application for learning in games in the future.

In the next two applications, we make use of a useful trick: for each t, if mt(i) is the same for
all expert i, then by examining either Eq. (5) or Eq. (6), one sees that the distribution pt is in fact
independent of mt (but any future ps with s > t depends on mt through ct of course). This small
observation implies that mt can even “cheat” and depend on ℓt, unknown at the beginning of round
t, as long as it has identical coordinates and becomes available at the end of round t.

Application 2 The first such “cheating” predictor we consider ismt(i) = ℓt(1) for all i. Applying
Eq. (7), we know that the regret of the algorithm against Expert 1 is only Õ(lnN), while the regret
against all other experts is still at most Õ(

√
T lnN). This is useful in for example the following

scenario: a company has been using a decent online learning algorithm A for a while, and one day
as a researcher of the company you propose a new algorithm B that you think might perform even
better. What the company can do now is to treat these two algorithms as experts, and combine them
using an expert algorithm. However, since this is related to the profit of the company and we have
no prior knowledge about how B might actually perform in practice, to be conservative we want
our overall performance to be at least not too far away from the baseline A. Then the guarantee
mentioned above exactly fits our need here: let A be Expert 1 so that the loss of the final algorithm
is no worse than A by only Õ(1), but at the same time is also comparable to B if it is indeed a much
better algorithm.
Question 1. How is this approach compared to the common practice of doing A/B testing?
Question 2. Can we go one step further and use the following cheating predictor: mt(i) = ℓt(j

⋆)

for all i, where j⋆ is the optimal expert, so that our regret against j⋆ is always Õ(lnN)?

Application 3 The next “cheating” predictor we consider is mt(i) = ⟨pt, ℓt⟩ for all i. Eq. (7)
implies that the regret against any expert j is bounded as

T∑
t=1

⟨pt − ej , ℓt⟩ = Õ

√√√√ T∑

t=1

⟨pt − ej , ℓt⟩2 lnN + lnN

 , (8)

scaling with the cumulative squared instantaneous regret against the same expert j. While the mean-
ing of this bound is less intuitive, it in fact has many further strong implications. The first one being
that it recovers the aforementioned “small-loss” bounds.
Theorem 4. If an algorithm ensures Eq. (8), then it also ensures

T∑
t=1

⟨pt − ej , ℓt⟩ = Õ

√√√√ T∑

t=1

ℓt(j) lnN + lnN

 ,

Proof. For conciseness, define RT (j) =
∑T
t=1 ⟨pt − ej , ℓt⟩ and LT (j) =

∑T
t=1 ℓt(j). With the

fact ⟨pt − ej , ℓt⟩2 ≤ | ⟨pt − ej , ℓt⟩ | ≤ ⟨pt + ej , ℓt⟩ = ⟨pt − ej + 2ej , ℓt⟩, Eq. (8) implies:

RT (j) = Õ
(√

(RT (j) + 2LT (j)) lnN + lnN
)
= Õ

(√
RT (j) lnN +

√
LT (j) lnN + lnN

)
,

a recursive guarantee onRT (j). Further using the fact that x ≤ b
√
x+c implies x ≤ b2+2c (verify

it yourself) then proves the theorem.

7

Even more surprisingly, the same bound also implies almost constant regret in a stochastic setting.
Theorem 5. Suppose that there exists a good expert j⋆ and a constant gap ∆ ∈ (0, 1] such that
Et[ℓt(i) − ℓt(i

⋆)] ≥ ∆ for all t and i ̸= i⋆, where Et denotes the conditional expectation given
all randomness before round t. If an algorithm ensures Eq. (8), then its regret against j⋆ is at most
Õ
(
lnN
∆

)
.

Proof. Let RT (j⋆) =
∑T
t=1 ⟨pt − ej⋆ , ℓt⟩ be the regret against expert j⋆. By the condition we have

Et[⟨pt − ej⋆ , ℓt⟩] = Et

∑
i ̸=j⋆

pt(i)(ℓt(i)− ℓt(j
⋆))

 ≥ ∆
∑
i̸=j⋆

pt(i) = ∆(1− pt(j
⋆)),

and thus E[RT (j⋆)] ≥ ∆B where we define B = E
[∑T

t=1 (1− pt(j
⋆))
]
. On the other hand,

E

[
T∑
t=1

⟨pt − ej⋆ , ℓt⟩2
]
≤ E

[
T∑
t=1

∣∣∣∣∣
N∑
i=1

pt(i)(ℓt(i)− ℓt(j
⋆))

∣∣∣∣∣
]

≤ E

[
T∑
t=1

N∑
i=1

pt(i)|ℓt(i)− ℓt(j
⋆)|

]
≤ E

 T∑
t=1

∑
i ̸=j⋆

pt(i)

 = B.

Combining these with Eq. (8) implies

∆B ≤ E [RT (j
⋆)] = Õ

E

√√√√ T∑

t=1

⟨pt − ej⋆ , ℓt⟩2 lnN

+ lnN

= Õ

√√√√E

[
T∑
t=1

⟨pt − ej⋆ , ℓt⟩2
]
lnN + lnN

 (Jensen’s inequality)

≤ Õ
(√

B lnN + lnN
)
. (9)

Applying x ≤ b
√
x+ c⇒ x ≤ b2 +2c again shows B = Õ(lnN/∆2). Plugging this back to Eq. (9)

finishes the proof.

We emphasize that the last two theorems hold simultaneously as long as an algorithm satisfies Eq. (8)
(the detail of the algorithm is irrelevant), illustrating strong adaptivity of the algorithm. In the future,
we will see one more important consequence of having regret bound (8).

Application 4 In the last application, we take mt(i) = m′
t(i)+ ⟨pt, ℓt −m′

t⟩ for another arbitrary
predictor m′

t ∈ [0, 1]N (that is available at the beginning of round t). For a similar reason as the
last two applications, even though the term ⟨pt, ℓt −m′

t⟩ is unknown before the end of round t, the
algorithm is still valid since this part is the same across all i. In fact, Application 3 is just a special
case with m′

t = 0. Eq. (7) now implies that the regret against any expert j is bounded as

T∑
t=1

⟨pt − ej , ℓt⟩ = Õ

√√√√ T∑

t=1

⟨pt − ej , ℓt −m′
t⟩

2
lnN + lnN

 , (10)

which is further bounded by Õ
(√∑T

t=1 ∥ℓt −m′
t∥

2
∞ lnN + lnN

)
, a bound similar to the one we

saw earlier for Optimistic Hedge (without using correction terms). However, the benefit here is that
simultaneously, this bound (10) also enjoys the same fast rate consequence stated in Theorem 5.
Theorem 6. In the same environment as stated in Theorem 5, if an algorithm ensures Eq. (10), then
its regret against j⋆ is at most Õ

(
lnN
∆

)
.

The proof is almost identical to that for Theorem 5, and we leave it as an exercise.

We conclude by pointing out that there are in fact many more applications of Eq. (7), including
those for the general OCO problem (obtained by combining different OCO algorithms via an expert
algorithm satisfying Eq. (7)). See [Chen et al., 2021] for details.

8

References
Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Impossible tuning made possible: A new expert

algorithm and its applications. In Conference on Learning Theory, pages 1216–1259. PMLR,
2021.

Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable se-
quences. In Advances in Neural Information Processing Systems 26, 2013.

9

	Adaptive Algorithms and Optimistic FTRL
	Constructing the Predictors

	Refinement for the Expert Problem
	Implications

