
CSCI 659 Lecture 4
Fall 2022

Instructor: Haipeng Luo

1 Two-Player Zero-Sum Games

In this lecture, we explore the connection between game theory and online learning, and explain
why online learning is the cornerstone for solving large-scale games. We start by considering the
simplest two-player zero-sum normal-form games and some fundamental concepts of game theory,
before discussing how it is connected to online learning in the next section.

A two-player zero-sum normal-form game can be represented using a payoff matrix G ∈ [0, 1]N×M .
Here, one player (called the row or min player, with pronoun “he”) has N possible actions and
another player (called the column or max player, with pronoun “she”) has M possible actions, and
entry G(i, j) represents the loss of the row player if he selects action i while the column player
selects action j, which is also the reward for the column player (hence zero-sum).

A classical example is the Rock-Paper-Scissors game. If we assign loss 1 for losing the game, 0 for
winning, and 1/2 for a tie, then G is

Rock Paper Scissors( )Rock 1/2 1 0
Paper 0 1/2 1

Scissors 1 0 1/2
.

The exact same idea applies to much more complicated games, including those that involve sequen-
tial structures. For example, a poker game can be formulated in this way with a huge G where each
action corresponds to a complete strategy of playing this poker game.

Instead of playing a fixed action (also called “pure strategy”), it often makes more sense to play
an action randomly according to a distribution (called “mixed strategy”). For some mixed strategy
p ∈ ∆(N) for the row player and some mixed strategy q ∈ ∆(M) for the column player, the
expected loss for the row player, which is also the expected reward of the column player, is denoted
by G(p, q) = p⊤Gq =

∑N
i=1

∑M
j=1 p(i)q(j)G(i, j). We will also use the notation G(i, q) and

G(p, j) to denote
∑M

j=1 q(j)G(i, j) and
∑N

i=1 p(i)G(i, j) respectively.

The most fundamental solution concept in game theory is the Nash equilibrium. A pair of mixed
strategy (p, q) is called a Nash equilibrium if neither player has the incentive to change his/her
strategy given that the opponent is keeping his/hers. In other words, both players are best-responding
to each other and thus happy about the current situation. Formally, this means that

G(p, j) ≤ G(p, q) ≤ G(i, q), ∀i ∈ [N ], j ∈ [M ].

One can easily verify that for the Rock-Paper-Scissors game, playing uniformly at random for both
players is a Nash Equilibrium (in fact the only one).

On the other hand, minimax solution is also a natural concept for a two-player zero-sum game.
Specifically, in the worst case, playing p leads to a loss of at most maxq G(p, q) for the row player
if the column player sees p before making her decision, and therefore in this sense the worst-case



optimal strategy for the row player is p⋆ ∈ argminp maxq G(p, q), which is called the minimax
strategy. Similarly, the maximin strategy for the column player is q⋆ ∈ argmaxq minp G(p, q).
Together, we call (p⋆, q⋆) a minimax solution of the game.

Therefore, minp maxq G(p, q) and maxq minp G(p, q) are respectively the smallest loss and the
largest reward that the respective player can hope for when against an optimal opponent who plays
second. How are these two values related? Intuitively, both players are playing optimally in the
two expressions, but there should be no disadvantage in playing second. Therefore we should have
minp maxq G(p, q) ≥ maxq minp G(p, q) (row player playing first on the left and second on the
right). Indeed, this is true by a simple argument:

min
p

max
q

G(p, q) = max
q

G(p⋆, q) ≥ G(p⋆, q⋆) ≥ min
p

G(p, q⋆) = max
q

min
p

G(p, q).

While one may imagine that this inequality should be strict at least for some cases, the surprising
fact is that the reverse inequality is also true and thus the two values are exactly the same! In other
words, if both players are playing optimally, there is no difference in playing first or second. This is
the celebrated von Neumann’s minimax theorem.
Theorem 1 (von Neumann’s minimax theorem). For any two-player zero-sum game G ∈
[0, 1]N×M , we have

min
p∈∆(N)

max
q∈∆(M)

G(p, q) = max
q∈∆(M)

min
p∈∆(N)

G(p, q).

This single value is called the value of the game, denoted by v(G). The original proof relies on a
fixed-point theorem, but we will prove it in a different way by running online learning algorithms
in the next section. For now, we discuss the connection between these different notions we have
discussed so far: Nash equilibrium, minimax solution, and the value of the game.
Theorem 2. A pair of mixed strategy (p, q) is a Nash equilibrium if and only if it is also a minimax
solution. Moreover, G(p, q) is the value of the game.

Proof. Suppose that (p, q) is a Nash equilibrium. By definition and optimality, we have

min
p′

max
q′

G(p′, q′) ≤ max
q′

G(p, q′) = G(p, q) = min
p′

G(p′, q) ≤ max
q′

min
p′

G(p′, q′).

Now by the minimax theorem, the above inequalities are actually all equalities, which implies
G(p, q) = v(G) and also that (p, q) is a minimax solution.

For the other direction, if (p, q) is a minimax solution, then again by optimality and definition

min
p′

max
q′

G(p′, q′) = max
q′

G(p, q′) ≥ G(p, q) ≥ min
p′

G(p′, q) = max
q′

min
p′

G(p′, q′).

By the minimax theorem, the above is again a sequence of equalities, which implies G(p, q) = v(G)
and that (p, q) is a Nash equilibrium.

By this theorem and the fact that minimax solutions always exist (due to the compactness of the
simplex), Nash equilibria also always exist.
Question 1. Theorem 2 asserts that a minimax solution (p⋆, q⋆) is a Nash equilibrium and also
q⋆ ∈ argmaxq G(p⋆, q). Is it true that (p⋆, q) for any q ∈ argmaxq G(p⋆, q) is a Nash equilibrium?

2 Repeated Play and Connections to Online Learning

How should we play a game? If we know the matrix G, then playing with the minimax solutions
seems to be a good strategy. However, what if G is unknown? Moreover, minimax solutions might
also be overly conservative. For example, if we play Rock-Paper-Scissors with a friend who we
know prefers to play Paper, then should we still play uniformly at random? In general, how do we
exploit the fact that the opponent might not be optimal?

If the game is only played once, then there is little we can do. However, it is often the case that a
game is repeatedly played for many times. In this case, there is hope to apply learning algorithms to
learn to play well against a specific opponent. We take the row player as an example and formulate
the learning model as follows: at round t = 1, . . . , T ,
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1. the row player chooses a mixed strategy pt ∈ ∆(N);
2. the column player chooses a mixed strategy qt ∈ ∆(M) (which may or may not depend on pt);
3. the row player observes G(i, qt) for all i ∈ [N ].

The feedback model might look unrealistic in this case, but all discussions in this section extend
trivially to the weaker model where the row player only observes G(i, jt) for all i, where jt is
sampled from qt. In other words, for the realized action jt of the opponent, the player knows the
loss of each of his possible action. Of course, the most challenging case is when the player only
observes G(it, jt) where it ∼ pt and jt ∼ qt are the realized action of the respective player. This is
essentially a bandit feedback setting, which we will discuss in the second half of the course.

A very natural idea for the player is simply to run an expert algorithm such as Hedge, treating each
available action i as an expert. Specifically, given an expert algorithm as a blackbox, pt will be the
output of this algorithm at round t, and the loss vector to be fed to the algorithm is ℓt such that
ℓt(i) = G(i, qt), ∀i. Let RT be the regret of this algorithm and q̄ = 1

T

∑T
t=1 qt. Then we have

1

T

T∑
t=1

G(pt, qt) = min
p

1

T

T∑
t=1

G(p, qt) +
RT

T

= min
p

G(p, q̄) +
RT

T
(1)

≤ max
q

min
p

G(p, q) +
RT

T
.

Therefore, if RT = o(T ) and T is large enough, the average loss of the row player is very close
to the value of the game, which again is the smallest possible loss if against an optimal opponent.
However, by using a learning algorithm instead of a minimax solution directly (if it is available), the
average loss can also be much smaller in the case when the opponent is not exactly optimal (that is,
when q̄ is not close to the maximin strategy and the last inequality is loose).

When both players learn. Even more interesting thing happens if the column player also uses
an expert algorithm to come up with qt (by treating the negative rewards as losses). To see this, let
R′

T = o(T ) be the regret of the column player:

R′
T =

T∑
t=1

−G(pt, qt)−min
q

T∑
t=1

−G(pt, q) = max
q

T∑
t=1

G(pt, q)−
T∑

t=1

G(pt, qt).

Then we can repeat the earlier calculation, but now for the column player with p̄ = 1
T

∑T
t=1 pt:

1

T

T∑
t=1

G(pt, qt) = max
q

1

T

T∑
t=1

G(pt, q)−
R′

T

T

= max
q

G(p̄, q)− R′
T

T
(2)

≥ min
p

max
q

G(p, q)− R′
T

T
.

Combining the two derivations, we have

min
p

max
q

G(p, q) ≤ 1

T

T∑
t=1

G(pt, qt) +
R′

T

T
≤ max

q
min
p

G(p, q) +
RT

T
+

R′
T

T
.

Since the term RT

T +
R′

T

T can be arbitrarily close to 0 as T goes to infinity, we must have

min
p

max
q

G(p, q) ≤ max
q

min
p

G(p, q),

which means that we just proved the minimax theorem (recall that the other direction is trivial)! This
is a classical result taken from [Freund and Schapire, 1999]. It is quite intriguing because it says that
the existence of a no-regret algorithm implies that the minimax theorem must hold, without using
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heavier tools such as a fixed-point theorem. In fact, a closer look at equalities (1) and (2) also tells
us maxq G(p̄, q)−minp G(p, q̄) =

RT+R′
T

T , and thus:

max
q

G(p̄, q)− ϵ = min
p

G(p, q̄) ≤ G(p̄, q̄) ≤ max
q

G(p̄, q) = min
p

G(p, q̄) + ϵ

for ϵ = RT+R′
T

T (called social average regret), showing that the empirical average strategies p̄ and
q̄ are approximately minimax solutions or approximate Nash equilibrium with error ϵ. This pro-
vides a highly efficient way to approximately find a Nash equilibrium, making regret minimization
algorithms (together with other tricks) one of the most practical ways to solve large-scale games.1

3 Faster Convergence via Adaptivity

We know that the worst-case optimal regret for the expert problem is of order O(
√
T ) (ignoring

dependence on the number of actions), which means the convergence rate of the above approach is
of order O(1/

√
T ). However, since each player is not really dealing with a worst-case environment,

a natural question is whether we can achieve even faster convergence in this specific context. The
answer turns out to be yes, and the key is the optimistic algorithms we discussed last time. Indeed,
by setting mt = ℓt−1, we know that optimistic Hedge’s regret depends on the path length of the loss
sequence

∑T
t=1 ∥ℓt − ℓt−1∥∞, which in this game setting should intuitively depend on the variation

of the opponent’s strategy and thus should be small due to the stability of these algorithms. In fact,
utilizing the negative regret term that we ignored in the past lectures, we can make this argument
even stronger, as shown in the following theorem.

Theorem 3. Suppose that both players apply optimistic Hedge with the predictor being the loss
vector of the last round, that is:

pt(i) ∝ exp

(
−η

(
ℓt−1(i) +

∑
s<t

ℓs(i)

))
, where ℓs(i) = G(i, qs),

qt(j) ∝ exp

(
−η

(
gt−1(j) +

∑
s<t

gs(j)

))
, where gs(j) = −G(ps, j).

Then with η = 1
4 , the total regret of the players is bounded as RT +R′

T = O(ln(NM)), and thus
( 1
T

∑
t pt,

1
T

∑
t qt) is an approximate Nash equilibrium with approximation error O(ln(NM)/T).

Proof. Directly applying Theorem 1 of Lecture 3, we have

RT ≤ lnN

η
+ η

T∑
t=1

∥ℓt − ℓt−1∥2∞ − 1

4η

T∑
t=2

∥pt − pt−1∥21 . (3)

Further using the definition of ℓt, we bound the path-length term in terms of the stability of the
opponent: for any t > 1,

∥ℓt − ℓt−1∥∞ = max
i

|G(i, qt)−G(i, qt−1)| = max
i

| ⟨G(i, ·), qt − qt−1⟩ | ≤ ∥qt − qt−1∥1 ,

where we use G(i, ·) to denote the i-th row of G. This implies:

RT ≤ lnN

η
+ η + η

T∑
t=2

∥qt − qt−1∥21 −
1

4η

T∑
t=2

∥pt − pt−1∥21 . (4)

The exact same argument applies to the column player as well, meaning

R′
T ≤ lnN

η
+ η + η

T∑
t=2

∥pt − pt−1∥21 −
1

4η

T∑
t=2

∥qt − qt−1∥21 ,

1At this point, you should revisit one statement we made in Lecture 1: even though the definition of regret
seemingly does not make sense at all for an adaptive adversary, it can still be very meaningful.
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and thus the sum is bounded as

RT +R′
T ≤ ln(NM)

η
+ 2η +

(
η − 1

4η

) T∑
t=2

(
∥pt − pt−1∥21 + ∥qt − qt−1∥21

)
= 4 ln(NM) +

1

2
− 3

4

T∑
t=2

(
∥pt − pt−1∥21 + ∥qt − qt−1∥21

)
(5)

≤ 4 ln(NM) +
1

2

where the equality is by plugging in the value of η (which is 1/4). This completes the proof.

Hence, using optimistic Hedge significantly speeds up the convergence rate from O(1/
√
T ) to

O(1/T ). In other words, to get an ϵ-approximate Nash equilibrium, we only need O(1/ϵ) itera-
tions instead of O(1/ϵ2); for example, for ϵ = 0.001, this is an improvement from one million
iterations to just one thousand.

We point out that this result is also quite robust. For example, the learning rate does not have to be
exactly 1/4 nor identical for the two players — it is easy to see from the proof that if the row player
uses η and the column player uses η′, then as long as 4ηη′ ≤ 1, the regret is at most O( lnN

η + lnM
η′ ).

Moreover, the key of the proof clearly only relies on having an adaptive regret bound of the form (3)
and is independent of the details of the algorithm. There are indeed many other algorithms that enjoy
a similar bound and thus the same fast convergence rate; see [Syrgkanis et al., 2015] for details.

Another interesting phenomenon is the behavior of the strategy sequence (p1, q1), (p2, q2), . . ..
While any no-regret algorithm ensures that the average of these strategies converges, this sequence
itself might not converge. For example, the sequence generated by vanilla Hedge could circle around
the equilibrium and never gets close to it. On the other hand, the sequence generated by Optimistic
Hedge has been proven to converge to the equilibrium in recent years. Such property is often called
last-iterate convergence, and is another reason why Optimistic Hedge is much more favorable for
such problems. Notice that the original goal of the players is not to find the equilibrium, but instead
simply to selfishly minimize their own loss by exploiting the weakness of the opponent. However,
Nash equilibrium happens to be the natural long-term outcome of this selfish process.

A closer look at the stability. Recall our earlier intuition: in the game setting, the loss path-length
∥ℓt − ℓt−1∥2∞ of the row player is bounded by the stability ∥qt − qt−1∥21 of the column player, which
should be of order η and thus “small”. However, in the end, we are in fact choosing a constant
learning rate η = 1/4, which seemingly contradicts with our earlier intuition and shows that the
both players could be highly unstable instead. Is this truly how these algorithms behave?

It turns out that our earlier intuition is still correct: the algorithms are highly stable, leading to a
slowly changing environment for the opponent. To see this, first notice that the social regret is never
negative:

RT +R′
T

T
= max

q
G(p̄, q)−min

p
G(p, q̄) ≥ G(p̄, q̄)−G(p̄, q̄) = 0.

Therefore, rearranging Eq. (5) shows

3

4

T∑
t=2

(
∥pt − pt−1∥21 + ∥qt − qt−1∥21

)
≤ 4 ln(NM) +

1

2
,

and thus
∑T

t=2 ∥pt − pt−1∥21 = O(ln(NM)) (same for the column player). This shows that the
cumulative movement of the player’s strategy, a quantity that could be of order T in the worst case,
is in fact completely independent of T . This is also consistent with the earlier point that the sequence
p1, p2, . . . is converging (though not a formal proof yet).

This small observation has two important consequences. First, the individual regret of each player
(RT or R′

T ) is in fact also of order O(ln(NM)). Note that this cannot be simply concluded from the
fact RT+R′

T = O(ln(NM)), since regret can be negative. Instead, one can see this by starting from
Eq. (4), ignoring the negative term, and using the stability

∑T
t=2 ∥qt − qt−1∥21 = O(ln(NM)) we
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just proved. Such an individual constant regret bound incentivizes both players to deploy Optimistic
Hedge.

Second, this also provides a way to robustify the algorithm. Indeed, the aforementioned good indi-
vidual regret bound only holds when both players exactly follow Optimistic Hedge, so what if my
opponent deviates to something else to exploit my weakness? To address this, ideally we want our
algorithm to also enjoy the worst-case O(

√
T ) bound no matter what the opponent actually ends

up doing. With a fixed learning rate η = 1/4, it is not hard to see that Optimistic Hedge does not
enjoy such a robustness guarantee. However, this can be easily addressed by the following modifica-
tion: start with Optimistic Hedge with η = 1/4, keep track of the path length

∑
s≤t ∥ℓs − ℓs−1∥2∞,

and whenever it exceeds O(ln(NM)), switch to vanilla Hedge (or any other minimax optimal al-
gorithm). This does not ruin our earlier nice O(ln(NM)) regret bound if both players follow the
same algorithm (since the path length cannot exceed O(ln(NM)) in this case); on the other hand,
no matter what the opponent does, our regret is never worse than O(ln(NM) +

√
T lnN), because

before our algorithm switches to vanilla Hedge, its regret is at most O(ln(NM)) based on Eq. (3).
This robustness guarantee further incentivizes both parties to deploy this algorithm.

4 General-Sum Games

Next, we consider general-sum games, a much broader type of games where the players might
not have exact opposite interest any more. For simplicity, we still focus on the two-player setting,
where Player 1 has N actions and Player 2 has M actions. The loss matrices G1 ∈ [0, 1]N×M

and G2 ∈ [0, 1]N×M are such that G1(i, j) and G2(i, j) are the loss for Player 1 and Player 2
respectively if Player 1 picks action i while Player 2 picks action j. The zero-sum setting is clearly
a special case with G2 = −G1.

A classical example is the “game of chicken”, where two players are driving toward each other and
both can either “Dare” (D) or “Chicken” (C): both dare leads to car crash and the worst case loss of
1 for both; if one dares and other other chickens, the former has no loss and the latter has loss 0.5;
finally if both chicken, they both get a small loss 0.1. This simple game captures numerous real-life
situations (e.g. nuclear arms race between counties). The loss matrices G1 and G2 in this game are:

G1 =

D C( )
D 1 0
C 0.5 0.1

, G2 =

D C( )
D 1 0.5
C 0 0.1

.

Nash equilibria can be defined in the same way for general-sum games: a pair of mixed strategy p
and q is a Nash equilibrium if neither player has incentive to deviate:

G1(p, q) ≤ G1(i, q), ∀i ∈ [N ] and G2(p, q) ≤ G2(p, j), ∀j ∈ [M ].

However, in this case there is no “minimax” interpretation of Nash equilibria or the corresponding
unique game value any more. For example, the game of chicken has three Nash equilibria: two
deterministic ones where one player always dares and the other always chickens, and a mixed one
where both players dare with probability 1/6 (verify it yourself). Each of these equilibria leads to
different losses for the two players, illustrating very different characteristics of Nash equilibria for
general-sum games. In fact, finding Nash equilibria for general-sum games has also been shown to
belong to a complexity class called PPAD (believed to be computationally hard), so there is basically
no hope that our earlier discussions on the connection between no-regret learning and finding Nash
equilibria can be extended to this case.

Because of this hardness result, weaker notions of equilibria have been studied. Here, we only
discuss one of them: coarse correlated equilibria (CCE), which is a direct generalization of Nash
equilibria from product distributions over action pairs to joint distributions. Formally, a joint distri-
bution σ ∈ ∆(NM) is a CCE if neither player has incentive to deviate assuming that the opponent
sticks with σ:

E(i,j)∼σ[G1(i, j)] ≤ G1(i
′, σ2), ∀i′ ∈ [N ] and E(i,j)∼σ[G2(i, j)] ≤ G2(σ1, j

′), ∀j′ ∈ [M ],

where σ1 and σ2 are the marginal distributions over Player 1’s actions and Players 2’s actions re-
spectively. If a CCE σ happens to be a product distribution, that is σ(i, j) = σ1(i)σ2(j), then clearly
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σ is also a Nash equilibrium by definition. For a general CCE σ that is not a product distribution,
one way to interpret it is that if a mediator recommends to both players an action pair drawn from
σ, then both players feel rational about accepting the recommendation even without looking at it.

For example, in Rock-Paper-Scissors, a uniform distribution over all the six non-tie action pairs is
a CCE. For the game of chicken, picking (C,C) with 5/7 probability, and (D,C) or (C,D) with
probability 1/7 is a CCE. In fact, this CCE leads to even smaller total losses of the two players
compared to all the Nash equilibria. (Verify all these yourself.)

4.1 Finding CCEs via No-regret Learning

While Nash equilibria are hard to find, CCEs can be computed efficiently, and in fact can be done
via no-regret learning in an uncoupled way again, even though CCE, as a joint distribution, is by
definition coupled. The learning setup is the same as before: each time Player 1 (respectively Player
2) independently uses an expert algorithm to come up with an action distributions pt ∈ ∆(N)
(respectively qt ∈ ∆(M)), and then sees the loss vector G1(·, qt) (respectively G2(pt, ·)) to be fed
to the expert algorithm. This is uncoupled in the sense that both players are simply maintaining a
distribution over their own actions, and more importantly, they only need to see their own losses
(for example, Player 1 is completely oblivious about G2). Nevertheless, it can be shown that their
average joint behavior converges to a CCE in the following sense.

Theorem 4. In the learning setup above, if RT and R′
T are the regret of Player 1 and Player 2

respectively, then the joint distribution σ ∈ ∆(NM) with σ(i, j) = 1
T

∑T
t=1 pt(i)qt(j) (that is,

uniform over the empirical mixed strategy pairs) is a max{RT/T ,R
′
T/T}-approximate CCE.

Proof. The proof is simply by definition. First observe that the marginal distribution σ1 and σ2 are
simply 1

T

∑T
t=1 pt and 1

T

∑T
t=1 qt. For Player 1, by definition we have:

E(i,j)∼σ[G1(i, j)] =
∑
i,j

σ(i, j)G1(i, j) =
1

T

T∑
t=1

∑
i,j

pt(i)qt(j)G1(i, j) =
1

T

T∑
t=1

G1(pt, qt)

= min
p

1

T

T∑
t=1

G1(p, qt) +
RT

T
= min

p
G(p, σ2) +

RT

T
≤ min

p
G(p, σ2) + max

{
RT

T
,
R′

T

T

}
,

and similarly for Player 2, we have

E(i,j)∼σ[G2(i, j)] = min
q

G2(σ1, q) +
R′

T

T
≤ min

q
G2(σ1, q) + max

{
RT

T
,
R′

T

T

}
.

Together, this is exactly the definition of σ being a max{RT/T ,R
′
T/T}-approximate CCE.

This result again provides a highly efficient and uncoupled way to find an approximate CCE, as a
long-term outcome of a selfish process where each player’s motivation is simply to minimize their
own regret. One can easily verify that the constant social regret bound of Theorem 3 still holds
in this case. However, unlike the zero-sum case, the CCE approximation error is now in terms of
max{RT ,R′

T }, not RT +R′
T , so once again we care about the individual regret but not the regret

sum. This is where things can get much more complicated — indeed, the earlier argument on getting
max{RT ,R′

T } = O(ln(NM)) in the zero-sum case crucially relies on the fact RT + R′
T ≥ 0,

which no longer holds for general-sum games!

In fact, getting max{RT ,R′
T } = O(ln(NM)) in this case is still an open problem, but re-

cent research has made significant progress, with the latest breakthrough by [Daskalakis et al.,
2021] showing that Optimistic Hedge (when deployed by both players) achieves max{RT ,R′

T } =

O(ln(NM) ln4 T ). This result again makes use of some adaptivity property of Optimistic Hedge
similar to our discussion, but is too involved to be covered here. Instead, in the rest of this lecture,
we discuss two simpler results that achieve max{RT ,R′

T } = o(
√
T ), taken from [Syrgkanis et al.,

2015] and [Chen and Peng, 2020] respectively.

The first result again uses the fact that the environment is stable due to the stability of learning
algorithms.
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Theorem 5. If both players use Optimistic Hedge with the predictor being the last loss vector:

pt(i) ∝ exp

(
−η

(
ℓt−1(i) +

∑
s<t

ℓs(i)

))
, where ℓs(i) = G1(i, qs),

qt(j) ∝ exp

(
−η

(
gt−1(j) +

∑
s<t

gs(j)

))
, where gs(j) = G2(ps, j).

then with η = (ln(NM)/T)
1/4, max{RT ,R′

T } = O(T 1/4 ln
3/4(NM)).

Proof. By Lemma 4 of Lecture 2, we have ∥qt − qt−1∥1 ≤ η ∥2gt−1 − gt−2∥∞ ≤ 2η, and thus
based on Eq (3) and our earlier observation ∥ℓt − ℓt−1∥∞ ≤ ∥qt − qt−1∥1, we have

RT ≤ lnN

η
+ η

T∑
t=1

∥ℓt − ℓt−1∥2∞ ≤ lnN

η
+ η + η

T∑
t=2

∥qt − qt−1∥21 ≤ lnN

η
+ η + 4Tη3.

The same bound holds for Player 2 (with N replaced by M ). Plugging in the (optimal) learning rate
value thus proves the theorem.

With a more careful treatment of the stability, the result above can be improved to the following.

Theorem 6. For the same algorithm described in Theorem 5, using η = (ln(NM)/T)
1/6 ensures

max{RT ,R′
T } = O(T 1/6 ln

5/6(NM)).

Proof. Instead of using the final statement of Lemma 4 of Lecture 2, we use the intermediate step
(Eq. (3) of Lecture 2): ∥qt − qt−1∥21 ≤ η ⟨qt − qt−1, gt−2 − 2gt−1⟩, which further implies

T∑
t=2

∥qt − qt−1∥21 ≤ η

T∑
t=2

⟨qt − qt−1, gt−2 − 2gt−1⟩

= η ⟨qT , gT−2 − 2gT−1⟩ − η ⟨q1, g0 − 2g1⟩+ η

T−1∑
t=2

⟨qt, 2gt − 3gt−1 + gt−2⟩ (rearranging)

≤ η ∥gT−2 − 2gT−1∥∞ + η ∥g0 − 2g1∥∞ + η

T−1∑
t=2

∥2gt − 3gt−1 + gt−2∥∞

≤ 4η + η

T−1∑
t=2

(2 ∥gt − gt−1∥∞ + ∥gt−1 − gt−2∥∞)

≤ 5η + 3η

T−1∑
t=2

∥gt − gt−1∥∞ ≤ 5η + 3η

T−1∑
t=2

∥pt − pt−1∥1 .

Note that we have moved from the (squared) stability of qt, to the stability of gt, and finally back to
the stability of pt. Therefore, starting from the regret bound (3), we now have

RT ≤ lnN

η
+ η

T∑
t=1

∥ℓt − ℓt−1∥2∞ − 1

4η

T∑
t=2

∥pt − pt−1∥21

≤ lnN

η
+ η + η

T∑
t=2

∥qt − qt−1∥21 −
1

4η

T∑
t=2

∥pt − pt−1∥21

≤ lnN

η
+ η + 5η2 + 3η2

T∑
t=2

∥pt − pt−1∥1 −
1

4η

T∑
t=2

∥pt − pt−1∥21

≤ lnN

η
+ η + 5η2 + 9Tη5,

where the last step is due to 3η2 ∥pt − pt−1∥1 ≤ 1
4η ∥pt − pt−1∥21 + 9η5 since 2

√
ab ≤ a + b.

Plugging in the learning rate then finishes the proof (the reasoning for R′
T is symmetric).

8



References
Xi Chen and Binghui Peng. Hedging in games: Faster convergence of external and swap regrets.

Advances in Neural Information Processing Systems, 33:18990–18999, 2020.

Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich. Near-optimal no-regret learning
in general games. Advances in Neural Information Processing Systems, 34:27604–27616, 2021.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999.

Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of regu-
larized learning in games. In Advances in Neural Information Processing Systems 28, 2015.

9


	Two-Player Zero-Sum Games
	Repeated Play and Connections to Online Learning
	Faster Convergence via Adaptivity
	General-Sum Games
	Finding CCEs via No-regret Learning


