
CSCI 659 Lecture 5
Fall 2022

Instructor: Haipeng Luo

1 Stronger Regret Measures for Non-Stationary Environments

When introducing the classical static regret definition in Lecture 1, we mentioned that competing
with a fixed optimal action in hindsight might not always make sense, especially when the environ-
ment is non-stationary such that there is no single fixed action that performs well overall. To see
this, consider a simple expert problem with two experts where the first one always suffers loss 0 for
the first T/2 rounds and loss 1 for the remaining T/2 rounds, and the situation for the second expert
is exactly reversed. Then, either expert is the overall best one, but with a huge total loss of T/2. In
this case, even if we have zero regret against the best fixed expert, all we can say is that the loss of
our algorithm is bounded by T/2, a very disappointing guarantee.

Moreover, this might not be just due to loose regret analysis, and one can show that some algorithms
with sublinear regret guarantees indeed suffer linear loss Ω(T ) is this instance. Take Hedge as an
example. Observe that by the algorithm’s definition, the weight for the first expert is always not
smaller than the second one (since its cumulative loss is always not larger). This means that for
the second half of the rounds, the loss of the algorithm is at least 1/2 each round, and thus the
cumulative loss of Hedge is at least T/4.

How do we address such issues? From an algorithmic perspective, intuitively we need algorithms
that can realize the changes in the environment quickly and gradually forget about the outdated data
in the past. To guide such algorithm design, we consider the following two stronger regret measures.

Interval regret. For two integers s (staring point) and e (end point) such that 1 ≤ s ≤ e ≤ T , we
use the notation I = [s, e] to denote the rounds {s, s + 1, . . . , e − 1, e} and call it an interval. The
interval regret with respect to an interval I is then simply defined as the standard regret restricted on
this interval:

RI =
∑
t∈I

ft(wt)−min
w∈Ω

∑
t∈I

ft(w).

In other words, RI compares the loss of the algorithm on interval I to the loss of the best fixed
point on the same interval. If we know where the starting point s of the interval I is, then we would
simply run a standard algorithm starting from round s and obtain RI = O(

√
|I|) (omitting other

dependence), where we use |I| to denote the length of interval I (that is, e − s + 1). Of course,
the challenge is that we do not know what I is beforehand, or in other words, we want to design an
algorithm with interval regret RI = O(

√
|I|) simultaneously for all I. In the literature, such an

algorithm is also sometimes called a strongly adaptive algorithm. This is clearly a stronger measure
compared to the standard static regret where we only care about I = [1, T ].

Going back to the example discussed earlier. If we have a strongly adaptive algorithm, then we can
conclude that the interval regret for the first T/2 rounds and the remaining T/2 rounds are both of
order O(

√
T ). Since the best experts on these two intervals (expert 1 and 2 respectively) both have

zero cumulative loss on their respective interval, the cumulative loss of such a strongly adaptive
algorithm over T rounds is only O(

√
T ), much better than the Ω(T ) loss suffered by Hedge.



Dynamic regret. While interval regret considers the performance of the algorithm in a local re-
gion, dynamic regret measures the global performance of the algorithm over T rounds when com-
pared to a sequence of changing actions. Specifically, the dynamic regret with respect to a compara-
tor sequence u1, . . . , uT ∈ Ω is defined as

RT (u1, . . . , uT ) =

T∑
t=1

(ft(wt)− ft(ut)).

When u1 = · · · = uT = u, this clearly recovers the standard static regret. On the other hand,
the most ambitious goal would be to compare with the optimal comparator sequence w⋆

1 , . . . , w
⋆
T

where w⋆
t = argminw∈Ω ft(w) is the optimal action at time t. However, it is not difficult to see

that sublinear dynamic regret against such an optimal comparator sequence is impossible in general.
To see this, simply consider a 2-expert problem where the environment always assigns loss 0 to the
expert that has the larger weight from the algorithm and loss 1 to the other expert. Then at each
round, clearly the best expert has loss 0, while the algorithm suffers loss at least 1/2, leading to
Ω(T ) dynamic regret.

Therefore, the objective here is to express the dynamic regret in terms of a certain “complexity”
measure of either the comparator sequence or the loss function sequence, such that the algorithm
enjoys sublinear dynamic regret whenever such complexity is not too large. We defer the concrete
discussion to Section 4.

A reduction roadmap. We will take a reduction approach to derive algorithms with interval regret
or dynamic regret guarantees. Specifically, we will reduce the problem of getting dynamic regret
bounds to the problem of getting interval regret bounds, and then further reduce the latter to getting
static regret bounds plus solving a so-called sleeping experts problem, which is finally reduced to
solving the standard expert problem. This reduction chain is illustrated in the following picture. It
again demonstrates the fundamental role of the expert problem as well as the static regret (even if its
definition seems questionable at first glance).

Dynamic
Regret

Interval
Regret

Static
Regret

Sleeping
Expert Expert

Theorem 3
Theorem 4

Theorem 5
Algorithm 2
Theorem 2

Algorithm 1

Theorem 1

2 Sleeping Experts

We start with a detour and discuss the sleeping expert problem, a variant of the expert problem
introduced by Freund et al. [1997] that is itself interesting and useful. In this variant, each expert
comes with different expertise and thus can choose to abstain from providing any advice for a given
round if they do not feel confident enough. Formally, at round t = 1, . . . , T ,

1. the environment first decides (possibly adversarially) which of the N experts are awake and
which are asleep: at(i) = 1 means expert i is awake and at(i) = 0 means it is asleep;

2. at ∈ {0, 1}N is then revealed to the learner who needs to decide a distribution pt ∈ ∆(N) with
the restriction that no weights are put on asleep experts, that is, pt(i) = 0 if at(i) = 0;

3. the environment decides and reveals the loss for the awake experts, that is, ℓt(i) ∈ [0, 1] for all i
such that at(i) = 1.

The regular expert problem is clearly a special case with at(i) = 1 for all t and i. Because an expert
i is not necessarily involved in every round of the game, the regret against this expert, denoted by
RT (i), is now naturally defined only in terms of those rounds when the expert is awake:

RT (i) =
∑

t≤T :at(i)=1

⟨pt − ei, ℓt⟩ .

2



Note that while we use the notation ℓt ∈ [0, 1]N , some of its coordinates might not be defined since
the corresponding experts are asleep for this round. However, this is not really an issue because pt
is required to put zero weight on those coordinates anyway and thus they make no difference to the
inner product ⟨pt, ℓt⟩.

It is natural to ask for a sleeping expert algorithm with RT (i) = O(
√

|{t : at(i) = 1}| lnN) for all
i. Indeed, this is achievable by reducing the sleeping expert problem to the regular expert problem.
Specifically, suppose we are given an regular expert algorithm E with prediction p̂t on round t.
To come up with a prediction pt for the sleeping expert problem so that pt(i) = 0 for all i with
at(i) = 0, a natural idea is to simply ignore the weights in p̂t for these asleep experts and renormalize
the others, that is, pt(i) ∝ at(i)p̂t(i).

Next, we need to come up with a loss vector as the feedback to E . For the awake experts, it is natural
to just use the same loss from the sleeping expert problem. What about the asleep experts? Suppose
that we assign the same value x to all these asleep experts. Then with the goal of forcing the loss of
E for this round to be the same as the loss of the sleeping expert algorithm, we arrive at an equation

∑
i:at(i)=1

p̂t(i)ℓt(i) +

 ∑
i:at(i)=0

p̂t(i)

x =
∑

i:at(i)=1

pt(i)ℓt(i).

Using the definition of pt and solving for x gives

x =

∑
i:at(i)=1 (pt(i)− p̂t(i)) ℓt(i)∑

i:at(i)=0 p̂t(i)
=

(
1∑

i:at(i)=1 p̂t(i)
− 1
)∑

i:at(i)=1 p̂t(i)ℓt(i)

1−
∑

i:at(i)=1 p̂t(i)

=
1∑

i:at(i)=1 p̂t(i)

∑
i:at(i)=1

p̂t(i)ℓt(i) =
∑

i:at(i)=1

pt(i)ℓt(i),

showing that the “fake” loss of asleep experts should be exactly the loss of the sleeping expert
algorithm! As discussed earlier, the value of ℓt(i) for at(i) = 0 does not matter in the sleeping expert
problem. We will therefore overload the notation ℓt to denote the loss vector for both the regular
expert problem and the sleeping expert problem, where ℓt(i) =

∑
j:at(j)=1 pt(j)ℓt(j) = ⟨pt, ℓt⟩ if

at(i) = 0, and otherwise is the loss revealed by the environment. The complete reduction is shown
in the following algorithm, followed by its formal guarantee.

Algorithm 1: Reduction from Sleeping Experts to Regular Experts
Input: a regular expert algorithm E
for t = 1, . . . , T do

let p̂t ∈ ∆(N) be the decision of E at round t
observe at from the environment
play pt such that pt(i) ∝ at(i)p̂t(i)
observe ℓt(i) for all i such that at(i) = 1
set ℓt(i) = ⟨pt, ℓt⟩ for all i such that at(i) = 0
feed ℓt to E

Theorem 1. If the regular expert algorithm E enjoys the optimal regret bound
∑T

t=1 ⟨p̂t − ei, ℓt⟩ =
O(

√
T lnN) for all i and T , then Algorithm 1 ensures RT (i) =

∑
t:at(i)=1 ⟨pt − ei, ℓt⟩ =

O(
√
T lnN) for all i and T as well. On the other hand, if E satisfies an adaptive regret bound

T∑
t=1

⟨p̂t − ei, ℓt⟩ = O


√√√√ T∑

t=1

⟨p̂t − ei, ℓt⟩2 lnN

 (1)

for all i and T , then Algorithm 1 ensures for all i and T :

RT (i) = O(
√
|{t : at(i) = 1}| lnN). (2)

3



Proof. The design of Algorithm 1 ensures ⟨pt, ℓt⟩ = ⟨p̂t, ℓt⟩ for all t and also ⟨pt − ei, ℓt⟩ = 0 for
t with at(i) = 0. Therefore, we can connect the regret in these two problems as:

RT (i) =
∑

t:at(i)=1

⟨pt − ei, ℓt⟩ =
T∑

t=1

⟨pt − ei, ℓt⟩ =
T∑

t=1

⟨p̂t − ei, ℓt⟩ .

The first statement of the theorem thus follows immediately. The second statement is also clear after
realizing

T∑
t=1

⟨p̂t − ei, ℓt⟩2 =

T∑
t=1

⟨pt − ei, ℓt⟩2 =
∑

t:at(i)=1

⟨pt − ei, ℓt⟩2 ≤ |{t : at(i) = 1}|,

where the inequality uses the fact ⟨pt − ei, ℓt⟩ ∈ [−1, 1].

This shows that to obtain the ideal regret guarantee for the sleeping expert problem, we need slightly
more than a minimax optimal expert algorithm in the reduction, that is, we need an adaptive regret
bound (1). Note that we indeed have such adaptive algorithms — in the last lecture, we discussed
one already, and in fact, there are several more in the literature. Recall that we also discussed
two interesting consequences of (1) last time: small-loss bound and almost constant regret for a
stochastic setting. One can verify that the same consequences also hold for RT (i) in this sleeping
expert problem.

3 From Sleeping Experts to Interval Regret

We are now ready to introduce a general mechanism to derive strongly adaptive algorithms (that is,
RI = O(

√
|I|) or at least RI = Õ(

√
|I|) for any interval I) in the OCO setting,1 given any OCO

algorithm A with static regret O(
√
T ) for all T . As mentioned earlier, if the interval I = [s, e] was

known, or in fact only the starting point s was known, then one could simply run A starting from
round s. Since we now want to consider all different starting points, a natural idea is to start a new
instance of A at the beginning of every round, and to combine the actions selected by these different
instances to come up with the final action.

This idea can be exactly captured by the sleeping expert problem: each instance of A is an expert,
and the instance that starts at time t (denoted by At) is asleep for the first t − 1 rounds and awake
for the rest of the problem. At time t, all the t awake instances A1, . . . ,At propose their action,
denoted by w1

t , w
2
t , . . . , w

t
t respectively. Then, we use a sleeping expert algorithm to come up

with a distribution pt over these awake experts, and finally select the action that is the average of
w1

t , w
2
t , . . . , w

t
t weighted by pt(1), . . . , pt(t), that is, their convex combination with respect to pt

(one can also randomly follow one of these actions according to pt). At the end of round t, the loss
for expert Ai (i ≤ t) is naturally ft(w

i
t), the loss of the action proposed by Ai. The full reduction is

summarized below, followed by its formal guarantee.

Algorithm 2: Strongly Adaptive Algorithm via Sleeping Expert
Input: an OCO algorithm A with a static regret guarantee, a sleeping expert algorithm S
for t = 1, . . . , T do

start a new instance of A, called At

obtain actions w1
t , . . . , w

t
t ∈ Ω proposed by A1, . . . ,At respectively

feed at to S where at(i) = 1 for i ≤ t and at(i) = 0 for i > t
obtain distribution pt from S
select final action wt =

∑t
i=1 pt(i)w

i
t

observe loss function ft and suffer loss ft(wt)
feed ft to A1, . . . ,At

feed ℓt to S where ℓt(i) = ft(w
i
t) for i ≤ t.

1Recall that the notation Õ(·) hides all the factors that are logarithmic or polylogarithmic in T .

4



Theorem 2. If the OCO algorithm A ensures RT = O(
√
T ) for all T and the sleeping expert

algorithm S ensures Eq. (2), then Algorithm 2 ensures RI = O(
√
|I| lnT ) for all interval I.

Proof. By the construction, we have for any w ∈ Ω and interval I = [s, e],

∑
t∈I

(ft(wt)− ft(w)) ≤
∑
t∈I

(
t∑

i=1

pt(i)ft(w
i
t)− ft(w)

)
(Jensen’s inequality)

=
∑
t∈I

(⟨pt, ℓt⟩ − ℓt(s)) +
∑
t∈I

(ft(w
s
t )− ft(w))

= Re(s) +O(
√

|I|) (by the guarantee of As)

= O(
√
|I| lnT ) +O(

√
|I|), (by the guarantee of S)

completing the proof.

We have thus shown that a strongly adaptive algorithm can be constructed via a standard algorithm
and another sleeping expert algorithm, with only a small price of an additional

√
lnT factor in the

regret (that is known to be necessary). Note that the improved sleeping expert guarantee Eq. (2) plays
a key role here; indeed, if one only has the weaker guarantee stated in the first part of Theorem 1,
then Algorithm 2 only guarantees RI = O(

√
T lnT ) for all I (known as weakly adaptive). Also,

the logarithmic dependence on the number of experts is clearly critical here as well, since the total
number of experts is T in this case.

Computational efficiency. While for regret we only pay logarithmic dependence on the number of
experts, the running time of S does still depend linearly on this number, an issue that is fundamental
for the expert problem as we discussed before. Although the number of experts is only T (instead
of something exponentially large as in the combinatorial example discussed in Lecture 2), this still
makes the algorithm much less practical and also destroys the efficiency of most OCO algorithms
whose update time per round is independent of T .

Fortunately, it turns out that we can improve the running time to O(lnT ) per round, without sac-
rificing anything for the regret. The idea is to kill some instances of A when they have lived long
enough in some sense so that at each time there are only O(lnT ) instances alive. Killing an instance
can be easily incorporated into the sleeping expert model by just putting the corresponding expert
to sleep forever. The key is to do this in a careful way so that the regret is almost not affected, and
there are in fact several different ways to do so; see for example [Hazan and Seshadhri, 2007].

4 From Interval Regret to Dynamic Regret

Finally, we discuss how an interval regret guarantee automatically implies several different dynamic
regret guarantees. Recall that for dynamic regret RT (u1, . . . , uT ) =

∑T
t=1(ft(wt) − ft(ut)),

our goal is to express it in terms of some complexity measure of either the comparator sequence
u1, . . . , uT , or the loss function sequence f1, . . . , fT . We discuss three such examples below.

Switching/tracking regret. The simplest case is to measure the complexity of u1, . . . , uT by how
many times it switches from one action to another, in which case dynamic regret is also called
switching regret or tracking regret. Formally, let S ≥ 1 be such that

∑T
t=2 1{ut ̸= ut−1} = S − 1,

that is, the number of switches plus one. In other words, we allow the benchmark to divide the total
T rounds into S disjoint intervals, and to select any fixed action on each interval. Based on this
interpretation, we immediately obtain the following result.

Theorem 3. If an algorithm ensures RI = Õ(
√
|I|) for all interval I, then it also ensures

RT (u1, . . . , uT ) = Õ(
√
ST ) for any S ∈ [T ] and any comparator sequence with S − 1 switches.

Proof. Such a comparator sequence naturally divides the T rounds into S intervals I1, . . . , IS such
that the comparator stays the same on each interval. Then, we simply apply the interval regret

5



guarantee on each interval:

RT (u1, . . . , uT ) =

S∑
m=1

∑
t∈Im

(ft(wt)− ft(ut)) = Õ

(
S∑

m=1

√
|Im|

)

≤ Õ


√√√√S

S∑
m=1

|Im|

 = Õ(
√
ST )

where the inequality is by Cauchy-Schwarz inequality.

Therefore, as long as S is sublinear in T , the switching regret is also sublinear. Such a low-switching
benchmark can be significantly better than a no-switching benchmark — just consider the 2-expert
example discussed in Section 1 again, where one switch already leads to Ω(T ) difference in the total
loss of the benchmark. Generally, switching regret is suitable for environments that are close to
being piecewise stationary, and there are indeed many such real-life examples. For instance, in the
context of a recommendation system, users’ preferences usually exhibit a certain stationary trend
within a period (say a month or a season).

Question 1. If the interval regret guarantee is instead RI = Õ(
√
T ) for all interval I, what would

be the corresponding switching regret guarantee?

Variation of the loss sequence. In the second example, we allow the competitor sequence to be ar-
bitrary (so we might just as well pick ut = w⋆

t = minw ft(w), leading to the strongest benchmark),
but measure the complexity using the variation of the loss function sequence f1, . . . , fT , defined as

VT =

T∑
t=2

max
w∈Ω

|ft(w)− ft−1(w)|,

that is, the cumulative differences between two consecutive loss functions (measured by their largest
difference at the same point). A small variation implies that the environment is slowly drifting over
time, making learning possible even if we want to compete with the best action at each round. This
measure is quite similar to the path length of the loss sequence discussed in the last two lectures:
previously, our goal was to derive a static regret bound in terms of the path length, with the hope
of getting an o(

√
T ) bound whenever the environment is slowly changing, and now our goal is to

derive a dynamic regret bound in terms of the variation, with the goal of getting an o(T ) bound
whenever the environment is slowly changing.

Interestingly, this problem is again already solved by using a strongly adaptive algorithm.

Theorem 4. If an algorithm ensures RI = Õ(
√
|I|) for all interval I, then it also ensures

RT (w
⋆
1 , . . . , w

⋆
T ) = Õ

(√
T + T

2/3V
1/3
T

)
where w⋆

t = argminw∈Ω ft(w).

Proof. Let I1 = [s1, e1], . . . , IM = [sM , eM ] be any partition of the entire T rounds, and

VIm =

em∑
t=sm+1

max
w∈Ω

|ft(w)− ft−1(w)|

be the variation of interval Im. For any m ∈ [M ], we can bound the regret on this interval as:∑
t∈Im

(ft(wt)− ft(w
⋆
t )) =

∑
t∈Im

(ft(wt)− ft(w
⋆
sm)) +

∑
t∈Im

(ft(w
⋆
sm)− ft(w

⋆
t ))

≤ Õ(
√

|Im|) + 2|Im|VIm
,

where the last step is by the interval regret guarantee of the algorithm and the fact

ft(w
⋆
sm)− ft(w

⋆
t ) ≤ ft(w

⋆
sm)− fsm(w⋆

sm) + fsm(w⋆
t )− ft(w

⋆
t ) (by optimality of w⋆

sm )

6



=

t∑
τ=sm+1

(
fτ (w

⋆
sm)− fτ−1(w

⋆
sm)
)
+

t∑
τ=sm+1

(fτ−1(w
⋆
t )− fτ (w

⋆
t ))

≤ 2

t∑
τ=sm+1

max
w∈Ω

|fτ (w)− fτ−1(w)| ≤ 2VIm
.

Therefore, the overall dynamic regret is bounded by

RT (w
⋆
1 , . . . , w

⋆
T ) ≤

M∑
m=1

Õ(
√

|Im|) + 2|Im|VIm

≤ Õ(
√
MT ) + 2max

m
|Im|

M∑
m=1

VIm
(Cauchy-Schwarz inequality)

≤ Õ(
√
MT ) + 2max

m
|Im|VT .

Finally we just need to balance M and maxm |Im|. For a fixed M , it is clear that if we want to
minimize maxm |Im|, we should divide the entire T rounds (almost) evenly into M intervals so that
maxm |Im| = O(T/M) and RT (w

⋆
1 , . . . , w

⋆
T ) = Õ(

√
MT + TVT /M). Setting M (optimally) to

max{1, ⌊T 1/3V
2/3
T ⌋} finishes the proof (note that M only appears in the analysis).

Question 2. Once again, if the interval regret guarantee is instead RI = Õ(
√
T ) for all interval

I, what would be the corresponding dynamic regret guarantee?

Therefore, as long as VT is sublinear, the dynamic regret is sublinear. When VT is linear, the bound
is vacuous, but this is consistent with our earlier discussion that it is impossible to always enjoy
o(T ) dynamic regret. We make two more remarks on this dynamic regret bound:

First, notice that if ft is completely revealed at the end of each round, then there is in fact a trivial
algorithm with a better dynamic regret bound: simply pick wt as w⋆

t−1, that is, best respond to the
most recently observed loss function. Its dynamic regret is:

T∑
t=1

(ft(w
⋆
t−1)− ft(w

⋆
t )) ≤

T∑
t=1

(ft(w
⋆
t−1)− ft−1(w

⋆
t−1) + ft−1(w

⋆
t )− ft(w

⋆
t )) ≤ 2VT ,

which is even better than Õ(T 2/3V
1/3
T ). However, this naive approach heavily relies on the fact

that ft is completely revealed, while the algorithms we have been discussing only need the gradient
∇ft(wt) (see Lecture 2). In fact, even if we only observe a noisy version of ∇ft(wt) with a bounded
variance, these algorithms still work as well, while it is easy to see that a small amount of noise can
completely destroy the naive approach. Indeed, with the presence of noise, the bound stated in
Theorem 4 is worst-case optimal as shown in [Besbes et al., 2015]. Even ignoring this issue, the
naive approach is also bad in the sense that it has no static regret guarantee at all.

Second, the switching regret bound from Theorem 3 and the dynamic regret bound from Theorem 4
are generally not comparable. However, the key is that a strongly adaptive algorithm simultaneously
enjoys both bounds. In fact, a simple rewriting of these results shows that a strongly adaptive
algorithm makes sure that its total loss

∑T
t=1 ft(wt) is at most

min

{
T∑

t=1

min
w∈Ω

ft(w) + Õ
(√

T + T
2/3V

1/3
T

)
, min

S
min

u1,...,uT
w. S − 1 switches

T∑
t=1

ft(ut) + Õ
(√

ST
)}

.

Variation of the comparator sequence. Switching regret measures the complexity of the com-
parator sequence by counting the number of hard switches, so even a tiny change between ut

and ut−1 contributes the same amount of complexity as a bigger change, which does not sound
very reasonable. Ideally, we want to measure the complexity in a smoother way, such as by∑T

t=1 ∥ut − ut−1∥, which clearly recovers and generalizes the switching regret. This is indeed
possible via a strongly adaptive algorithm again. For simplicity, in what follows we only focus on
the expert problem (a special of OCO) and we define u0 = 0 (all-zero vector) for convenience.

7



Theorem 5. For the expert problem, if an algorithm ensures RI = Õ(
√

|I|) for all interval I,
then it also ensures RT (u1, . . . , uT ) = Õ

(√
TAT

)
for any u1, . . . , uT ∈ ∆(N) where AT =∑T

t=1

∑N
i=1[ut(i)− ut−1(i)]+ = 1

2

∑T
t=1 ∥ut − ut−1∥1 and [·]+ is a shorthand for max{·, 0}.

Proof. The dynamic regret RT (u1, . . . , uT ) can be written as
∑T

t=1

∑N
i=1 ut(i)rt(i) where rt(i) =

⟨pt − ei, ℓt⟩ is the instantaneous regret. In the rest of the proof, we will fix an expert i and

prove
∑T

t=1 ut(i)rt(i) = Õ
(√∑T

t=1[ut(i)− ut−1(i)]+

√∑T
t=1 ut(i)

)
, which then completes

the proof after summing over i and applying Cauchy-Schwarz inequality.

The idea is to rewrite
∑T

t=1 ut(i)rt(i) as a a weighted sum of interval regret
∑M

m=1 αmRIm
, for

some intervals I1, . . . , IM (not necessarily a partition of [1, T ]) and some corresponding weights
α1, . . . , αM > 0. This rewriting holds as long as ut(i) =

∑M
m=1 1{t ∈ Im}αm for any t, that is,

each ut(i) can be decomposed as the sum of the weights of the intervals that cover t, because
T∑

t=1

ut(i)rt(i) =

T∑
t=1

M∑
m=1

1{t ∈ Im}αmrt(i) =

M∑
m=1

αm

T∑
t=1

1{t ∈ Im}rt(i) ≤
M∑

m=1

αmRIm
.

Applying the interval regret guarantee, we then have

T∑
t=1

ut(i)rt(i) = Õ

(
M∑

m=1

αm

√
|Im|

)
≤ Õ


√√√√ M∑

m=1

αm

√√√√ M∑
m=1

αm|Im|

 (Cauchy-Schwarz)

= Õ


√√√√ M∑

m=1

αm

√√√√ M∑
m=1

αm

T∑
t=1

1{t ∈ Im}

 = Õ


√√√√ M∑

m=1

αm

√√√√ T∑
t=1

ut(i)

 .

It thus remains to find αm and Im to minimize
∑M

m=1 αm subject to the constraint ut(i) =∑M
m=1 1{t ∈ Im}αm. The optimal construction is described below. We will skip its optimality

proof here (see [Luo and Schapire, 2015] if interested), but it suffices to prove that this construction
indeeds leads to

∑M
m=1 αm =

∑T
t=1[ut(i)− ut−1(i)]+.

For conciseness, we drop the index i in what follows. The construction is recursive. First, we find
t⋆ ∈ argmint ut and create an interval I1 = [1, T ] with weight α1 = ut⋆ . Then we recursively
perform the same construction for the inputs u1 − ut⋆ , . . . , ut⋆−1 − ut⋆ and ut⋆+1 − ut⋆ , . . . , uT −
ut⋆ respectively until there are no non-zero inputs left. Let h(u1, . . . , uT ) denote the sum of the
weights of this construction. We now use an induction (on the length of the input T ) to prove
h(u1, . . . , uT ) =

∑T
t=1[ut − ut−1]+ = u1 +

∑T
t=2[ut − ut−1]+. The base case T = 1 holds

trivially. Suppose that the statement holds for any input length smaller than T . Then we have

h(u1, . . . , uT ) = ut⋆ + h(u1 − ut⋆ , . . . , ut⋆−1 − ut⋆) + h(ut⋆+1 − ut⋆ , . . . , uT − ut⋆)

= ut⋆ + (u1 − ut⋆) +

t⋆−1∑
t=2

[ut − ut−1]+ + (ut⋆+1 − ut⋆) +

T∑
t=t⋆+2

[ut − ut−1]+

= u1 +

t⋆−1∑
t=2

[ut − ut−1]+ + [ut⋆+1 − ut⋆ ]+ +

T∑
t=t⋆+2

[ut − ut−1]+ =

T∑
t=1

[ut − ut−1]+.

where the last step is by [ut⋆ − ut⋆−1]+ = 0. This finishes the proof.

Once again, as long as AT is sublinear, the dynamic regret is sublinear. Note that this bound is also
not directly comparable to the one in Theorem 4, and a strongly adaptive algorithm enjoys both of
them simultaneously, leading to the following upper bound on the total loss of the algorithm:

min

{
T∑

t=1

min
i∈[N ]

ℓt(i) + Õ
(√

T + T
2/3V

1/3
T

)
, min

u1,...,uT∈∆(N)

T∑
t=1

⟨ut, ℓt⟩+ Õ
(√

TAT

)}
,

where VT in this case simplifies to
∑T

t=2 ∥ℓt − ℓt−1∥∞.

8



References
Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations

Research, 63(5):1227–1244, 2015.

Yoav Freund, Robert E Schapire, Yoram Singer, and Manfred K Warmuth. Using and combining
predictors that specialize. In 29th Annual ACM Symposium on the Theory of Computing, pages
334–343. ACM, 1997.

Elad Hazan and C. Seshadhri. Adaptive algorithms for online decision problems. In Electronic
Colloquium on Computational Complexity (ECCC), volume 14, 2007.

Haipeng Luo and Robert E. Schapire. Achieving All with No Parameters: AdaNormalHedge. In
28th Annual Conference on Learning Theory, 2015.

9


	Stronger Regret Measures for Non-Stationary Environments
	Sleeping Experts
	From Sleeping Experts to Interval Regret
	From Interval Regret to Dynamic Regret

