
CSCI 659 Lecture 6
Fall 2022

Instructor: Haipeng Luo

1 The Adversarial Multi-Armed Bandit Problem

All the topics we have discussed so far consider problems with full information feedback. Starting
from this lecture, we will move on to the more challenging settings with partial information feed-
back. The classical example of such problems is the Multi-Armed Bandit (MAB) problem [Lai and
Robbins, 1985], and in this lecture we start with the adversarial version of MAB introduced in [Auer
et al., 2002], which can be seen as a variant of the expert problem.

More specifically, the problem models the situation where a gambler sequentially pulls the arm
of one of the slot machines in a casino, with the hope of maximizing reward. A slot machine is
sometimes called a “one-armed bandit”, and hence the name multi-armed bandit for this problem.
Formally, there are K arms/actions available for a learner, and at each time t = 1, . . . , T ,

1. the learner picks an action at ∈ [K] while simultaneously the environment decides the loss
vector ℓt ∈ [0, 1]K ,

2. the learner then suffers and observes (only) the loss ℓt(at).

Clearly, this is simply a partial information version of the expert problem, with the difference being
that the learner has to actually pick one action at each round and then observes only the loss for this
action but not the whole loss vector ℓt. For convention, we move from the notation i and N to a and
K to denote a specific action and the total number of actions respectively.

For simplicity, we focus on an oblivious adversary and only point out that dealing with an adaptive
adversary only requires small modifications. An equivalent way to think about the oblivious case is
that the adversary, knowing the learner’s algorithm, decides the sequence of loss vector ℓ1, . . . , ℓT
ahead of time (possibly in a randomized way). For any such a loss sequence, we measure the
algorithm’s performance by the expected regret

E [RT] = E

[
T∑
t=1

ℓt(at)

]
− min
a∈[K]

T∑
t=1

ℓt(a),

where the expectation is with respect to the randomness of the algorithm.

While simple, MAB captures the essence of many real-life applications such as clinical trials and
recommendation systems, where arms correspond to available choices of medicines or products.
MAB is also the foundational model to study the well-known exploitation versus exploration trade-
off, one of the key challenges for all problems with partial information feedback. Indeed, on the one
hand, it is tempting to select arms that have suffered small losses in the past (exploitation), but on
the other hand, there is also an incentive to select other actions just to find out whether they can lead
to even smaller losses (exploration). These two incentives are in conflict when one can only select
one action at each round, and thus having a good balance between them is the key to design good
algorithms.

1.1 Loss Estimators and Exp3

Since the only difference between MAB and the expert problem is the incomplete information about
the loss vector ℓt, a natural idea to solve MAB is to construct a loss estimator ℓ̂t and then feed it to
any expert algorithm in a blackbox manner. While it might seem impossible to accurately estimate
ℓt, a vector that can be arbitrarily different from the past loss vectors, by only seeing one of its
coordinates, this is indeed doable in a sense via the help of randomness. More specifically, suppose
that at time t we pick at randomly according to a distribution pt ∈ ∆(K) with a full support, then
after seeing ℓt(at), we can construct an inverse importance weighted estimator ℓ̂t ∈ RK+ such that

ℓ̂t(a) =
ℓt(a)

pt(a)
1{a = at} =

{
ℓt(at)
pt(at)

if a = at,
0 else.

While written in terms of ℓt(a) for each a, the indicator 1{a = at} makes sure that we indeed only
use the information ℓt(a) when we pick this arm and observe its loss. In other words, the estimator
is well defined and computable using the information available to the learner.

Unbiasedness The reason that inverse importance weighting makes sense is because it leads to an
unbiased estimator.

Lemma 1. Let Et[·] denote the conditional expectation with respect to the random draw of at given
the past. Then we have for any a ∈ [K], Et[ℓ̂t(a)] = ℓt(a).

Proof. This is by direct calculation: Et[ℓ̂t(a)] = (1− pt(a))× 0 + pt(a)
ℓt(a)
pt(a)

= ℓt(a).

As mentioned, with such an unbiased estimator, it is natural to feed it to any expert algorithm.
Indeed, the very first MAB algorithm is obtained by feeding this estimator to Hedge, resulting to
the following Exp3 algorithm [Auer et al., 2002] (short for Exponential-weight for Exploration and
Exploitation): at time t, sample at ∼ pt ∈ ∆(K) where

∀a ∈ [K], pt(a) ∝ exp

(
−η
∑
s<t

ℓ̂s(a)

)
(Exp3)

for some learning rate η > 0.

Before analyzing the regret of Exp3, we first address the following question: where is the aforemen-
tioned exploration versus exploitation trade-off in this algorithm? The exploitation part is basically
executed by the Hedge algorithm: arms with smaller estimated losses are selected with higher prob-
ability. On the other hand, the exploration part is somewhat implicit. Indeed, whenever an arm at
is selected (maybe due to exploitation), the probability of selecting this arm next time is always de-
creased (or at least not increased), which will then encourage the algorithm to explore other actions.
This is due to the structure of the estimator ℓ̂t so that only the selected action at can have non-zero
loss, while all the other actions have zero estimated loss.

To better understand the importance of this implicit exploration, consider the case where the losses
are negative: ℓt ∈ [−1, 0]K (or equivalently their magnitude corresponds to reward). One can verify
that this does not make any difference to Hedge for the expert problem. However, for MAB, Exp3
does not work anymore, since whenever an arm at is selected, its probability of being selected next
time gets even larger (again due to the structure of ℓ̂t). This scheme clearly lacks sufficient explo-
ration and will suffer linear regret in the worst case. Therefore, when using Exp3, it is important
that losses are shifted so that they are all nonnegative.

1.2 Variance and Variance Cancellation

Given that the estimators are unbiased, does it mean that the expected regret of Exp3 is simply
O(

√
T lnK), the same as Hedge for the expert problem? The answer is no — the O(

√
T lnK)

bound only holds when the losses fed to Hedge is in [0, 1], but in Exp3, the estimated losses fed to
Hedge can be huge due to the inverse importance weighting (for example, ℓ̂t(a) can be as large as

2

1/pt(a)). One may try to fix this by enforcing a lower bound on pt(a) such that the estimators are
not too large, but such methods would lead to ω(

√
T) regret (you should try it yourself).

One may also wonder why it makes sense to have such large estimated losses given that we know
the true losses are always in [0, 1]. However, this is intuitively unavoidable since we are estimating
an arbitrary vector by only seeing one of its coordinates. In fact, the importance weighted estimators
not only have a large magnitude, but also have a large variance (or rather a large second moment):
Lemma 2. Let Et[·] denote the conditional expectation with respect to the random draw of at given
the past. Then we have for any a ∈ [K], Et[ℓ̂t(a)2] = ℓt(a)

2

pt(a)
≤ 1

pt(a)
.

Proof. This is also by direct calculation: Et[ℓ̂t(a)] = (1− pt(a))× 0 + pt(a)
ℓt(a)

2

pt(a)2
= ℓt(a)

2

pt(a)
.

So how do we deal with such a large variance/magnitude? Somewhat surprisingly, there is nothing
we need to do algorithmically once we realize that Exp3 itself enjoys a certain intrinsic variance
cancellation effect, highlighted in the proof below.

Theorem 1. With η =
√

lnK
TK , Exp3 ensures E [RT] = O(

√
TK lnK).

Proof. We apply the following regret bound of Hedge proven in Lecture 1 (see Eq. (1) therein): for
any a⋆ ∈ [K],

T∑
t=1

〈
pt, ℓ̂t

〉
−

T∑
t=1

ℓ̂t(a
⋆) ≤ lnK

η
+ η

T∑
t=1

K∑
a=1

pt(a)ℓ̂t(a)
2, (1)

which holds as long as ℓ̂t(a) ≥ 0 (in fact, as long as ηℓ̂t(a) ≥ −1). On the other hand, using
Lemma 1 and Lemma 2, we have Et[ℓ̂t(a⋆)] = ℓt(a

⋆),

Et[⟨pt, ℓ̂t⟩] = ⟨pt,Et[ℓ̂t]⟩ = ⟨pt, ℓt⟩ = Et[ℓt(at)],

and

Et

[
K∑
a=1

pt(a)ℓ̂t(a)
2

]
=

K∑
a=1

pt(a)
ℓt(a)

2

pt(a)
≤ K. (variance cancellation)

Therefore, taking expectation on both sides of Eq. (1) leads to E[RT] ≤ lnK
η + TKη, and picking

the optimal value of η finishes the proof.

From this proof, it is clear that the key is in the specific bound
∑T
t=1

∑K
a=1 pt(a)ℓ̂t(a)

2 on the sta-
bility term of Hedge, which quite remarkably cancels the potentially large variance of the estimators
automatically. Note that this bound does not necessarily hold if the true losses are negative, which is
consistent with our earlier intuition that Exp3 with negative losses should not work due to the lack of
exploration. Also note that we have derived other types of bound on the stability term for Hedge and
its variant, including

∑T
t=1 ∥ℓ̂t∥2∞ (Section 3.2 of Lecture 2) and

∑T
t=1 ℓ̂t(a

⋆)2 when competing
with a⋆ (Theorem 3 of Lecture 3), but none of these enjoys the same variance cancellation effect
that is critical for MAB (verify this yourself).
Question 1. Can you figure out what breaks in this proof when the adversary is adaptive?

2 Lower Bounds

The regret bound of Exp3 shows that the price of having bandit feedback is an extra
√
K factor

compared to full information setting, which is quite intuitive since each round we only obtain 1/K
fraction of information. So is this the optimal regret bound? To answer this question, we first show
an Ω(

√
TK) lower bound in this section.

The intuition of the lower bound is rather straightforward. For any fixed algorithm, first image
running it in a simple world where losses for all arms are generated independently and uniformly
from {0, 1}. There must exist an arm that is selected no more than T/K times by this algorithm.

3

Now suppose that the adversary secretly modifies the environment so that the loss of this arm follows
a Bernoulli distribution with parameter 1/2−

√
K/T , which is not distinguishable from the uniform

distribution with only T/K samples based on information theory. Thus, when run in this new
environment, the same algorithm should not be aware of this change and will still pick this arm not
often enough, say no more than T/2 rounds, leading to at least T2

√
K/T = Ω(

√
TK) regret.

The question is how to make this argument formal. In particular, how to formally argue that in
the new environment the algorithm’s behavior stays roughly the same. As we will see in the proof
below, this can in fact be related to the KL divergence between two distributions corresponding to
the two environments.
Theorem 2. For any MAB algorithm A, there exists a fixed sequence of loss vectors such that

EA[RT] = Ω(
√
TK)

where we use EA[·] to denote the expectation with respect to the randomness of A.

Proof. According to the informal argument mentioned earlier, we create two randomized environ-
ments E and E ′ in the following way (and use E and E′ to denote the expectation in these two
environments respectively). In E , every loss ℓt(a) follows independently a Bernoulli distribution
with parameter 1/2, denoted by Ber(1/2). There must exist a′ ∈ [K] such that E[n(a′)] ≤ T

K where
n(a) =

∑T
t=1 1{at = a} is the total number of times a is selected. Then E ′ is constructed such that

the losses of arm a′ follow Ber(1/2− ϵ) independently for some small ϵ ≤ 1/4 to be specified later,
and every other arm still follows Ber(1/2) independently.

The rest of the proof argues that E′EA[RT] = Ω(
√
TK), which implies that there exists a fixed

sequence of loss vectors such that EA[RT] = Ω(
√
TK) and concludes the proof. Further note that

E′EA[RT] = EAE′[RT], so it is sufficient to prove that for any deterministic algorithm, E′[RT] =

Ω(
√
TK). If we denote the observation of the learner at time t by ℓ̃t = ℓt(at), then a deterministic

algorithm selects at via some fixed function of ℓ̃1:t−1, a shorthand for the sequence ℓ̃1, . . . , ℓ̃t−1

(note that the information of a1:t−1 is redundant since it is determined by ℓ̃1:t−2 already).

Clearly, in expectation a′ is the best arm in E ′ and

E′[RT] = E′

[
T∑
t=1

ℓt(at)− min
a∈[K]

T∑
t=1

ℓt(a)

]
≥ E′

[
T∑
t=1

ℓt(at)−
T∑
t=1

ℓt(a
′)

]
= (T − E′ [n(a′)])ϵ.

We next show that E′ [n(a′)] and E [n(a′)] are close, that is, the number of times a′ is selected in
environment E and that in environment E ′ are similar (just as in the previous informal argument).
Indeed, using P and P′ to denote the distributions of the observation sequence ℓ̃1:T in E and E ′

respectively, we have

E′ [n(a′)]− E [n(a′)] =
∑

ℓ̃1:T∈{0,1}T

n(a′)
(
P′(ℓ̃1:T)− P(ℓ̃1:T)

)
≤ T

∑
ℓ̃1:T∈{0,1}T

∣∣∣P′(ℓ̃1:T)− P(ℓ̃1:T)
∣∣∣ = T ∥P′ − P∥1 ≤ T

√
2KL(P ∥ P′),

where the last step is by the Pinsker’s inequality.1 To calculate KL(P ∥ P′), we apply a handy
divergence decomposition lemma (Lemma 3, included after this proof):

KL(P ∥ P′) = E [n(a′)] · KL (Ber(1/2) ∥ Ber(1/2− ϵ))

=
E [n(a′)]

2

(
ln

1/2

1/2 + ϵ
+ ln

1/2

1/2− ϵ

)
=

E [n(a′)]

2
ln

(
1

1− 4ϵ2

)
≤ 8E [n(a′)] ϵ2,

1We in fact have proven Pinsker’s inequality in Lecture 2 when arguing the strong convexity of negative
entropy; see if you can make the connection.

4

where in the last step we use the fact ln
(

1
1−x

)
≤ 4x for any x ≤ 1

2 . Finally we have shown

E′ [n(a′)] ≤ E [n(a′)] + 4Tϵ
√

E [n(a′)] ≤ T

K
+ 4Tϵ

√
T

K

(recall a′ is selected such that E [n(a′)] ≤ T/K) and thus

E′[RT] ≥ T

(
1− 1

K
− 4ϵ

√
T

K

)
ϵ ≥ T

(
1

2
− 4ϵ

√
T

K

)
ϵ

Setting ϵ = 1
16

√
K
T (to maximize the lower bound above) shows E′[RT] = Ω(

√
TK), finishing the

proof.

The following divergence decomposition lemma is very powerful and is used extensively in proving
lower bounds.

Lemma 3 (Divergence decomposition). Let E and E ′ be two stochastic MAB environments where
for each a ∈ [K] the losses of arm a are i.i.d. samples of Pa and P ′

a respectively. Let ℓ̃t = ℓt(at)

be the observation of a deterministic learner at time t and P and P′ be the distributions of ℓ̃1:T for
environments E and E ′ respectively. Then we have

KL(P ∥ P′) =

K∑
a=1

E [n(a)]KL(Pa ∥ P ′
a).

where n(a) is the total number of times a is selected in E .

Proof. By definition and direct calculation we have (for conciseness, we omit the range in the sub-
script of a summation; for example,

∑
ℓ̃1:T∈{0,1}T is simply written as

∑
ℓ̃1:T

)

KL(P ∥ P′) =
∑
ℓ̃1:T

P(ℓ̃1:T) ln

(
P(ℓ̃1:T)
P′(ℓ̃1:T)

)
=
∑
ℓ̃1:T

P(ℓ̃1:T) ln

(∏T
t=1 P(ℓ̃t|ℓ̃1:t−1)∏T
t=1 P′(ℓ̃t|ℓ̃1:t−1)

)

=

T∑
t=1

∑
ℓ̃1:T

P(ℓ̃1:T) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

T∑
t=1

∑
ℓ̃1:t

 ∑
ℓ̃t+1:T

P(ℓ̃t+1:T |ℓ̃1:t)

P(ℓ̃1:t) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

T∑
t=1

∑
ℓ̃1:t

P(ℓ̃1:t) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

K∑
a=1

T∑
t=1

∑
ℓ̃1:t:at=a

P(ℓ̃1:t) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

K∑
a=1

T∑
t=1

∑
ℓ̃1:t−1:at=a

P(ℓ̃1:t−1)
∑
ℓ̃t

P(ℓ̃t|ℓ̃1:t−1) ln

(
P(ℓ̃t|ℓ̃1:t−1)

P′(ℓ̃t|ℓ̃1:t−1)

)

=

K∑
a=1

T∑
t=1

P(at = a)KL(Pa ∥ P ′
a) =

K∑
a=1

E [n(a)]KL(Pa ∥ P ′
a),

which completes the proof.

5

3 Minimax Optimal MAB Algorithms

Given the gap between the Exp3 regret upper bound O(
√
TK lnK) and the lower bound Ω(

√
TK)

from the last section, it is more than natural to ask whether this gap can be closed and which one
is the exact minimax optimal bound. While a gap of

√
lnK might seem quite negligible especially

given that we already pay for
√
K in the bound, the effort in understanding and closing this gap in

the literature turns out to be highly fruitful (we will see some examples in the future).

The importance of local norms. To see if we can derive a better algorithm to match the lower
bound, we take a closer look at the stability term

∑K
a=1 pt(a)ℓ̂t(a)

2 in regret bound (1), which as
we showed is at most K in expectation. Recall that the pt(a) factor is critical in canceling the
large variance, so wouldn’t it be nice if we have even “more” pt(a) in this bound? For example,
if the stability term is instead

∑K
a=1 pt(a)

3/2ℓ̂t(a)
2, then after taking expectation, this is at most∑K

a=1

√
pt(a) ≤

√
K, better than the original bound K.

If such a bound on the stability term indeed exists, then intuitively we should pay more for the
penalty term (too good to be true otherwise). To better understand this trade-off, first note that the
term

∑K
a=1 pt(a)ℓ̂t(a)

2 for Hedge can in fact be written as a norm of the loss vector: ∥ℓ̂t∥2∇−2ψ(pt)
,

that is, the quadratic norm weighted by the inverse Hessian ofψ at pt, whereψ is the negative entropy
regularizer (verify it yourself). This is often called the local norm of the loss vector, since it depends
on some local value of the Hessian, in contrast to the ∥ℓ̂t∥2⋆ bound we proved in Lecture 2 which
is in terms of some fixed norm ∥ · ∥⋆ (and is not good enough for MAB as discussed). Assuming
for a moment that such a local-norm bound ∥ℓ̂t∥2∇−2ψ(pt)

on the stability term holds generally for
FTRL with any regularizer, then we can reverse-engineer the correct regularizer ψ that leads to the
aforementioned smaller bound

∑K
a=1 pt(a)

3/2ℓ̂t(a)
2 — it should be ψ(p) = −4

∑K
a=1

√
p(a).

Now that we have figured out the regularizer, it is easy to find out how large the penalty term is: the
range of this regularizer is Bψ = 4(

√
K − 1) and the penalty term is bounded by Bψ/η as shown

in Lecture 2. Combining everything, the overall regret would be O(
√
K
η + ηT

√
K), which, after

picking the optimal η, is O(
√
TK), exactly matching the lower bound!

It remains to understand whether such a local-norm bound always holds for FTRL. Let’s start with
some encouraging evidence. Recall the (stability+negative) term ⟨pt − pt+1, ℓ̂t⟩ − 1

ηDψ(pt+1, pt)

proven in the general regret bound of Lemma 3 in Lecture 2. Also recall that by definition, the
Bregman divergence Dψ(pt+1, pt) is equal to 1

2∥pt− pt+1∥2∇2ψ(ξ) for some ξ between pt and pt+1.
Therefore, applying Hölder’s inequality, we have

⟨pt − pt+1, ℓ̂t⟩ − 1
ηDψ(pt+1, pt) ≤ ∥pt − pt+1∥∇2ψ(ξ)∥ℓ̂t∥∇−2ψ(ξ) − 1

2η∥pt − pt+1∥2∇2ψ(ξ),

which is at most η2∥ℓ̂t∥
2
∇−2ψ(ξ) by the fact 2xy ≤ x2+y2. This is very encouraging since it remains

to connect ∥ℓ̂t∥2∇−2ψ(ξ) and ∥ℓ̂t∥2∇−2ψ(pt)
.

Unfortunately, these two quantities can be quite different in general, especially when pt and pt+1

are too far away from each other (which could happen if the loss estimator ℓ̂t is too “large” in
some sense). Connecting these two quantities and finally getting a local-norm bound on the stability
term is always the central piece of designing and analyzing online learning algorithms with bandit
feedback, and we will see many more examples beyond MAB in the future.

Tsallis Entropy. Fortunately, for MAB, such a local-norm bound does hold for a broad family of
regularizers, including the one obtained earlier via reverse engineering. Specifically, consider the
following family of regularizers called (negative) Tsallis entropy, parameterized by β ∈ (0, 1):

ψ(p) =
1−

∑K
a=1 p(a)

β

1− β
. (2)

When β = 1/2, this essentially recovers the previously reverse-engineered regularizer (up to some
constants that do not affect FTRL). Moreover, when β approaches 1, applying L’Hôpital’s rule we

6

have ψ(p) →
∑
a p(a) ln p(a), exactly recovering the negative Shannon entropy regularizer. Using

such a regularizer in FTRL is first proposed by [Audibert and Bubeck, 2010] and later simplified
by [Abernethy et al., 2015]. Below, we prove that this algorithm indeed enjoys the desired local-
norm bound.
Theorem 3. Consider the following FTRL algorithm

pt = argmin
p∈∆(K)

〈
p,
∑
s<t

ℓ̂s

〉
+

1

η
ψ(p) (3)

where η > 0 is a learning rate, ψ is the Tsallis entropy defined in Eq. (2) with a parameter β ∈ (0, 1),
and ℓ̂1, . . . , ℓ̂T ∈ RK+ are arbitrary loss vectors. Then the following holds for any a⋆ ∈ [K],

T∑
t=1

〈
pt, ℓ̂t

〉
−

T∑
t=1

ℓ̂t(a
⋆) ≤ Bψ

η
+
η

2

T∑
t=1

∥∥∥ℓ̂t∥∥∥2
∇−2ψ(pt)

(4)

=
K1−β − 1

η(1− β)
+

η

2β

T∑
t=1

K∑
a=1

pt(a)
2−β ℓ̂t(a)

2. (5)

Proof. Eq. (5) is by direct calculations: ψ(p) is maximized when p concentrates on one action, and
minimized when p is uniform, leading to Bψ = maxp ψ(p) − minp ψ(p) =

K1−β−1
1−β ; the Hessian

of ψ is a diagonal matrix with the a-th diagonal entry being βp(a)β−2.

To prove Eq. (4), as mentioned, with Lemma 3 of Lecture 2 it suffices to show

⟨pt − pt+1, ℓ̂t⟩ − 1
ηDψ(pt+1, pt) ≤ η

2∥ℓ̂t∥
2
∇−2ψ(pt)

.

To this end, we extend the definition of Tsallis entropy to the entire nonnegative orthant RK+ follow-
ing the same formula (2), and first bound ⟨pt − pt+1, ℓ̂t⟩ − 1

ηDψ(pt+1, pt) by

max
q∈RK

+

⟨pt − q, ℓ̂t⟩ − 1
ηDψ(q, pt).

Let qt a maximizer of the above (which exists as we will show). Then, we repeat the analysis in our
earlier discussion:

⟨pt − qt, ℓ̂t⟩ − 1
ηDψ(qt, pt)

= ⟨pt − qt, ℓ̂t⟩ − 1
2η∥qt − pt∥2∇ψ2(ξ) (for some ξ between pt and qt)

≤ ∥pt − qt∥∇ψ2(ξ)∥ℓ̂t∥∇ψ−2(ξ) − 1
2η∥qt − pt∥2∇ψ2(ξ) (Hölder’s inequality)

≤ η
2∥ℓ̂t∥

2
∇ψ−2(ξ) (2xy ≤ x2 + y2)

≤ η
2∥ℓ̂t∥

2
∇ψ−2(pt)

,

where the last step uses the monotonicity of the local norm and the fact ξ(a) ≤ pt(a) for all a. This
is true because by the definition of qt, we have by setting the gradient to zero:

∇ψ(qt) = ∇ψ(pt)− ηℓ̂t,

which is equivalent to
1

qt(a)1−β
=

1

pt(a)1−β
+

1− β

β
ηℓ̂t(a).

Since ℓ̂t(a) ≥ 0, we must have qt(a) ≤ pt(a) for all a, and being a point between pt and qt, ξ must
also satisfy ξ(a) ≤ pt(a) for all a. This finishes the proof for Eq. (4).

By L’Hôpital’s rule, we have limβ→1
K1−β−1

1−β = lnK and thus Eq. (5) generalizes our analysis
Eq. (1) for Hedge. One might notice that Theorem 2 holds for any nonnegative losses, while Eq. (1)
only requires a slightly weaker condition ηℓ̂t(a) ≥ −1. This can be addressed by a more careful
analysis, which you will need to do in HW3.

With the help of this local-norm bound, we immediately obtain the following results for MAB.

7

Corollary 1. Consider the following MAB algorithm: at time t sample at from pt defined in Eq. (3)
with ℓ̂t(a) =

ℓt(a)
pt(a)

1{a = at} being the inverse importance weighted estimator. Then we have

E[RT] ≤
K1−β − 1

η(1− β)
+
ηKβT

2β
.

Therefore, by picking β = 1/2 and η = 1/
√
T , we obtain the minimax optimal regret O(

√
TK).

Proof. We directly take expectation on both sides of Eq. (5) and apply Lemma 2, arriving at

E[RT] ≤
K1−β − 1

η(1− β)
+

η

2β

T∑
t=1

K∑
a=1

pt(a)
1−β .

Applying Hölder’s inequality to the last term

K∑
a=1

pt(a)
1−β ≤

(
K∑
a=1

(pt(a)
1−β)

1
1−β

)1−β (K∑
a=1

1
1
β

)β
= Kβ

finishes the proof (or you can just argue that the LHS above is maximized when p is uniform).

Clearly, picking other constants such β = 1/3 (along with the optimal η) also leads to the same
minimax optimal bound O(

√
TK). Compared to Hedge, whose penalty-stability trade-off is lnK

η

versus ηTK, the trade-off here for any constant β is essentially K1−β

η versus ηTKβ , leading a slight
improvement in their product. Beside this improvement, in the next lecture we will also discuss one
surprising application of this algorithm.
Question 2. On the other hand, is Tsallis entropy a good regularizer for the expert problem with
full information?

Finally, note that this algorithm does not admit a closed-form update. Nevertheless, by writing down
the Lagrangian and setting the gradient to zero, one can find that pt satisfies

1

pt(a)1−β
=

1− β

β

(
λ+ η

∑
s<t

ℓ̂s(a)

)
, ∀a ∈ [K] (6)

for some constant λ (the Lagrangian multiplier) such that pt is a distribution, which can be found
efficiently using a simple binary search.

4 Comparisons between Full-Information and Bandit Feedback

We conclude by highlighting some connections and differences between online learning problems
with full information and those with bandit feedback. First, even with the more challenging bandit
feedback, many problems still admit O(

√
T) regret bound, though with extra dependence on other

parameters characterizing the price of having less information. Almost all such O(
√
T) bounds

are obtained by feeding a full-information counterpart algorithm with some loss estimators and a
careful analysis that makes use of certain local norm to handle the potentially large variance of the
loss estimators. Thus, the critical part in the algorithm design is to find the “right” combination
of the loss estimator and the regularizer to enable such variance cancellation effect. Most of the
adaptive bounds we discussed in Lecture 3 (e.g. small-loss bounds, path-length bounds, and almost
constant regret for stochastic losses) also have their counterparts for the bandit setting.

Despite theses similarities, there are also important distinctions between these two settings. For
example, in Lecture 5 we derived strongly adaptive OCO algorithms with O(

√
|I|) regret for all

interval I simultaneously. It turns out that the same is impossible for bandit problems (see HW3).
As for achieving O(

√
ST) switching regret for all S when competing against a sequence with S

switches (which is possible for the full-information setting), it has also been proven impossible
lately for MAB with an adaptive adversary and more than two arms [Marinov and Zimmert, 2021].
Interestingly, the case with exactly two arms or an oblivious adversary remains open.

8

References
Jacob D Abernethy, Chansoo Lee, and Ambuj Tewari. Fighting bandits with a new kind of smooth-

ness. In Advances in Neural Information Processing Systems 28, 2015.

Jean-Yves Audibert and Sébastien Bubeck. Regret bounds and minimax policies under partial mon-
itoring. Journal of Machine Learning Research, 11(Oct):2785–2836, 2010.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances
in applied mathematics, 6(1):4–22, 1985.

Teodor Vanislavov Marinov and Julian Zimmert. The pareto frontier of model selection for general
contextual bandits. Advances in Neural Information Processing Systems, 34:17956–17967, 2021.

9

	The Adversarial Multi-Armed Bandit Problem
	Loss Estimators and Exp3
	Variance and Variance Cancellation

	Lower Bounds
	Minimax Optimal MAB Algorithms
	Comparisons between Full-Information and Bandit Feedback

