
CSCI 659 Lecture 7
Fall 2022

Instructor: Haipeng Luo

1 Stochastic Multi-Armed Bandits

In the last lecture, we discussed algorithms for the adversarial MAB problem where there is no
assumption on how the loss vectors are generated, similar to all the problems we have analyzed so
far. On the other hand, there is a also huge literature on the stochastic version of MAB, where each
arm represents an unknown distribution and each pull of the arm generates an independent sample
of that distribution. While this is clearly just a special case of adversarial MAB, the goal here is
usually to derive regret bounds that are instance-dependent and in some situations better than the
worst-case O(

√
TK) bound. Moreover, unlike the full-information setting (where the stochastic

assumption makes the problem much easier), stochastic MAB is still a highly non-trivial problem
due to the partial information feedback.

Formally, in stochastic MAB, we assume that for each action a, there is an unknown distribution
with support [0, 1] and mean µ(a), such that ℓ1(a), . . . , ℓT (a) are independent samples of this distri-
bution. For this problem we usually care about a slightly different version of regret, called pseudo-
regret, defined as

R̄T = max
a∈[K]

E

[
T∑

t=1

ℓt(at)−
T∑

t=1

ℓt(a)

]
,

where the expectation is over the randomness of both the environment and the algorithm. It is
easy to see that pseudo-regret is a weaker measure compared to standard expected regret since the
latter moves the “max” inside the expectation. However, pseudo-regret not only is more natural in
stochastic settings but also allows us to ignore the deviation of the samples ℓ1(a), . . . , ℓT (a) from
their mean µ(a) and derive better regret bounds as we will see.

Let a⋆ ∈ argmina µ(a) be an optimal action in terms of the expected loss. Then, pseudo-regret for
stochastic MAB can be simplified as

R̄T = E

[
T∑

t=1

(µ(at)− µ(a⋆))

]
= E

[
T∑

t=1

K∑
a=1

∆a1{at = a}

]
=

∑
a:∆a>0

∆aE[nT (a)] (1)

where ∆a = µ(a) − µ(a⋆) is the suboptimality gap of action a and nt(a) =
∑t

s=1 1{as = a} is
the number of times action a has been pulled up to round t.

In stochastic MAB, the trade-off between exploration and exploitation is perhaps even more intu-
itive. To see this, let µ̂t(a) =

1
nt(a)

∑t
s=1 1{as = a}ℓs(a) be the empirical average loss of action

a up to round t. Since the environment is stochastic, µ̂t(a) should be a good approximation of µ(a)
as long as nt(a) is large enough. This is formally stated in the following concentration lemma.
Lemma 1. For stochastic MAB, no matter what the learner’s strategy is, we have with probability
at least 1− 2K/T , for all action a ∈ [K] and all time t ∈ [T ]:

|µ̂t(a)− µ(a)| ≤ 2

√
lnT

nt(a)
.



The lemma is essentially proven by the standard Hoeffding’s inequality, except for the extra techni-
cality needed to deal with the fact that nt(a) itself is also random. We omit the proof for simplicity.

Therefore, on the one hand, we want to exploit by picking the empirically best action argmina µ̂t(a),
but on the other hand, we also need to explore so that all actions are picked frequently enough to
make sure that µ̂t(a) is indeed a good approximation of µ(a).

Explore-then-Exploit. Based on the intuition above, one naive approach would be “explore-then-
exploit”, that is, first spend a certain number of rounds to pick all the actions equally often, and then
simply stick with the empirically best action for all remaining rounds. While simple, this approach
is also intuitively wasteful and nonadaptive in the exploration phase, in the sense that every action
is selected equally often, even if some of them look much worse than others. A quick analysis also
shows that the algorithm is suboptimal: suppose that we want the estimation error for every action
to be ϵ (with high probability), then based on Lemma 1 we need to select every action roughly
(lnT )/ϵ2 rounds; therefore, the total regret would be of order Õ(Kϵ2 + ϵT ) (since in the exploration
phase, per round regret could be as large as a constant, while in the exploitation phase, per round
regret can at most be 2ϵ), which is at best Õ(T 2/3K1/3) with the optimally-chosen ϵ.

2 The UCB Algorithm

To improve over this naive approach, we need a more adaptive way to trade off exploration and ex-
ploitation. The classical algorithm to do so is the UCB (Upper Confidence Bound) algorithm [Auer
et al., 2002]. Since we consider “losses” instead of “rewards” (the original setting of [Auer et al.,
2002]), the algorithm that we will discuss is actually LCB (Lower Confidence Bound). For conven-
tion, however, we will still call it UCB.

UCB applies a very powerful principle called “optimism in face of uncertainty”, which is useful
in many other stochastic problems with bandit feedback. The main idea of the principle is the
following: among all plausible environments that are consistent with the data observed so far, the
learner should be optimistic and act as if the environment is the best possible one.

Specifically, at each round t, Lemma 1 already tells us what the plausible environments are given the
data observed so far. Among them, the most favorable one to the learner is the one with the smallest
loss mean, that is, when the loss mean for each action a is the following lower confidence bound:

LCBt(a)
def
= µ̂t−1(a)− 2

√
lnT

nt−1(a)
.

Therefore, an optimistic learner would wishfully believe that this is the true environment and natu-
rally selects

at = argmin
a∈[K]

LCBt(a). (2)

This is exactly the UCB algorithm.

A couple of remarks are in order. First, note that nt−1(a) is initially 0, leading to negative infinity
for LCBt(a), so the algorithm will be forced to pick each action exactly once for the first K rounds.
Afterwards, the two terms in LCBt(a) are essentially playing the role of exploitation and exploration
respectively: the first term suggests picking actions with low empirical mean (exploitation), while
the second term suggests picking actions that have not been selected often enough (exploration).
Together, they achieve an adaptive trade-off between exploitation and exploration, which does not
waste many rounds to explore an infrequently selected action if it already looks pretty bad. Also
note that optimism is indeed important to derive exploration — think about what would happen if
we adopt pessimism instead and pick the arm with the smallest upper confidence bound µ̂t−1(a) +

2
√

(lnT )/nt−1(a). Moreover, in contrast to Exp3, UCB is a deterministic algorithm, that is, no
randomness is used in deciding which actions to play.
Question 1. In adversarial MAB, can a deterministic algorithm be no-regret?

To analyze the algorithm, we start with the following key lemma.

Lemma 2. Under the event stated in Lemma 1, UCB ensures ∆at
≤ 4
√

lnT
nt−1(at)

for each time t.

2



Proof. This is a direct consequence of optimism:

∆at
= µ(at)− µ(a⋆) ≤ µ(at)− LCBt(a

⋆) (Lemma 1)
≤ µ(at)− LCBt(at) (by Eq. (2), at has the smallest LCB)

≤ 4
√

lnT
nt−1(at)

, (by the definition of LCB and Lemma 1)

which completes the proof.

This simple fact immediately tells us how many times each action can be selected by UCB.

Theorem 1. Under the event stated in Lemma 1, we have nT (a) ≤ 16 lnT
∆2

a
+ 1 for every action a.

Consequently, the pseudo-regret of UCB satisfies R̄T = O(
∑

a:∆a>0
lnT
∆a

)

Proof. For each action a, applying Lemma 2 with t being the last time a is selected shows: ∆a ≤
4
√

lnT
nT (a)−1 , which, after rearranging, proves the first statement. Therefore, if we denote the event

stated in Lemma 1 by E, then the pseudo-regret (recall Eq. (1)) of UCB is

R̄T ≤ Pr(E)×
∑

a:∆a>0

∆aE [nT (a) | E] + Pr(¬E)× T

≤
∑

a:∆a>0

(
16 lnT

∆a
+∆a

)
+ 2K = O

( ∑
a:∆a>0

lnT

∆a

)
,

which proves the second statement.

This regret bound is in sprit similar to that in Theorem 6 of Lecture 3 for the full information setting,
in the sense that they both depend on the difficulty of the specific problem instance, measured by
some suboptimality gaps, and in exchange enjoy much better dependence on T compared to the
worst-case

√
T -bound. In fact, it can be shown that such a bound is instance-optimal for stochastic

MAB, meaning that for each problem instance, this is the best pseudo-regret bound one can achieve
using a “reasonable” algorithm.

Question 2. The Ω(
√
TK) lower bound construction for adversarial MAB in Lecture 6 is in fact

also a stochastic environment, so why is that not a contradiction with this (lnT )-bound? Is this due
to the difference between expected regret and pseudo-regret?

In this instance-optimal bound, the smaller the gaps, the larger the pseudo-regret, which makes sense
to some degree because smaller gaps make it harder to distinguish the optimal actions from the rest.
On the other than, however, if an action really has a tiny suboptimality gap, then by definition
selecting it does not lead to large regret and thus there is really no point in distinguishing it from the
optimal actions. While this intuition is not reflected in this instance-optimal regret bound, a different
analysis below shows that UCB indeed still guarantees O(

√
TK lnT ) regret at the same time, no

matter how small the gaps are.
Theorem 2. For any algorithm, if t0 is the first time such that nt0(a) ≥ 1 for all a (that is, all
actions have been selected at least once), then

∑T
t=t0+1

1/
√

nt−1(at) ≤ 2
√
TK. Consequently,

UCB ensures R̄T = O(
√
TK lnT ).

Proof. The first statement can be shown by direct calculation:
T∑

t=t0+1

1√
nt−1(at)

=

K∑
a=1

T∑
t=t0+1

1 {a = at}√
nt−1(a)

≤
K∑

a=1

nT (a)−1∑
s=1

1√
s
≤ 2

K∑
a=1

√
nT (a) (

∑m
s=1

1√
s
≤ 2

∑m
s=1(

√
s−

√
s− 1) = 2

√
m)

≤ 2

√√√√( K∑
a=1

nT (a)

)
K = 2

√
TK. (Cauchy-Schwarz inequality)
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For UCB, t0 is simply K as discussed. Thus, using Lemma 2 we can bound the pseudo-regret as

R̄T ≤ (K + 8
√
TK lnT ) + Pr(event in Lemma 1 does not hold)× T = O(

√
TK lnT ),

which proves the second statement.

3 Best of Both Worlds

Given the two different types of results we have seen so far: O(
√
TK) regret for adversarial MAB

and O(
∑

a:∆a>0
lnT
∆a

) regret for stochastic MAB, it is natural to ask whether there is one single
algorithm that achieves the best of these two worlds simultaneously, without knowing ahead of time
whether the world is stochastic or adversarial. It can be verified either theoretically or empirically
that neither UCB or vanilla Exp3 achieves such a best-of-both-worlds result. In fact, the possibility
of such results had been highly unclear, until the seminal work of Bubeck and Slivkins [2012], where
they propose to start with running UCB, and then switch to Exp3 if some sophisticated tests show
that the environment is unlikely to be stochastic.

However, such algorithms are not only complicated and impractical, but also suboptimal in several
aspects. Ideally, we would like to achieve such best-of-both-worlds results via a simple algorithm,
or, even better, via a simple adaptive regret bound, independent of the concrete algorithm, similar
to the result of Theorem 6 from Lecture 3 for the full information setting. Recent research has
made significant progress in this direction and indeed provides a positive answer to this question.
The following result, taken from [Zimmert and Seldin, 2019], shows that if a certain adaptive regret
bound holds, then the algorithm not only automatically achieves the best of the both stochastic and
adversarial worlds, but also smoothly bridges these two worlds with a natural performance guarantee
for any environments in between.
Theorem 3. Suppose that an MAB algorithm always ensures for any action a⋆ ∈ [K],

R̄T ≤ O

E

 T∑
t=1

∑
a̸=a⋆

√
pt(a)

t

 , (3)

where pt(a) is the probability of picking action a at time t. Then the same algorithm

• always ensures R̄T = O(
√
TK), even if the environment is adversarial;1

• ensures R̄T = O
(∑

a̸=a⋆
lnT
∆a

+
√
C
∑

a ̸=a⋆
lnT
∆a

)
if the environment is such that

R̄T ≥ E

 T∑
t=1

∑
a̸=a⋆

pt(a)∆(a)

− C (4)

for some action a⋆, gap measures ∆(a) > 0 for a ̸= a⋆, and a constant C > 0.

The first statement is clear: the algorithm is always minimax optimal in the adversarial world. The
second statement is a bit obscure, and let’s unpack its meaning. First, note that stochastic MAB
satisfies the required condition (4) with a⋆ being the optimal action (assumed to be unique here for
simplicity), ∆(a) being the suboptimality gap defined earlier, and C = 0. In fact, in this case Eq. (4)
holds with equality. Thus, the theorem says that for stochastic MAB, the algorithm automatically
enjoys the instance-optimal pseudo-regret O(

∑
a̸=a⋆

lnT
∆a

).

But the second statement says much more than that. For example, consider a corrupted stochastic
setting that smoothly interpolates between the stochastic setting and the adversarial setting: the
environment first follows the protocol of stochastic MAB and generates losses ℓ′1(a), . . . , ℓ

′
T (a)

for each action a according to a fixed distribution with mean µ(a), then, an adversary arbitrarily
corrupts the losses to generate the final loss sequence ℓ1(a), . . . , ℓT (a), subject to a “budget” C
such that 2

∑T
t=1 ∥ℓt − ℓ′t∥∞ ≤ C. This setting satisfies (4) again since

R̄T ≥ max
a

E

[
T∑

t=1

ℓ′t(at)−
T∑

t=1

ℓ′t(a)

]
− C = E

 T∑
t=1

∑
a̸=a⋆

pt(a)∆(a)

− C,

1Note that for an oblivious adversary, pseudo-regret is the same as regular expected regret.
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where a⋆ and ∆(a) are respectively the optimal action and the suboptimality gap of the
original stochastic environment. In this case, the bound stated in Theorem 3, R̄T =

O
(∑

a̸=a⋆
lnT
∆a

+
√
C
∑

a̸=a⋆
lnT
∆a

)
, naturally increases inC (the amount of corruption), smoothly

interpolating between the instance-optimal bound for stochastic MAB with no corruption and the√
T type of bound for adversarial MAB (since C is at most 2T ). Importantly, the theorem also

implicitly implies that the algorithm does not need the knowledge of C!

More generally, condition (4) can be even weaker than the settings discussed above, since no inde-
pendence (across actions or time) is really required. Below, we provide the proof for this theorem.

Proof. The first statement is by a direct application of Cauchy-Schwarz inequality following Eq. (3):

R̄T ≤ O

E

 T∑
t=1

∑
a̸=a⋆

√
pt(a)

t

 = O

E

 T∑
t=1

√
K
∑

a ̸=a⋆ pt(a)

t

 = O(
√
TK).

For the second statement, we let B be the constant hidden in the O(·) notation of Eq. (3), and then
bound the regret by a faction of itself :

R̄T ≤ E

B T∑
t=1

∑
a̸=a⋆

√
pt(a)

t

 ≤ E

 T∑
t=1

∑
a̸=a⋆

pt(a)∆(a)

2z
+

zB2

2t∆(a)

 ≤ R̄T + C

2z
+ 2zU,

where the second step is by AM-GM inequality and holds for any z ≥ 0, and the third step uses
condition (4), the fact

∑T
t=1

1
t ≤ 2 lnT , and a shorthandU = B2

2

∑
a̸=a⋆

lnT
∆(a) . As long as z ≥ 1/2,

rearranging shows R̄T ≤ 4z2

2z−1U + C
2z−1 . With x = 2z − 1, this can be rewritten as R̄T ≤

2U + Ux + U+C
x , which is of order O(U +

√
(U + C)U) = O(U +

√
CU) after picking the

optimal x to minimize the bound (note that x only appears in the analysis and is not a parameter of
the algorithm). This completes the proof.

The next question, of course, is what algorithms achieve this magical Eq. (3). In fact, we have seen
one such example already: FTRL with Tsallis entropy regularizer ψ(p) = −2

∑K
a=1

√
p(a). The

only modification needed is that at time t, we use a time-varying learning rate ηt = 1/
√
t. We leave

the proof to HW3, and only point out that it is quite surprising that such a simple algorithm exhibits
strong optimality and adaptivity to many different types of environments simultaneously.

4 Stochastic Linear Bandits and LinUCB

Next, we come back to the stochastic setting and study a generalization of stochastic MAB. One is-
sue of stochastic MAB is that it completely ignores the possible dependence across different actions,
while in practice they are often correlated one way or another. Taking such correlation into account
is especially important when the number of actions is huge. Here, we consider a setting where such
correlation is represented in the simplest linear manner, known as stochastic linear bandits.

The learning protocol is as follows: for each round t = 1, . . . , T ,

1. An arbitrary set of actions At ⊂ Rd is revealed to the learner;

2. the learner picks an action at ∈ At and observe its loss ct = ⟨at, θ⋆⟩ + ϵt where θ⋆ ∈ Rd is a
fixed and unknown parameter and ϵt ∼ N (0, 1) is independent standard Gaussian noise.

Let a⋆t ∈ argmina∈At
⟨a, θ⋆⟩ be an optimal action at time t. The pseudo-regret of this problem is

naturally defined as

R̄T = E

[
T∑

t=1

⟨at − a⋆t , θ
⋆⟩

]
.

Note that stochastic MAB is essentially a special case of this model, where d = K, At is always
{e1, . . . , ed} (the standard basis vectors of Rd), and θ⋆ = (µ(1), . . . , µ(K)) is the vector of loss
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mean for each action. The only slight difference is that now we consider Gaussian noise for each
observation of the loss, which is less general compared to the arbitrary bounded noise model in
stochastic MAB, but more general in that the noise can be unbounded.

In general, the stochastic linear bandit model is much more powerful since 1) it allows each action to
come with an arbitrary “feature”; 2) the number of actions can be arbitrary (even infinite); and 3) the
set of available actions can be different at different time. This allows us to capture real-life problems
such as building a personalized news recommendation system [Li et al., 2010]. In this application,
each time t corresponds to a visit of some user to the website. The available news articles at that
time as well as the user’s information are then used to generate a feature vector for each article.
Afterwards, a linear bandit algorithm selects an action and recommends the corresponding article
to the user. The loss is then based on whether the user clicks on the recommended article or not.
It is assumed that the expected loss of an action can be perfectly predicted by an unknown linear
predictor θ⋆ (but we will see generalization to nonlinear models in the future).

Note that because of the changing action sets, it only makes sense to define the pseudo-regret so that
it compares the expected loss of the algorithm to the expected loss of the best action at each time.
This relates to the notion of dynamic regret discussed before. However, while in general sublinear
dynamic regret is impossible, due to the stochastic assumption, regret of order O(

√
T ) is in fact

achievable here as we will see soon.

Finally, without loss of generality, we make two scaling assumptions: maxa∈At ∥a∥2 ≤ 1 for all t
and ∥θ⋆∥2 ≤ 1.

4.1 The LinUCB Algorithm

To solve this problem, let’s apply the same “optimism in face of uncertainty” principle. The first
step is to come up with the set of plausible environments that are consistent with the observed data.
Here, the only parameter of the environment is the linear predictor θ⋆, so the first goal would be
to come up with a confidence set Θt for time t based on the observation a1, c1, . . . , at, ct, so that
θ⋆ ∈ Θt with high probability. With such a confidence set, similarly to the UCB algorithm, at time
t+ 1 we optimistically assume that the loss for each action a ∈ At+1 is

LCBt+1(a) = min
θ∈Θt

⟨a, θ⟩ ,

and finally pick action at+1 = argmina∈At+1
LCBt+1(a).

It remains to come up with the confidence set Θt. First, we need to figure out what the “center” of
this set is. For UCB, the center of the confidence set is simply and naturally the empirical average
of observations. For linear bandit, note that we are observing cs ≈ ⟨as, θ⋆⟩ for s = 1, . . . , t. It is
thus natural to perform least square regression to obtain an estimate of θ⋆ as the center:

θ̂t = argmin
θ∈Rd

t∑
s=1

(⟨as, θ⟩ − cs)
2
.

By direct calculations, one can verify θ̂t = M−1
t

∑t
s=1 csas where Mt =

∑t
s=1 asa

⊤
s is called the

empirical covariance matrix and is assumed to be invertible for now. Note that this is consistent with
UCB: when At = {e1, . . . , ed}, Mt is a diagonal matrix with Mt(i, i) being the number of times
action i has been selected, and thus θ̂t is exactly the vector of empirical mean for each action.

Next, we need to figure out what Θt should look like around the center θ̂t, that is, to understand the
distribution of θ̂t. To get an intuition, we first ignore the fact that each as is itself random variables
and think of them as fixed vectors (all assumptions will be dropped eventually). Then, the only
randomness in θ̂t comes from the noises ϵ1, . . . , ϵt. Plugging in cs = ⟨as, θ⋆⟩+ ϵs, we rewrite θ̂t as

θ̂t =

(
M−1

t

t∑
s=1

(⟨as, θ⋆⟩+ ϵs)as

)
=M−1

t Mtθ
⋆ +M−1

t

t∑
s=1

ϵsas = θ⋆ +M−1
t Zt

where Zt =
∑t

s=1 ϵsas is a zero-mean d-dimensional Gaussian variable with covariance matrix

E
[
ZtZ

⊤
t

]
=

t∑
s1=1

t∑
s2=1

E [ϵs1ϵs2 ] as1a
⊤
s2 =

t∑
s=1

E
[
ϵ2s
]
asa

⊤
s =Mt.
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Therefore, the random variable M1/2
t (θ̂t− θ⋆) is distributed as N (0, I), the d-dimensional standard

Gaussian. By standard concentration results (specifically, tail bounds of the χ2
d distribution), the

following holds for any δ ∈ (0, 1) (details omitted)

Pr

(∥∥∥M1/2
t (θ̂t − θ⋆)

∥∥∥2
2
≤ d+ 2

√
d ln 1

δ + 2 ln 1
δ

)
≥ 1− δ.

Inspired by this, the confidence set can be constructed as (recall the notation ∥v∥M =
√
v⊤Mv)

Θt =

{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥2
Mt

≤ d+ 2
√
d ln 1

δ + 2 ln 1
δ

}
,

which is in fact an ellipsoid centered at θ̂t. (The set defined by ∥v∥M ≤ 1 is the standard analytic
form of an ellipsoid centered at the origin, where the eigenvectors of M define the principal axes of
the ellipsoid and the corresponding eigenvalues are the reciprocals of the square of the semi-axes.)

In the derivation above, we made two assumptions. First, Mt is invertible, which is not true until
a1, . . . , at span Rd. This can be resolved by adding an ℓ2-regularization to the least square regression

θ̂t = argmin
θ∈Rd

t∑
s=1

(⟨as, θ⟩ − cs)
2
+ λ ∥θ∥22 =M−1

t

t∑
s=1

csas

where Mt is redefined as λI +
∑t

s=1 asa
⊤
s for some parameter λ > 0 and is always invertible now.

However, what is more difficult to get rid of is the second assumption that each as is fixed and not
random. Fortunately, with some probability tools, this can still be addressed. We omit the details
and only show the final lemma taken from [Abbasi-Yadkori et al., 2011].

Lemma 3 (Confidence Ellipsoid). For any stochastic linear bandit algorithm and fixed parameters
λ > 0 and δ ∈ (0, 1), we have with probability at least 1− δ, θ⋆ ∈ Θt holds for all t, where

Θt =

{
θ ∈ Rd :

∥∥∥θ − θ̂t

∥∥∥
Mt

≤ β

}
,

Mt = λI +
∑t

s=1 asa
⊤
s , θ̂t =M−1

t

∑t
s=1 csas, and β =

√
λ+

√
2 ln 1

δ + d ln
(
1 + T

dλ

)
.

Finally, having this confidence set Θt, we can further simplify the algorithm by noting

LCBt+1(a) = min
θ∈Θt

⟨a, θ⟩ = min
∥θ−θ̂t∥

Mt
≤β

⟨a, θ⟩

= min
∥θ′∥2≤β

〈
a,M

− 1
2

t θ′ + θ̂t

〉
(define θ′ =M

1
2
t (θ − θ̂t))

=
〈
a, θ̂t

〉
+ min

∥θ′∥2≤β

〈
M

− 1
2

t a, θ′
〉

=
〈
a, θ̂t

〉
− β ∥a∥M−1

t
(min∥v∥2≤1 ⟨x, v⟩ = −∥x∥2)

and thus
at+1 = argmin

a∈At+1

LCBt+1(a) = argmin
a∈At+1

(
⟨a, θ̂t⟩ − β ∥a∥M−1

t

)
.

This algorithm is called LinUCB (or OFUL, shorf for Optimism in Face of Uncertainty for Linear
bandit). Very similar to UCB, the term ⟨a, θ̂t⟩ represents exploitation while the term −βt ∥a∥M−1

t

drives exploration for unobserved directions (since ∥a∥M−1
t

is large when a represents a direction
that is very different from the observed ones a1, . . . , at). Indeed, when At = {e1, . . . , ed}, one can
verify that LinUCB recovers UCB (other than the difference in the coefficient β).

4.2 Regret Analysis

The analysis of LinUCB is also a generalization of that for UCB, starting with the following key
lemma enabled by optimism, which is an analogue of Lemma 2.
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Lemma 4. With probability at least 1− δ, LinUCB ensures ⟨at − a⋆t , θ
⋆⟩ ≤ 2β ∥at∥M−1

t−1
for all t.

Proof. Recall that under the event stated in Lemma 3, LCBt(a) = minθ∈Θt−1
⟨a, θ⟩ = ⟨a, θ̂t−1⟩ −

β ∥a∥M−1
t−1

is indeed a lower bound on the true loss ⟨a, θ⋆⟩ for any action a. Therefore,

⟨at − a⋆t , θ
⋆⟩ ≤ ⟨at, θ⋆⟩ − LCBt(a

⋆
t )

≤ ⟨at, θ⋆⟩ − LCBt(at) (at has the smallest LCB)

=
〈
at, θ

⋆ − θ̂t−1

〉
+ β ∥at∥M−1

t−1

≤ ∥at∥M−1
t−1

∥θ⋆ − θ̂t−1∥Mt−1
+ β ∥at∥M−1

t−1
(Hölder’s inequality)

≤ 2β ∥at∥M−1
t−1

, (θ⋆ ∈ Θt)

which finishes the proof.

We now proceed with a statement analogous to Theorem 2, whose proof is purely an exercise of
linear algebra and is independent of the algorithm.

Theorem 4. For any algorithm, we have
∑T

t=1 ∥at∥M−1
t−1

≤
√
T
(
d
λ + d ln

(
1 + T

λd

))
. Conse-

quently, LinUCB with λ = 1 and δ = 1/T ensures R̄T = Õ(d
√
T ).

Proof. First, we apply Cauchy-Schwarz and obtain
∑T

t=1 ∥at∥M−1
t−1

≤
√
T
∑T

t=1 ∥at∥
2
M−1

t−1
. Note

that a slightly different expression ∥at∥2M−1
t

can be bounded as

∥at∥2M−1
t

=
〈
M−1

t , ata
⊤
t

〉
=
〈
M−1

t ,Mt −Mt−1

〉
≤ ln det(Mt)− ln det(Mt−1)

where the last step uses the concavity of the ln det(M) function and that its gradient is exactly
M−1. Therefore,

∑T
t=1 ∥at∥

2
M−1

t
≤ ln det(MT ) − ln det(M0) = ln det(MT ) − d lnλ. To bound

det(MT ), we apply AM-GM inequality and the assumption a⊤t at ≤ 1:

det(MT ) ≤
(

TR(MT )

d

)d

=

(
λd+

∑T
t=1 TR(ata

⊤
t )

d

)d

=

(
λ+

∑T
t=1 a

⊤
t at

d

)d

≤
(
λ+

T

d

)d

.

We have thus shown
∑T

t=1 ∥at∥
2
M−1

t
≤ d ln

(
1 + T

λd

)
, and it remains to bound the difference be-

tween
∑T

t=1 ∥at∥
2
M−1

t
and

∑T
t=1 ∥at∥

2
M−1

t−1
. Indeed, they are very close:

T∑
t=1

∥at∥2M−1
t−1

−
T∑

t=1

∥at∥2M−1
t

=
T∑

t=1

〈
M−1

t−1 −M−1
t , ata

⊤
t

〉
≤

T∑
t=1

〈
M−1

t−1 −M−1
t , Id

〉
≤
〈
M−1

0 , Id
〉
=
d

λ
, (Id is the identity matrix)

where the first inequality is by the fact that both M−1
t−1 −M−1

t and Id − ata
⊤
t are PSD matrices.

Combining all results above proves the first statement. The second statement is clear after plugging
in the value of λ and δ, since

∑T
t=1 ⟨at − a⋆t , θ

⋆⟩ is at most 2β
∑T

t=1 ∥at∥M−1
t−1

with probability at
least 1− 1/T (Lemma 4), and at most 2T with probability 1/T .

Importantly, this regret bound has no dependence on the number of actions at all! Instead, it pays
for linear dependence on the dimension d of the features. While this does not recover the Õ(

√
TK)

bound of UCB, such linear dependence on d is known to be generally unavoidable for this problem.

Can we also derive an instance-dependent regret bound analogous to Theorem 1 using some subop-
timality gap as a difficulty measure? The answer is yes, via a quite simple argument.
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Theorem 5. Define the minimal suboptimal gap as ∆ = mint mina∈At:⟨a−a⋆
t ,θ

⋆⟩>0 ⟨a− a⋆t , θ
⋆⟩.

Then LinUCB with λ = 1 and δ = 1/T ensures R̄T = O
(

(d lnT )2

∆

)
.

Proof. Simply bound the per-round regret ⟨at − a⋆t , θ
⋆⟩ by 1

∆ ⟨at − a⋆t , θ
⋆⟩2, which, under the event

stated in Lemma 3, is further bounded by 4β2

∆ ∥at∥2M−1
t−1

. In the proof of Theorem 4, we have already

shown
∑T

t=1 ∥at∥
2
M−1

t−1
≤ d

λ + d ln
(
1 + T

λd

)
. The proof is finished after plugging in the value of λ

and δ and trivially bounding the case when the high-probability event does not hold.

While this looks very similar to the UCB result, unlike the case for stochastic MAB, such a gap-
dependent bound is not instance-optimal. In fact, somewhat surprisingly, it has been shown that
optimism-based approaches can never be instance-optimal for stochastic linear bandits; see [Latti-
more and Szepesvari, 2017]. Therefore, while the “optimism in face of uncertainty” principle is very
powerful, especially in obtaining O(

√
T ) type of regret bounds, it is by no means always the best

approach.
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