
CSCI 659 Lecture 8
Fall 2022

Instructor: Haipeng Luo

1 Contextual Bandits

In the last lecture, we discussed stochastic linear bandits, which assumes a linear model on the loss
of each action. The goal of this lecture is to relax this assumption by considering a more general
function class or even allowing arbitrarily losses without any structures. To this end, consider the
following general contextual bandit problem: at each round t = 1, . . . , T ,

1. the environment first decides a context xt ∈ X for an arbitrary context space X and a loss vector
ℓt ∈ [0, 1]K specifying the loss of K actions;

2. the learner observes the context xt and then selects an action at ∈ [K];
3. the learner suffers and observes ℓt(at).

Clearly, compared to the standard MAB problem, the only extra element here is the contexts. To
explain what the role of these contexts is, we consider the following two settings.

Realizable Setting. One natural role of the context at each round is that it directly determines the
loss (or at least its mean) of each action for this round, through some fixed function from a regressor
class. This is known as the realizable setting since the loss is realized by some fixed regressor.
Formally, let F ⊆ (X × [K]) → [0, 1] be a regressor class known to the learner, and assume that
there exists a regressor f⋆ ∈ F , unknown to the learner, such that E[ℓt(a)] = f⋆(xt, a) for all
t ∈ [T] and a ∈ [K], where the expectation is with respect to the randomness of the environment
when generating ℓt. In other words, there is a ground truth f⋆ that perfectly predicts the expected
loss of each action given the context.

The stochastic linear bandit model discussed last time is essentially a special case of this realized
setting, where the context xt consists of the features x1

t , . . . , x
K
t ∈ Rd of the actions, that is, xt =

(x1
t , . . . , x

K
t), and the regressor class is a set of linear functions: F = {(x, a) → ⟨θ, xa⟩ |θ ∈

Rd, ∥θ∥2 ≤ 1}. One slight difference is that now for simplicity we consider a fixed number of
actions. However, note that this does not mean the action set itself is fixed — each round we can
have completely different K actions, encoded via different features (in the recommendation system
example, this means that we can still have different items to recommend at each round). In other
words, unlike standard MAB, here the index of each action a ∈ [K] is not meaningful, in the sense
that it does not matter if we arbitrarily shuffle the indices at each round, as long as their features are
also shuffled in the same way.

By allowing an arbitrary regressor class beyond the linear model, this setting is much more pow-
erful and practical. The realizability assumption also becomes less restricted when we use a richer
regressor class such as a set of neural nets. To further relax the realizability assumption, sometimes
we also allow a certain level of misspecification in the model by changing the assumption to: there
exists a fixed ϵ ∈ [0, 1] and a regressor f⋆ ∈ F such that |f⋆(xt, a) − E[ℓt(a)]| ≤ ϵ for all t ∈ [T]
and a ∈ [K]. The no-misspecification case discussed earlier is clearly just a special case with ϵ = 0.

How should we measure the learner’s performance in this problem? Note that each regressor f ∈ F
naturally defines a policy πf : X → [K] that selects the action with the lowest expect loss for the

given context, that is, πf (x) = argmina∈[K] f(x, a). It is then natural to measure the learner’s
performance against the best policy, via the following pseudo-regret:

R̄T = max
π∈Π

E

[
T∑

t=1

ℓt(at)−
T∑

t=1

ℓt(π(xt))

]
, (1)

where Π = {πf : f ∈ F} is the set of all policies induced by F . When there is no misspecification,
it is clear that pseudo-regret becomes

R̄T = max
π∈Π

E

[
T∑

t=1

f⋆(xt, at)−
T∑

t=1

f⋆(xt, π(xt))

]
= E

[
T∑

t=1

f⋆(xt, at)−
T∑

t=1

f⋆(xt, π
⋆(xt))

]
,

(2)
where we use π⋆ as a shorthand for πf⋆ .

Agnostic Setting. Note that when the misspecification level ϵ is as bad as 1, that is, when there are
no reasonable regressors at all, it does not mean there is nothing we can learn at all, because a policy
can be bad at predicting the exact value of the losses but at the same time somehow still good at
identifying the good actions most of the time. In this case, the corresponding regressor that a policy
uses to make it decisions is not that important anymore, and what really matters is only the policy
itself, that is, what action it takes under each context. Motivated by this, we consider the agnostic
setting where there is no explicit relation between the contexts and the losses at all, and the learner’s
goal is, given a fixed policy class Π ⊆ X → [K], to compete with what the best policy from this
class can do, that is, to minimize the same pseudo-regret defined in Eq. (1) (with Π now being an
arbitrary given policy class).

It is clear that the realizable setting is a special case where Π = {πf : f ∈ F} and there is an
additional assumption on how the contexts and losses are connected via a ground truth f⋆. The
standard MAB is also a special case where Π contains only K policies, the a-th of which always
selects action a regardless of the context.

Naive Approaches. Note that the most interesting scenario is when the context space X is large
(and potentially high-dimensional), and so is the regressor class F or the policy class Π; just consider
again the example where F is a set of neural nets. We will thus not make any restriction on the size
of X (could even be infinity), and consider the case where the size of F or Π, denoted by N and
assumed to be finite in most discussions for simplicity, is huge so that only poly(lnN) dependence is
acceptable for the regret guarantees (and also the computational complexity; more on this to follow).
This makes the following two naive approaches uninteresting.

First, one can see contextual bandits as a combination of many independent K-armed bandit prob-
lems, one for each distinct context. In other words, for each possible x ∈ X , we maintain a K-armed
bandit algorithm, and at time t, we use the algorithm corresponding to context xt to make the deci-
sion. This is clearly not a good approach since it is possible that we do not even see the same context
twice over T rounds, in which case there is no learning at all in this approach as each K-armed bandit
algorithm is run for at most one round.

Another approach is to treat each policy as an arm, making this an N -armed bandit problem. Indeed,
at each time t, deciding which arm/policy π to pull naturally tells us which action at to play by
following the suggestion of this policy given the current context, that is, at = π(xt). Then, we can
treat the observation ℓ(at) as the loss for this arm. The issue is of course that this leads to regret of
order

√
TN , which is unacceptable due to the polynomial dependence on N .

2 Adversarial Contextual Bandits

To get a sense of what a good regret guarantee looks like for contextual bandits, we start by analyzing
a simple (but inefficient) algorithm for the most general case: agnostic setting with adversarial
contexts and losses.

The algorithm is in fact very close to the first naive approach mentioned in the last section. At time
t, we compute a distribution Pt ∈ ∆(N) over the policies using Hedge and the past loss estimators

2

ℓ̂1, . . . , ℓ̂t−1 ∈ RN
+ : Pt(π) ∝ exp

(
−η

∑
s<t ℓ̂s(π)

)
. Then, we sample a policy πt ∼ Pt and play

action at = πt(xt), which is equivalent to sampling action at based on distribution pt ∈ ∆(K)
where pt(a) =

∑
π∈Π:π(x)=a Pt(π).

The key difference is how we construct estimator ℓ̂t based on the feedback ℓt(at). What the naive
approach does is ℓ̂t(π) = ℓt(π(xt))

Pt(π)
1{π = πt}, completely following Exp3’s importance weighted

estimator by treating each policy as an arm. This unbiased estimator is non-zero only for the selected
policy, and has a large variance: Et[ℓ̂t(π)

2] = ℓt(π(xt))
2

Pt(π)
≤ 1

Pt(π)
.

However, note that the observation ℓt(at) tells us not only the loss for the selected policy, but also the
loss for all other policies that selects the same action at. In other words, the missing information is
really just the K−1 unobserved coordinates of ℓt, instead of N−1 values for the unselected policies.
If we consider the problem in this way, then it is more natural to construct a K-dimensional estimator
for ℓt, which we denote by the same notation ℓ̂t ∈ RK

+ with a slight abuse of notation (thus, whether
ℓ̂t is N dimensional or K dimensional depends on whether its input is a policy π or an action a). The
construction is also by the same idea of inverse importance weighting: ℓ̂t(a) = ℓt(a)

pt(a)
1{a = at}.

Then we set the estimator ℓ̂t(π) for policy π naturally as ℓ̂t(π(xt)). Compared to the earlier naive
estimator, this new one is also unbiased (Et[ℓ̂t(π)] = ℓt(π(xt))), but with a smaller variance:

Et[ℓ̂t(π)
2] = pt(π(xt))×

ℓt(π(xt))
2

pt(π(xt))2
+ (1− pt(π(xt)))× 0 =

ℓt(π(xt))
2

pt(π(xt))
≤ 1

pt(π(xt))
, (3)

since pt(π(xt)) is by definition at least Pt(π) (in fact, the former is usually much larger).

The resulting algorithm is called Exp4 [Auer et al., 2002], short for Exponential-weight algorithm
for Exploration and Exploitation using Expert advice (since the role of each policy is similar to an
expert as in the expert problem). We summarize the algorithm in the pseudocode below, followed
by its formal regret guarantee.

Algorithm 1: Exp4
Input: learning rate η > 0
for t = 1, . . . , T do

compute Pt ∈ ∆(N) such that Pt(π) ∝ exp
(
−η

∑
s<t ℓ̂s(π(xs))

)
sample at from pt ∈ ∆(K) where pt(a) =

∑
π∈Π:π(x)=a Pt(π)

observe ℓt(at) and construct ℓ̂t ∈ RK
+ such that ℓ̂t(a) =

ℓt(a)
pt(a)

1{a = at}

Theorem 1. With η =
√

lnN
TK , Exp4 ensures R̄T = O(

√
TK lnN).

Proof. Similar to the Exp3 analysis, the proof starts from the following local-norm bound for Hedge,
which holds due to the nonnegativity of loss estimator: for any π⋆,

T∑
t=1

〈
Pt, ℓ̂t

〉
−

T∑
t=1

ℓ̂t(π
⋆) ≤ lnN

η
+ η

T∑
t=1

∑
π∈Π

Pt(π)ℓ̂t(π)
2.

By the unbiasedness of ℓ̂t, we have

Et[⟨Pt, ℓ̂t⟩] =
∑
π∈Π

Pt(π)ℓt(π(xt)) =

K∑
a=1

∑
π:π(xt)=a

Pt(π)ℓt(a) =

K∑
a=1

pt(a)ℓt(a) = Et[ℓt(at)],

and Et[ℓ̂t(π
⋆)] = ℓt(π

⋆(xt)). On the other hand, the expectation of the local-norm term can be
bounded by K just as Exp3 (instead of N), thanks to the smaller variance of the estimator shown
earlier in Eq. (3):

Et

[∑
π∈Π

Pt(π)ℓ̂t(π)
2

]
≤

∑
π∈Π

Pt(π)

pt(π(xt))
=

K∑
a=1

∑
π:π(xt)=a

Pt(π)

pt(a)
=

K∑
a=1

pt(a)

pt(a)
= K.

3

Therefore, taking expectation on both sides, we obtain R̄T ≤ lnN
η +ηTK, which is O(

√
TK lnN)

after picking the optimal η.

This proof shows again the importance of getting a right combination of local-norm and loss estima-
tors. The regret bound O(

√
TK lnN) has only logarithmic dependence on N , same as Hedge for

the expert problem, and
√
K dependence on the number of actions, same as Exp3 for MAB. In fact,

this is known to be near optimal for adversarial contextual bandits; see [Seldin and Lugosi, 2016].

Question 1. What happens if we instead use FTRL with Tsallis entropy to determine Pt?

While the regret bound depends on N only logarithmically, one obvious issue of Exp4 is that its
time/space complexity is linear in N . Just like the expert problem, generally there is no way to
get pass this barrier unfortunately. To resolve this issue, we need to assume some oracle access
to the regressor class F or the policy class Π, and derive algorithms that never search over all
policies explicitly and instead only make use of the regressor/policy class through such oracles.
These oracles themselves might not be efficiently implementable exactly, but as long as they are
practically reasonable, we can often approximately implement them using different heuristics that
are widely used in practice anyway. The question then becomes, given such oracles, how to derive
algorithms that make a small number of oracle calls while ensuring low regret (ideally comparable
to the optimal bound O(

√
TK lnN)). This turns out to be a highly nontrivial problem, and in the

remaining of this lecture we will discuss some examples from recent research.

3 Realizable Setting with an Online Regression Oracle

Consider the realizable setting with a regressor class F , and assume that the learner is given access
to an online regression oracle Osq that solves the following online regression problem:

1. the environment decides and reveals an instance zt ∈ X × [K];

2. the oracle Osq predicts a value ŷt ∈ [0, 1];

3. the environment reveals the true value yt ∈ [0, 1].

By “solving”, we mean that Osq satisfies the following regret guarantee in terms of square loss: for
any (possibly adaptively chosen) sequence z1:T and y1:T ,

T∑
t=1

(ŷt − yt)
2 −min

f∈F

T∑
t=1

(f(zt)− yt)
2 ≤ B(T) (4)

for some regret bound B(T) = o(T). Below are some examples (in fact, in all these examples, the
oracle satisfies Eq. (4) even without the realizable assumption):

• (Finite Class) When F is finite, Hedge is one such oracle with regret B(T) = O(
√
T lnN). In

fact, because of the nice properties of square loss (in particular its exp-concavity), it can be shown
that Hedge with a constant learning rate achieves only O(lnN) regret in this case.

• (Linear Class) When F is the linear model mentioned earlier: F = {z = (x, a) → ⟨θ, xa⟩ |θ ∈
Rd, ∥θ∥2 ≤ 1}, the online regression problem is just an instance of OCO, and thus OGD is one
such oracle with regret B(T) = O(

√
T) as long as the L2 norm of the contexts is bounded (recall

that there is no d dependence at all). Again, thanks to the exp-concavity of square loss, there
exist other algorithms (such as Online Newton Step [Hazan et al., 2007]) with B(T) = O(d lnT)
regret in this case. Importantly, these algorithms are all efficiently implementable (with poly(d)
dependence per round).

While there are not too many examples beyond the linear model where such an oracle can be im-
plemented efficiently, the point is really that regression is so basic in machine learning practice
and people have been successfully using complicated regressor class such as neural nets (by simply
running gradient descent) to “solve” this problem already, without worrying about whether it truly
enjoys low regret or not. Therefore, assuming such an oracle is practically reasonable. Doing so also
allows any future advances in regression to be immediately translated to solving contextual bandits.

4

Algorithm Design. To solve contextual bandits using such an oracle, consider the following natu-
ral algorithm framework. At time t, given context xt, ask the oracle Osq to predict the loss for each
of the K actions, denoted by ŷt(1), . . . , ŷt(K). Then, based on these predictions, come up with a
distribution pt ∈ ∆(K), sample at ∼ pt, observe ℓt(at), and finally feed the instance (xt, at) along
with its true value ℓt(at) to the oracle for it to perform some internal updates. It remains to figure
out the construction of pt.

To this end, first observe that under this framework, in expectation the square loss regret of the oracle
against the ground truth f⋆ can be written as:

E

[
T∑

t=1

(ŷt(at)− ℓt(at))
2 −

T∑
t=1

(f⋆(xt, at)− ℓt(at))
2

]

= E

[
T∑

t=1

(ŷt(at)− f⋆(xt, at))(ŷt(at) + f⋆(xt, at)− 2ℓt(at))

]

= E

[
T∑

t=1

(ŷt(at)− f⋆(xt, at))
2

]
= E

[
T∑

t=1

K∑
a=1

pt(a)(ŷt(a)− f⋆(xt, a))
2

]
(5)

where the second step is because ℓt(at) is in expectation equal to f⋆(xt, at) due to the real-
izable assumption. On the other hand, in light of Eq. (2), the pseudo-regret of the learner is
E[
∑T

t=1(
∑K

a=1 pt(a)f
⋆(xt, a) − f⋆(xt, π

⋆(xt)))]. Therefore, one natural goal is to design pt so
that

∑K
a=1 pt(a)f

⋆(xt, a) − f⋆(xt, π
⋆(xt)) is connected to

∑K
a=1 pt(a)(ŷt(a) − f⋆(xt, a))

2, for
example, in the form that the former is bounded by some fixed factor times the latter plus a small
o(1) term. Let this factor be γ/4 for some parameter γ > 0 to be specified later (the constant 4 is
only for convenience as it will become clear). To understand the best way to design pt and what the
o(1) small term is, we study the following optimization problem for any given ŷ ∈ RK :

OPT(ŷ) = min
p∈∆(K)

max
a⋆∈[K]

max
µ∈RK

⟨p− ea⋆ , µ⟩ − γ

4
∥ŷ − µ∥2diag(p) .

Here, ŷ corresponds to the prediction vector of the oracle ŷt, p corresponds to the distribution pt
we want to find, a⋆ corresponds to the best action π⋆(xt), µ ∈ RK corresponds to the true loss
mean vector f⋆(xt, ·), ea⋆ ∈ RK is the standard basis vector with the a⋆-th coordinate being 1, and
diag(p) is a diagonal matrix with p on the diagonal. It is then clear that, if we let pt to be the argmin
of the problem defined in OPT(ŷt), then

K∑
a=1

pt(a)f
⋆(xt, a)− f⋆(xt, π

⋆(xt)) ≤
γ

4

K∑
a=1

pt(a)(ŷt(a)− f⋆(xt, a))
2 + OPT(ŷt),

and thus the overall regret is connected to the square loss regret of the oracle as:

R̄T ≤ E

[
γ

4

T∑
t=1

K∑
a=1

pt(a)(ŷt(a)− f⋆(xt, a))
2 +

T∑
t=1

OPT(ŷt)

]
≤ γ

4
B(T) + E

[
T∑

t=1

OPT(ŷt)

]
,

(6)

where the second step uses Eq. (5) and the assumption of the oracle Eq. (4). It now all boils down
to solving OPT(ŷ). Interestingly, the solution turns out to be connected to FTRL with learning rate
γ and a special regularizer known as log barrier.
Lemma 1. For any ŷ ∈ RK , we have OPT(ŷ) = K−1

γ , and the corresponding minimizer is p⋆ =

argminp∈∆(K) ⟨p, ŷ⟩+ 1
γ

∑K
a=1 ln

1
p(a) , or equivalently p⋆(a) = 1

γ(ŷ(a)+λ) where λ is such that p⋆

is a distribution (and can be found efficiently using a binary search).

Proof. Let’s first fix p and a⋆, and work on the innermost problem: maxµ∈RK ⟨p− ea⋆ , µ⟩ −
γ
4 ∥ŷ − µ∥2diag(p). This is simply a quadratic in µ, with maximizer µ⋆ = 2

γ diag(p)−1(p − ea⋆) + ŷ

(verify it by setting the gradient to zero). The maximum is

1

γ
∥p− ea⋆∥2diag(p)−1 + ⟨p− ea⋆ , ŷ⟩ = 1

γ

K∑
a=1

(p(a)− 1{a = a⋆})2

p(a)
+ ⟨p− ea⋆ , ŷ⟩

5

=
1

γ

K∑
a=1

(
p(a)− 21{a = a⋆}+ 1{a = a⋆}

p(a)

)
+ ⟨p− ea⋆ , ŷ⟩

=
1

γ

(
1

p(a⋆)
− 1

)
+ ⟨p− ea⋆ , ŷ⟩ .

Then, we focus on solving the rest of the problem:

min
p∈∆(K)

max
a⋆∈[K]

1

γ

(
1

p(a⋆)
− 1

)
+ ⟨p− ea⋆ , ŷ⟩ . (7)

We claim that the optimal p is such that the objective above is the same for all a⋆ (in which case the
part maxa⋆∈[K] becomes trivial). To see this, simply note that

max
a⋆∈[K]

1

γ

(
1

p(a⋆)
− 1

)
+ ⟨p− ea⋆ , ŷ⟩ ≥ Ea⋆∼p

[
1

γ

(
1

p(a⋆)
− 1

)
+ ⟨p− ea⋆ , ŷ⟩

]
=

1

γ

K∑
a=1

p(a)

(
1

p(a)
− 1

)
=

K − 1

γ
, (Ea⋆∼p [⟨p− ea⋆ , ŷ⟩] = 0)

and the inequality becomes equality when 1
γ

(
1

p(a⋆) − 1
)
+ ⟨p− ea⋆ , ŷ⟩ is the same for all a⋆.

Ignoring all terms that are independent of a⋆, we see that this is the same as saying that p⋆ should
make sure 1

γp(a⋆) − ŷ(a⋆) = λ for all a⋆ ∈ [K], where λ is such that p⋆ is a valid distribution. This

is the same as p⋆ = argminp∈∆(K) ⟨p, ŷ⟩+ 1
γ

∑K
a=1 ln

1
p(a) since it is exactly equivalent to setting

the gradient of the Lagrangian of this FTRL objective to zero.

The FTRL form of the solution is quite intriguing — instead of using the cumulative estimated
losses in FTRL (which does not really make sense for contextual bandits), here we use the predicted
losses from the regression oracle, importantly with a special log-barrier regularizer. The analysis
also becomes quite different as we have seen. In fact, another difference is that there is no need to
solve FTRL very accurately — any approximate solution to OPT(ŷ) or equivalently Eq. (7) with a
constant approximation factor suffices. We provide one such approximate solution below, which is
only two times worse compared to the optimal one but importantly enjoys a closed form.
Lemma 2. For any ŷ ∈ RK , let b = argmina ŷ(a) and p̊ ∈ ∆(K) be such that p̊(a) =

1
γ(ŷ(a)−ŷ(b))+K for a ̸= b (the definition of p̊(b) is implicit via 1 −

∑
a̸=b p

⋆(a)). Then p̊ approxi-
mately solves Eq. (7) with an approximation factor of 2.

Proof. This is by direct calculations. Fix any a⋆, let’s first work on the part ⟨p̊− ea⋆ , ŷ⟩:

⟨p̊− ea⋆ , ŷ⟩ =
∑
a̸=a⋆

p̊(a)(ŷ(a)− ŷ(a⋆))

= (1− p̊(a⋆))(ŷ(b)− ŷ(a⋆)) +
∑

a/∈{a⋆,b}

p̊(a)(ŷ(a)− ŷ(b))

= ŷ(b)− ŷ(a⋆) +
∑
a̸=b

p̊(a)(ŷ(a)− ŷ(b)) ≤ ŷ(b)− ŷ(a⋆) +
K − 1

γ
,

where the last step uses the definition of p̊(a) for a ̸= b. Therefore, the objective in Eq. (7) is at most

1

γ

(
1

p̊(a⋆)
− 1

)
+ ŷ(b)− ŷ(a⋆) +

K − 1

γ
.

When a⋆ = b, this is at most 2(K−1)
γ since p̊(b) ≥ 1/K; when a⋆ ̸= b, plugging in the definition

of p̊(a⋆) = 1
γ(ŷ(a⋆)−ŷ(b))+K , we get exactly 2(K−1)

γ . Recalling that the optimal value is (K−1)
γ

according to Lemma 1 finishes the proof.

Based on all these discussions, we summarize the final algorithm, called SquareCB [Foster and
Rakhlin, 2020], in the pseudocode below, followed by its formal regret guarantees.

6

Algorithm 2: SquareCB
Input: online regression oracle Osq and parameter γ > 0
for t = 1, . . . , T do

receive context xt

ask Osq to predict the loss for each action, denoted by ŷt(1), . . . , ŷt(K)
compute pt ∈ ∆(K) such that{

Option I: pt(a) =
1

γ(ŷt(a)+λ) for all a, where λ is found via a binary search
Option II: pt(a) =

1
γ(ŷt(a)−minb ŷt(b))+K for a ̸= argminb ŷt(b)

sample at ∼ pt, observe ℓt(at), and feed ((xt, at), ℓt(at)) to Osq

Theorem 2. Under assumption (4), SquareCB (either option) ensures R̄T = O(γB(T) + TK
γ),

which is O(
√
TB(T)K) after picking the optimal γ.

Proof. This is by directly combining Eq. (6) and Lemma 1 for Option I or Lemma 2 for Option
II.

Note that the bound O(
√

TB(T)K) is always sublinear as B(T) = o(T). Applying this result to
the earlier examples, we get the following conclusions:

• (Finite Class) Recall that Hedge with a constant learning rate ensures B(T) = lnN for a
finite regressor class. Thus, SquareCB with this oracle ensures R̄T = O(

√
TK lnN), exactly

matching that of Exp4 (but note that the former only works for the realizable setting).

• (Linear Class) For the linear regressor class, if we use OGD as the oracle, then B(T) = O(
√
T)

and SquareCB ensures R̄T = O(T 3/4
√
K). While this has a worse dependence on T compared

to LinUCB’s regret Õ(d
√
T), note that it has no dependence on d at all and is thus suitable

for high-dimensional problems as long as the number of actions K is not too large. Another
benefit is that the resulting algorithm is much more efficient than LinUCB since its per-round
time complexity is linear in d while LinUCB requires at least d2 time. If we instead use the
aforementioned Online Newton Step as the oracle with B(T) = O(d lnT), then SquareCB
ensures Õ(

√
dTK), closer to what LinUCB achieves.

Robustness to Misspecification. While we have focused on the realizable setting, SquareCB turns
out to be highly robust to misspecification. Recall that in this case, |f⋆(xt, a)− E[ℓt(a)]| ≤ ϵ holds
for some misspecification level ϵ ∈ [0, 1]. By just slightly adapting the analysis, we obtain:
Theorem 3. In the ϵ-misspecification setting, SquareCB (with either option) ensures R̄T =
O(γ(B(T) + ϵ2T) + TK

γ + ϵT), which is O(
√

TB(T)K + ϵT
√
K) with the optimal γ.

Proof. First, revisiting how we obtained Eq. (2) from Eq. (1), it is clear that with misspecification,
the regret should become R̄T ≤ E

[∑T
t=1 f

⋆(xt, at)−
∑T

t=1 f
⋆(xt, π

⋆(xt))
]
+ 2ϵT. Then, we

revise Eq. (5) as

E

[
T∑

t=1

(ŷt(at)− ℓt(at))
2 −

T∑
t=1

(f⋆(xt, at)− ℓt(at))
2

]

= E

[
T∑

t=1

(ŷt(at)− f⋆(xt, at))(ŷt(at) + f⋆(xt, at)− 2ℓt(at))

]

≥ E

[
T∑

t=1

(ŷt(at)− f⋆(xt, at))
2

]
− 2ϵE

[
T∑

t=1

|ŷt(at)− f⋆(xt, at)|

]

≥ 1

2
E

[
T∑

t=1

(ŷt(at)− f⋆(xt, at))
2

]
− 2ϵ2. (αβ ≤ α2 + 1

4β
2)

7

Finally, by Lemma 1 or Lemma 2, the way we select pt still ensures:

E

[
T∑

t=1

f⋆(xt, at)−
T∑

t=1

f⋆(xt, π
⋆(xt))

]
≤ γ

4
E

[
T∑

t=1

(ŷt(at)− f⋆(xt, at))
2

]
+O

(
TK

γ

)
.

Combining all steps proves R̄T = O(γ(B(T) + ϵ2T) + TK
γ + ϵT).

While paying additional O(ϵT) regret is very natural in the ϵ-misspecification setting, one should
not take such robustness guarantee for granted. For example, it can be shown that LinUCB is not
robust and could suffer linear regret for some ϵ = o(1); see [Lattimore et al., 2020].

4 Offline Oracles

We briefly mention two other types of oracle and the corresponding approaches. While the online
regression oracle is natural, it is after all solving a non-trivial online problem. An even more basic
oracle would be one that only solves the corresponding offline problem. For example, an offline
regression oracle solves the following problem

argmin
f∈F

∑
(x,a,y)∈S

(f(x, a)− y)2

for any given dataset S ⊆ X × [K] × [0, 1]. In other words, it solves the problem defining the
benchmark in Eq. (4), which is indeed a fairly standard offline regression problem. In light of
SquareCB, a natural approach to solve contextual bandit using this oracle would be: at each time
t, feed the previous observed data to the oracle, use the returned regressor to predict the loss of
each action given context xt, and finally construct a distribution pt ∈ ∆(K) in the same way
as SquareCB, from which at is sampled. This algorithm was introduced by Simchi-Levi and Xu
[2021], and it enjoys Õ(

√
TK lnN) regret for a finite F , almost the same as SquareCB, except

that the analysis relies on an additional assumption that the contexts x1, . . . , xT are drawn from
a fixed and unknown distribution (while SquareCB allows them to be even chosen by an adaptive
adversary). It was also shown that there is no need to call the oracle at every round; in fact, only
O(ln(lnT)) total number of calls over T rounds is needed to achieve the same regret bound.

The oracle-based approaches discussed so far only work for the realizable setting. To handle the
agnostic setting with an arbitrary policy class Π, another type of offline oracle was proposed, which
solves the following cost-sensitive classification problem:

argmin
π∈Π

∑
(x,ℓ)∈S

ℓ(π(x))

for any given dataset S ⊂ X ×RK . This is a cost-sensitive classification problem since each policy
π is essentially predicting the “class” for each context x out of K possibilities, and the cost for
predicting each class is different as specified by the cost vector ℓ. This is also just the problem
defining the benchmark in the regret definition of Eq. (1).

To solve contextual bandits using this classification oracle, earlier works consider a stochastic setting
where (x1, ℓ1), . . . , (xT , ℓT) are independent samples of a fixed joint distribution over X × [0, 1]K .
To construct a dataset fed to the oracle by only observing xt and ℓt(at) at time t, it is natural to
construct the same importance weighted estimator ℓ̂t ∈ RK

+ as in Exp3/Exp4. Suppose that at time t,
we feed (x1, ℓ̂1), . . . , (xt−1, ℓ̂t−1) to the oracle and obtain πt as the returned policy. Simply picking
at = πt(xt) is a bad idea since there is no exploration at all (also note that randomness is required
for constructing importance weighted estimators). Instead, one can set aside a small probability
to uniformly explore all actions (and pick πt(xt) with the rest of the probability). Because of this
simple exploration scheme, however, it is not difficult to show that this approach at best achieves
Õ(T 2/3(K lnN)1/3) regret.

How to improve the regret to Õ(
√
TK lnN) was answered by the work [Agarwal et al., 2014].

Interestingly, the solution is again related to FTRL with the log-barrier regularizer (although not

8

explicitly mentioned in the original work). Specifically, at time t, we find a distribution Pt over the
policies via:

Pt = argmin
P∈∆(N)

〈
P,

∑
s<t

ℓ̂s

〉
+

1

γ

∑
s<t

K∑
a=1

ln
1

P (a|xs)

where we recall the overloading of the notation ℓ̂s ∈ RN
+ used earlier for Exp4 (so that ℓ̂s(π) =

ℓ̂s(π(xs))), and use P (a|x) to denote
∑

π:π(x)=a P (π). With this distribution Pt, we simply
sample at from Pt(·|xt). The only difference between Exp4 and this algorithm is in the regular-
izer — Exp4 uses the entropy regularizer in the policy space:

∑
π P (π) lnP (π), while this algo-

rithm uses a log-barrier regularizer in the action space induced by the previous observed contexts:∑
s<t

∑K
a=1 ln

1
P (a|xs)

. It is this importance difference that makes this algorithm efficiently im-
plementable, even though it is written in the space of the policy class and a naive implementation
would require at least O(N) time. Specifically, it turns out that one can find an approximate and,
more importantly, sparse solution to the FTRL using a only few number of calls to the classification
oracle (sparse in the sense that the size of the support of Pt only depends on N logarithmically).

[Agarwal et al., 2014] shows that the regret of this algorithm is Õ(
√
TK lnN) (again, comparable

to Exp4 except that Exp4 works for the adversarial setting). The analysis is yet again very different
from the standard FTRL analysis covered in this course; see [Luo, 2017] for a short summary. The
fact that the log-barrier regularizer plays an important (but somewhat different) role in both the
setting with a regression oracle and that with a classification oracle is intriguing. In HW3, you will
also see more applications of this regularizer.

References
Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire. Taming

the monster: A fast and simple algorithm for contextual bandits. In Proceedings of the 31st
International Conference on Machine Learning, 2014.

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

Dylan Foster and Alexander Rakhlin. Beyond ucb: Optimal and efficient contextual bandits with
regression oracles. In International Conference on Machine Learning, pages 3199–3210. PMLR,
2020.

Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learning with good feature representations
in bandits and in rl with a generative model. In International Conference on Machine Learning,
pages 5662–5670. PMLR, 2020.

Haipeng Luo. Lecture notes 21, introduction to online learning, 2017. URL https://
haipeng-luo.net/courses/CSCI699/lecture21.pdf.

Yevgeny Seldin and Gábor Lugosi. A lower bound for multi-armed bandits with expert advice. In
13th European Workshop on Reinforcement Learning (EWRL), 2016.

David Simchi-Levi and Yunzong Xu. Bypassing the monster: A faster and simpler optimal algorithm
for contextual bandits under realizability. Mathematics of Operations Research, 2021.

9

https://haipeng-luo.net/courses/CSCI699/lecture21.pdf
https://haipeng-luo.net/courses/CSCI699/lecture21.pdf

	Contextual Bandits
	Adversarial Contextual Bandits
	Realizable Setting with an Online Regression Oracle
	Offline Oracles

