
CSCI 659 Lecture 9
Fall 2022

Instructor: Haipeng Luo

1 Adversarial Bandit Linear/Convex Optimization

So far most of our discussions on bandit problems focused on a set of discrete actions. Put differ-
ently, the decision set of the learner is always a simplex. In this lecture, we go back to the general
adversarial OCO setting with a general compact convex decision set Ω ⊆ Rd and study bandit feed-
back in this setting. Concretely, consider the following adversarial Bandit Convex Optimization
(BCO) problem: at each round t = 1, . . . , T ,

1. the learner decides an action wt ∈ Ω while simultaneously the adversary decides a convex loss
function ft : Ω → [−1, 1];

2. the learner suffers and observes (only) ft(wt).

We again assume that the adversary is oblivious for simplicity. The learner’s goal is to minimize her
expected regret against the best fixed action: E[RT] = E[

∑T
t=1 ft(wt)]−

∑T
t=1 ft(w

⋆) where w⋆ ∈
argminw∈Ω

∑T
t=1 ft(w) and the expectation is with respect to the learner’s internal randomness.

While in the full-information setting, we argue that considering only linear loss functions is with-
out loss of generality via the linearization trick: ft(wt) − ft(w

⋆) ≤ ⟨∇ft(wt), wt − w⋆⟩, this is
no longer true in the bandit setting since our observation is only ft(wt), instead of ⟨∇ft(wt), wt⟩.
For this reason, BCO is an extremely challenging problem, even for the simpler case where all loss
functions are drawn from a fixed distribution, in which case the problem is also known under many
different names such as blackbox/zeroth order/derivative-free optimization and has many applica-
tions in practice.

We will therefore start by considering the special case, Bandit Linear Optimization (BLO), where
each loss function ft is a linear function parameterized by a vector ℓt ∈ Rd, that is, ft(w) = ⟨w, ℓt⟩.
This still captures many interesting and important applications. For example, consider the bandit
version of the combinatorial problems discussed in Lecture 2 (also known as combinatorial bandits),
where there is a set of combinatorial actions A = {a1, . . . , aK} ⊆ {0, 1}d and picking action a at
time t incurs loss ⟨a, ℓt⟩ for some loss vector ℓt, which is also the only observation for the learner.
We have discussed examples such as m-set where each action corresponds to picking exactly m out
of d items (e.g. recommending m out of d products to the customer), or online shortest path where
each action corresponds to picking one path of a given graph (e.g. deciding which route to commute
to work each day). The bandit feedback fits particularly well for the online shortest path example
since most often we only observe/record the total loss (travel time) of the selected path.

To solve combinatorial bandits using BLO, one can take Ω as the convex hull of A as we did in
Lecture 2. The only extra subtlety is that after the BLO algorithm selects wt ∈ Ω, if wt is not
already one of the combinatorial actions, we need to sample at ∈ A with expectation wt (recall that
wt, being a point in the convex hull of A, exactly corresponds to a distribution over the elements
in A). This makes the feedback to the learner ⟨at, ℓt⟩, instead of ⟨wt, ℓt⟩ as the protocol of BLO
specifies. As we will see, however, this will not be an issue for the algorithms we consider. This
also makes MAB a special case of BLO with A = {e1, . . . , eK} (the set of standard basis vectors).

Compared to the stochastic linear bandit problem discussed in Lecture 7, the key difference here
is that the parameter deciding the loss (i.e. ℓt) is changing over time arbitrarily, but the action set
is fixed and we care about competing to the overall best fixed action, while in stochastic linear
bandits we consider a fixed parameter θ, allow the action set to be changing over time arbitrarily,
and compare to the best action at each time.

2 The Exp2 Algorithm for BLO

We start with an inefficient but optimal algorithm that operates over a discrete subset A of Ω of
size K and in a sense treats BLO as a K-armed bandit problem with a linear structure. This subset
A can be obtained by discretizing Ω so that any two points in A are 1

T -close (say in terms of L2

norm), in which case K is of order O(T d) and the extra regret introduced by this discretization is
only O(1). On the other hand, if Ω is itself already a convex hull of a discrete set, which is the case
for combinational bandits for example, then we can directly take this set as A since in this case the
best action w⋆ can always be selected from A (the minimum of a linear function over a polytope can
always be achieved by one of its corners). We define B = maxa∈A ∥a∥2 as the largest size of these
discrete actions, and also assume without loss of generality that A is full rank (since otherwise we
can first project them onto a full-rank subspace with lower dimension).

If we simply treat this as a standard K-armed bandit problem, then the regret is O(
√
TK), clearly

unacceptable since K can be exponentially large as mentioned. The issue of this approach is that
it completely ignores the linear structure of the losses. As the simplest example, if A contains two
actions a and 2a, then no matter what ℓt is, knowing one action’s loss completely reveals the loss
for the other. In other words, similar to the case for Exp4, bandit feedback here does not really
mean only 1/K fraction of information is available. Instead, since there are at most d independent
directions in Rd, bandit feedback should be thought of as having only 1/d fraction of information.

To make use of this structure, we will directly construct a loss estimator ℓ̂t ∈ Rd for ℓt, and then es-
timate the loss for each action a ∈ A naturally as ⟨a, ℓ̂t⟩. Having these estimators for all actions, we
use Hedge to come up with a distribution pt+1 ∈ ∆(K) based on pt+1(a) ∝ exp(−η

∑
s≤t⟨a, ℓ̂s⟩),

and sample at+1 from pt+1. It remains to figure out how to construct ℓ̂t.

Unlike the stochastic linear bandit problem where ℓt is fixed and can be estimated by standard
linear regression based on the past t observations, here, ℓt can be arbitrarily changing over time
and we have only one sample ⟨at, ℓt⟩. Thanks to the randomness in selecting at, however, it is in
fact possible to do a “one-point regression” by imagining having K samples, each with probability
pt(a). More specifically, we construct the estimator as:

ℓ̂t =M−1
t ata

⊤
t ℓt where Mt =

∑
a∈A

pt(a)aa
⊤ = Ea∼pt

[
aa⊤

]
(1)

is the covariance matrix with respect to pt. Note that 1) although ℓt appears in this formula, the
dependence is only through a⊤t ℓt, a quantity that we indeed observe; and 2) Mt is indeed invertible
since A is full rank and pt, computed based on the exponential weight, has a full support. In fact,
when A = {e1, . . . , eK}, this exactly recovers the importance weighted estimator for MAB (verify
it yourself). The following lemma shows that this estimator is not only unbiased, but also leads to a
nice bound for the local-norm term of Hedge.

Lemma 1. For any distribution pt ∈ ∆(K) with a full support, let ℓ̂t be the loss estimator defined in
Eq. (1) where at is sampled from pt. Then we have (expectations below are with respect to at ∼ pt)

E
[
ℓ̂t

]
= ℓt and E

[∑
a∈A

pt(a)
〈
a, ℓ̂t

〉2]
≤ d.

Proof. Direct calculations show: E[ℓ̂t] =M−1
t E

[
ata

⊤
t

]
ℓt =M−1

t Mtℓt = ℓt, and

E

[∑
a∈A

pt(a)(a
⊤ℓ̂t)

2

]
=
∑
a∈A

pt(a)E
[
(a⊤t ℓt)

2a⊤M−1
t ata

⊤
t M

−1
t a

]
2

≤
∑
a∈A

pt(a)a
⊤M−1

t E
[
ata

⊤
t

]
M−1
t a =

∑
a∈A

pt(a)a
⊤M−1

t a

=
∑
a∈A

pt(a)TR(a⊤M−1
t a) =

∑
a∈A

pt(a)TR(aa⊤M−1
t) = TR(MtM

−1
t) = d,

where the inequality is by the fact |a⊤ℓt| ≤ 1 for all a (coming from the assumption that the range
of ft is in [−1, 1] in the BCO problem description).

Therefore, if we still have the following local-norm regret bound from Hedge: for any a⋆,

T∑
t=1

∑
a∈A

pt(a)
〈
a, ℓ̂t

〉
−

T∑
t=1

〈
a⋆, ℓ̂t

〉
≤ lnK

η
+ η

T∑
t=1

∑
a∈A

pt(a)
〈
a, ℓ̂t

〉2
, (2)

then taking expectation on both sides would imply a regret bound of O(
√
dT lnK) after optimally

tuning η, much better than the aforementioned O(
√
TK) bound. However, there is one caveat:

recall that Eq. (2) holds only when η⟨a, ℓ̂t⟩ ≥ −1 holds for all a and t. This condition trivially holds
for Exp3/Exp4, since in MAB or contextual bandits the loss estimators are always nonnegative. On
the other hand, ⟨a, ℓ̂t⟩ = a⊤M−1

t ata
⊤
t ℓt can now be very negative and violate the condition if a is

a direction that has small correlation with at with high probability (this is true even if we assume
⟨a, ℓt⟩ ≥ 0 for all a ∈ A). Also recall that this is not just a technical requirement in the analysis,
but is in fact related to the necessity of exploration as discussed in Lecture 6: Hedge with a loss
estimator that is too negative will discourage exploration.

To address this issue, we modify the algorithm slightly and explicitly enforce a small amount of
exploration. Specifically, let γ be the probability of performing explicit exploration and q ∈ ∆(K)
be an exploration distribution over A to be specified later. We now redefined pt as (1 − γ)p′t + γq

where p′t is the Hedge distribution with p′t(a) ∝ exp(−η
∑
s<t⟨a, ℓ̂s⟩), and then sample at from pt

and construct estimator ℓ̂t the same way as Eq. (1). The resulting algorithm is called by many names
such as Exp2 (Expanded Exponential weight) or GeometricHedge [Dani et al., 2008, Cesa-Bianchi
and Lugosi, 2012, Bubeck et al., 2012] and is summarized below.

Algorithm 1: Exp2
Input: learning rate η > 0, exploration probability γ ∈ (0, 1) and distribution q ∈ ∆(K)
for t = 1, . . . , T do

compute p′t ∈ ∆(K) such that p′t(a) ∝ exp(−η
∑
s<t⟨a, ℓ̂s⟩)

sample at from pt = (1− γ)p′t + γq

observe ⟨at, ℓt⟩ and construct ℓ̂t =M−1
t ata

⊤
t ℓt where Mt =

∑
a∈A pt(a)aa

⊤

The following lemma tells us what property we need from the exploration distribution q.
Lemma 2. Let λmin be the minimum eigenvalue of the covariance matrix Ea∼q[aa⊤] of the explo-
ration distribution. If η ≤ γλmin

B2 , then η|⟨a, ℓ̂t⟩| ≤ 1 holds for all a and t.

Proof. Note that the covariance matrix Mt with respect to pt is now (1 − γ)Ea∼p′t [aa
⊤] +

γEa∼q[aa⊤], and thus its minimum eigenvalue is at least γλmin. Therefore, we have

|⟨a, ℓ̂t⟩| = |a⊤M−1
t at||a⊤t ℓt| ≤ |a⊤M−1

t at| = |a⊤M−1/2
t M

−1/2
t at|

≤
√
a⊤M−1

t a ·
√
a⊤t M

−1
t at ≤

B√
γλmin

· B√
γλmin

=
B2

γλmin
,

where the second inequality is by Cauchy-Schwarz inequality and the last inequality uses the defi-
nition of B and that the maximum eigenvalue of M−1

t is at most 1/(γλmin). Using the condition on
η then finishes the proof.

Therefore, as long as we pick η smaller than γλmin

B2 , Eq. (2) (with pt replaced by p′t) holds and the
analysis goes through. Note that the smaller the learning rate, the larger the term lnN

η in Eq. (2).

3

This motivates us to pick q such that λmin is as large as possible, which makes sense since such q
explores every direction in Rd with reasonable probability. The role of λmin in the final regret bound
is made clear in the following theorem.

Theorem 1. If η ≤ γλmin

B2 , then Exp2 ensures E[RT] ≤ lnK
η +2γT + ηTd. Thus, setting γ = B2η

λmin

and η = min
{√

lnK

(d+2B2/λmin)T
, λmin

B2

}
leads to E[RT] = O

(
B2 lnK
λmin

+

√(
2B2

λmin
+ d
)
T lnK

)
.

Proof. By Lemma 2 and the analysis of Hedge, we have for any a⋆ ∈ A,

T∑
t=1

∑
a∈A

p′t(a)
〈
a, ℓ̂t

〉
−

T∑
t=1

〈
a⋆, ℓ̂t

〉
≤ lnK

η
+ η

T∑
t=1

∑
a∈A

p′t(a)
〈
a, ℓ̂t

〉2
.

Plugging in p′t(a) =
pt(a)−γq(a)

1−γ , multiplying both sides by 1− γ, and rearranging give

T∑
t=1

∑
a∈A

pt(a)
〈
a, ℓ̂t

〉
−

T∑
t=1

〈
a⋆, ℓ̂t

〉

≤ (1− γ) lnK

η
+ γ

T∑
t=1

∑
a∈A

q(a)
〈
a, ℓ̂t

〉
− γ

T∑
t=1

〈
a⋆, ℓ̂t

〉
+ η

T∑
t=1

∑
a∈A

(pt(a)− γq(a))
〈
a, ℓ̂t

〉2
≤ lnK

η
+ γ

T∑
t=1

∑
a∈A

q(a)
〈
a, ℓ̂t

〉
− γ

T∑
t=1

〈
a⋆, ℓ̂t

〉
+ η

T∑
t=1

∑
a∈A

pt(a)
〈
a, ℓ̂t

〉2
.

Taking expectation on both sides and using Lemma 1 and the fact |⟨a, ℓt⟩| ≤ 1, we arrive at

E[RT] = E

[
T∑
t=1

⟨at, ℓt⟩

]
−min
a∈A

T∑
t=1

⟨a, ℓt⟩ ≤
lnK

η
+ 2γT + ηTd,

proving the first statement. The second statement is by setting γ to make the condition η ≤ γλmin

B2

an equality and then picking the optimal η.

2.1 Finding the Optimal Exploration Distribution

Once again, the regret bound in Theorem 1 suggests that we need to find an exploration distribution
q with a large minimum eigenvalue λmin for the covariance matrix Ea∼q[aa⊤]. Note that the sum
of the eigenvalues of this matrix is TR(Ea∼q[aa⊤]) = Ea∼q[TR(aa⊤)] ≤ B2. Therefore, being
the smallest eigenvalue, the largest possible λmin we can hope for is Θ(B2/d). It turns out that,
after some preprocessing, one can indeed always find a q with special geometric properties such that
λmin = Ω(B2/d); see [Bubeck et al., 2012]. With such an optimal exploration scheme, the regret
bound in Theorem 1 becomes O(d lnK +

√
dT lnK) (note that the parameter B in fact does not

play a role). Going back to the earlier discussion that K is O(T d) when dealing with an arbitrary
convex decision set Ω via discretization, we see that Exp2 enjoys Õ(d

√
T) regret, which is known

to be near optimal [Dani et al., 2008].

While we will not discuss how to find such optimal q, we point out that in many problems the
uniform distribution over A is already good enough. We provide two such examples for combina-
torial bandits (so A ⊆ {0, 1}d) below, and will use the following observations to calculate λmin:
λmin = min∥v∥2=1 v

⊤Ea∼q
[
aa⊤

]
v = min∥v∥2=1 Ea∼q

[
(a⊤v)2

]
and

Ea∼q
[
(a⊤v)2

]
= Ea∼q

(d∑
i=1

a(i)v(i)

)2
 = Ea∼q

 d∑
i=1

a(i)2v(i)2 +
∑
i̸=j

a(i)a(j)v(i)v(j)


=

d∑
i=1

Pr(a(i) = 1)v(i)2 +
∑
i̸=j

Pr(a(i) = a(j) = 1)v(i)v(j).

4

Hypercube. The first example is when A is the entire hypercube {0, 1}d. This corresponds to a
setting where there are d items and each time we can pick any subset of them and observe the sum
of the losses of the selected items. When q is the uniform distribution, we clearly have Pr(a(i) =
1) = 1/2 and Pr(a(i) = a(j) = 1) = 1/4, and thus for any v with ∥v∥2 = 1,

Ea∼q
[
(a⊤v)2

]
=

1

2
∥v∥22 +

1

4

∑
i ̸=j

v(i)v(j) =
1

4
∥v∥22 +

1

4

(
d∑
i=1

v(i)

)2

≥ 1

4
.

The minimum is achievable as long as
∑d
i=1 v(i) = 0, which means λmin is exactly 1/4 in this

case. This is the ideal case since B =
√
d and O(B2/d) = O(1). With this optimal exploration

distribution, Exp2 achieves O(d
√
T) regret (since K = 2d).

m-sets. The next example is when A = {a ∈ {0, 1}d : ∥a∥1 = m}, that is, each time we can
only pick exactly m items. When q is the uniform distribution over A, we have Pr(a(i) = 1) =(
d−1
m−1

)
/
(
d
m

)
and Pr(a(i) = a(j) = 1) =

(
d−2
m−2

)
/
(
d
m

)
, and thus for any v with ∥v∥2 = 1,

Ea∼q
[
(a⊤v)2

]
=

(
d−1
m−1

)(
d
m

) ∥v∥22 +
(
d−2
m−2

)(
d
m

) ∑
i ̸=j

v(i)v(j)

=

(
m

d
− m(m− 1)

d(d− 1)

)
∥v∥22 +

m(m− 1)

d(d− 1)

(
d∑
i=1

v(i)

)2

≥ m(d−m)

d(d− 1)
.

This again shows that λmin = m(d−m)
d(d−1) . As long as m ≤ cd for some constant c < 1 (which is often

the more realistic case), we have λmin = Ω(md), the largest possible since B2/d = m/d. With this

optimal exploration distribution, Exp2 achieves O
(√

dT ln
(
d
m

))
= O

(√
dmT ln d

m

)
regret.

3 The SCRiBLe Algorithm for BLO

While Exp2 achieves the optimal regret, it is computational inefficient since it explicitly maintains a
distribution over potentially exponentially many actions. Similar to our discussion for combinatorial
problems in Lecture 2, to obtain an efficient algorithm, we need to directly perform FTRL over the
d-dimensional decision space Ω, that is, at time t compute wt = argminw∈Ω⟨w,

∑
s<t ℓ̂s⟩+

1
ηψ(w)

for some loss estimators ℓ̂1, . . . , ℓ̂t−1 and regularizer ψ. Note, however, that we cannot directly play
wt as the final decision, since randomness is required to construct the loss estimators as it should
have become clear by now after seeing so many examples. Thus, another thing we need to figure
out is how to randomly decide the final decision, denoted by w̃t ∈ Ω, based on the FTRL solution
wt. These there elements (random decision, loss estimators, and regularizer) are all tied together
closely, and there happens to be a delicate combination of the three that makes thing work.

First, having wt, we will randomly explore a local region centered at wt. One possibility of this
local region is just a small L2 ball, but this does not take into account the “shape” of the decision
set Ω at all. For example, if wt is very close to the boundary of Ω, then this ball needs to be very
small, limiting the exploration in all directions. Directly considering the shape of Ω, an arbitrary
convex set, is indeed highly challenging. Instead, we will somehow let the regularizer take care of
this and explore over the surface of an ellipsoid defined with respect to the local behavior of the
regularizer. Specifically, we play w̃t = wt +H

−1/2
t st, where Ht = ∇2ψ(wt) (invertible as long as

ψ is strictly convex) and st is uniformly at random sampled from the d-dimensional sphere, denoted
by Sd. If Ht is the identity matrix, then ∥w̃t − wt∥2 = 1 and thus w̃t is exactly a uniform sample
from the surface of a unit L2 ball centered at wt. More generally, for a positive definite Ht, we have
∥w̃t − wt∥Ht

= 1 and thus w̃t is a uniform sample from the surface of an ellipsoid centered at wt.
The eigenvectors of Ht define the principal axes of this ellipsoid and the corresponding eigenvalues
are the reciprocals of the square of the semi-axes. It is clear that Et[w̃t] = wt.

Of course, for this scheme to be valid, we need to make sure that w̃t is indeed within Ω, an issue that
we will come back later. Assuming its validity, after playing w̃t and observing w̃⊤

t ℓt we construct

5

the loss estimator as ℓ̂t = dH
1/2
t stw̃

⊤
t ℓt. This is in fact closely related to the estimator used in Exp2,

since (expectation below is with respect to the randomness of st)(
E
[
(w̃t − wt)(w̃t − wt)

⊤])−1
(w̃t − wt) =

(
E
[
H

−1/2
t sts

⊤
t H

−1/2
t

])−1

H
−1/2
t st = dH

1/2
t st,

where we use the fact E[sts⊤t] = 1
dId (Id is the d by d identity matrix). The lemma below shows

that the estimator enjoys not only unbiasedness but also a small local norm.

Lemma 3. The estimator defined above satisfies: E[ℓ̂t] = ℓt and ∥ℓ̂t∥H−1
t

≤ d where the expecta-
tion is with respect to the randomness of st.

Proof. By direct calculations and the facts E[st] = 0 and E[sts⊤t] = 1
dId, we have

E
[
ℓ̂t

]
= E

[
dH

1/2
t stw̃

⊤
t ℓt

]
+ E

[
dH

1/2
t sts

⊤
t H

−1/2
t ℓt

]
= ℓt,

and
∥ℓ̂t∥2H−1

t
= ℓ̂⊤t H

−1
t ℓ̂t = d2(w̃⊤

t ℓt)
2s⊤t H

1/2
t H−1

t H
1/2
t st = d2(w̃⊤

t ℓt)
2 ≤ d2,

where in the last step we further use s⊤t st = 1 and the assumption |w̃⊤
t ℓt| ≤ 1.

We point out that, unlike all other local norm calculations we have seen, this one is bounded always,
instead of only in expectation, and it holds for any strictly convex regularizer. As before, however,
we still need to argue that the stability term of FTRL is indeed related to the local norm. This,
together with the earlier issue on the validity of w̃t, can be simultaneously addressed by using a spe-
cial type of regularizers called self-concordant barriers. Self-concordant barriers play a fundamental
role in optimization theory (in particular, the Interior Point Method), and its (somewhat surprising)
role for BLO was discovered by the seminal work by Abernethy et al. [2008], who proposed the
following SCRiBLe (Self-Concordant Regularization in Bandit Learning) algorithm.1

Algorithm 2: SCRiBLe
Input: learning rate η > 0 and a self-concordant barrier ψ for Ω
for t = 1, . . . , T do

compute wt = argminw∈Ω

〈
w,
∑
s<t ℓ̂s

〉
+ 1

ηψ(w)

sample st ∈ Sd uniformly at random and play w̃t = wt +H
−1/2
t st where Ht = ∇2ψ(wt)

observe w̃⊤
t ℓt and construct estimator ℓ̂t = dH

1/2
t stw̃

⊤
t ℓt

A barrier on Ω is a function that approaches +∞ on the boundary of Ω. We defer the formal
definition of self-concordance to the end of the discussion and first list the following useful facts (all
can be found in [Nesterov and Nemirovskii, 1994]).
Fact 1. If ψ is a self-concordant barrier on Ω, then for any w in the interior of Ω, the ellipsoid
{w̃ : ∥w̃ − w∥∇2ψ(w) ≤ 1}, called the Dikin ellipsoid centered at w, is contained by Ω.

Since ψ is a barrier, the FTRL solution wt is always in the interior of Ω. This tells us that w̃t, being
on the surface of the Dikin ellipsoid center at wt, is indeed a valid decision. Compared to simply
exploring a small ball centered at wt, the Dikin ellipsoid can make much better use of the space and
explore more adaptively and aggressively.
Fact 2. Let ψ be a self-concordant barrier on Ω and w⋆ be its minimizer. For any w ∈ Ω, if its
Newton decrement λψ(w), defined as ∥∇ψ(w)∥∇−2ψ(w), is at most 1/2, then ∥w − w⋆∥∇2ψ(w) ≤
2λψ(w).

This fact says that by looking at the Newton decrement of w, which is the local norm of the gradient
of w, one can tell how far away w is from the minimizer w⋆ (as long as this Newton decrement is
not too vacuously large). This fact helps us relate the stability of FTRL to the local norm of the loss
estimator, as shown in the following lemma.

1This version is slightly different from their original algorithm which samples st from the eigenbasis of Ht

instead, but this makes no real difference to the regret analysis.

6

Lemma 4. If η ≤ 1
2d , SCRiBLe ensures ⟨wt − wt+1, ℓ̂t⟩ ≤ 2η∥ℓ̂t∥2H−1

t

for all t.

Proof. By Hölder’s inequality, we first bound ⟨wt − wt+1, ℓ̂t⟩ by ∥wt − wt+1∥Ht
∥ℓ̂t∥H−1

t
. Then,

note that wt+1 is the minimizer of the function Ft(w) = η⟨w,
∑
s≤t ℓ̂s⟩ + ψ(w), which is a self-

concordant barrier (the linear terms does not affect the self-concordance coming from ψ, as it will
become clear once we see the definition). To apply Fact 2, we calculate the Newton decrement:

λF (wt) = ∥∇F (wt)∥∇−2F (wt) =

∥∥∥∥η∑
s≤t

ℓ̂s +∇ψ(wt)
∥∥∥∥
H−1

t

= η∥ℓ̂t∥H−1
t

where the last step uses the first-order condition: η
∑
s<t ℓ̂s + ∇ψ(wt) = 0, since wt minimizes

the barrier function Ft−1(w) = η⟨w,
∑
s<t ℓ̂s⟩ + ψ(w). By Lemma 3 and the condition η ≤ 1

2d ,
we know λF (wt) ≤ 1/2 and thus Fact 2 implies ∥wt − wt+1∥Ht

≤ 2λF (wt) = 2η∥ℓ̂t∥H−1
t

, which
finishes the proof.

Note that the proof crucially relies on one fact mentioned earlier: the local-norm of the estimator is
bounded always, not just in expectation. It remains to deal with the penalty term of FTRL, which is
a bit trickier than what we have seen for other regularizers — in the past we have always bounded
the penalty term by the range of the regularizer, but now the range of a barrier is by definition +∞!
To deal with this issue, we require an additional property from the regularizer, making it a so-called
ν-self-concordant barrier for some parameter ν > 0. We again defer the formal definition and first
mention the following useful fact.
Fact 3. If ψ is a ν-self-concordant barrier on Ω, then for any ϵ > 0, we have ψ(u) − ψ(w1) ≤
ν ln(1ϵ +1) for any u from a shrunk (towards w1) version of Ω defined as { 1

1+ϵw+ ϵ
1+ϵw1 : w ∈ Ω}.

Therefore, even though ψ has an infinite range on Ω, its range becomes only ν ln(1ϵ +1) if one looks
at a slightly shrunk version of it, since a ν-self-concordant barrier changes its value rapidly close to
the boundary. Based on all these discussions, we are now ready to prove the following regret bound
for SCRiBLe.

Theorem 2. With a ν-self-concordant barrier regularizer and η = min
{

1
2d ,
√

ν lnT
Td2

}
, SCRiBLe

ensures E[RT] = O(d
√
νT lnT + dν lnT).

Proof. Based on Lemma 3 of Lecture 2, FTRL ensures for any u ∈ Ω:

T∑
t=1

〈
wt − u, ℓ̂t

〉
≤ ψ(u)− ψ(w1)

η
+

T∑
t=1

〈
wt − wt+1, ℓ̂t

〉
.

Pick u = 1
1+ϵw

⋆ + ϵ
1+ϵw1 for ϵ = 1/T . Then in expectation the left-hand side is almost the regret

of the learner due to the unbiasedness of the loss estimators:

Et[⟨wt − u, ℓ̂t⟩] = ⟨wt − u, ℓt⟩ = Et[⟨w̃t − u, ℓt⟩] = Et[⟨w̃t − w⋆, ℓt⟩] + Et[⟨w⋆ − u, ℓt⟩]

= Et[⟨w̃t − w⋆, ℓt⟩] +
ϵ

1 + ϵ
⟨w⋆ − w1, ℓt⟩ ≥ Et[⟨w̃t − w⋆, ℓt⟩]−

2

T
.

For the right-hand side, the penalty term is at most ν ln(T+1)
η based on Fact 3, and the stability term

is at most 2ηd2T based on Lemmas 3 and 4. Combining everything shows E[RT] ≤ 2+ ν ln(T+1)
η +

2ηd2T , and plugging in the (optimal) value of the learning rate finishes the proof.

Finally, to get a sense of how good this regret bound is, we point out one last important fact.
Fact 4. For any closed convex set in Rd, there exists a ν-self-concordant barrier with ν = O(d).

Therefore, using such an O(d)-self-concordant barrier, SCRiBLe achieves Õ(d3/2
√
T) regret,

slightly worse than the Õ(d
√
T) regret of Exp2. The advantage of SCRiBLe, however, is that it

can be implemented efficiently for most problems that we care about, since it only requires solving

7

a d-dimensional convex problem to find wt. In fact, Abernethy et al. [2008] even showed that it
suffices to do one Damped Newton step at each round to achieve the same regret, that is, instead of
computing wt+1 as exactly the minimizer of Ft(w) = η⟨w,

∑
s≤t ℓ̂s⟩+ψ(w), we do the following:

wt+1 = wt −
1

1 + λFt
(wt)

∇−2Ft(wt)∇Ft(wt).

Thus, the bottleneck is only in computing the Hessian inverse of Ft (or ψ equivalently).

Definition and Examples of Self-concordant Barriers. For completeness we now give the for-
mal definition of ν-self-concordant barriers. First, consider the one dimensional case (d = 1). A
function ψ : Ω → R is self-concordant if it is third-order differentiable, strictly convex, and satisfies
the following Lipschitz Hessian condition: |ψ(w)′′′| ≤ 2(ψ(w)′′)3/2 for all w in the interior of Ω,
and it is ν-self-concordant if in addition it satisfies the Lipschitz condition: |ψ(w)′| ≤

√
νψ(w)′′

again for all w in the interior of Ω. For the general d-dimensional case, ψ is ν-self-concordant if
restricting it onto any direction gives a ν-self-concordant one-dimensional function.

These conditions say that both the Hessian and the function value move slowly relative to the move-
ment of the gradient. Importantly, unlike common Lipschitz conditions (such as |ψ(w)′| ≤ C for
some constant C > 0), these two conditions are both affine-invariant, meaning that if ψ satisfies
them, then so does ψ(Mw + u) for any affine transformation defined via M and u. Canonical
examples include the following (try to verify them at least for d = 1 to convince yourself):

• ψ(w) = −
∑d
i=1 lnwi (the log-barrier) is a d-self-concordant barrier for Ω = Rd+;

• ψ(w) = −
∑m
j=1 ln(α

⊤
j w − βj) is an m-self-concordant barrier for the polytope Ω = {w ∈

Rd : α⊤
j w ≥ βj for j = 1, . . . ,m};

• ψ(w) = − ln(1− ∥w∥22) is a 1-self-concordant barrier for the unit ball Ω = {w ∈ Rd : ∥w∥2 ≤
1} (note that the self-concordant parameter here is 1 instead of d).

Question 1. How would you use SCRiBLe to solve a combinatorial bandit problem? Think about
what regularizer you will use and also what the final decision at each round you will play.

4 One-Point Gradient Estimate for BCO

We now go back to the general BCO problem where the loss function ft is not necessarily linear.
As mentioned, the linearizion trick ft(wt) − ft(w

⋆) ≤ ⟨∇ft(wt), wt − w⋆⟩ does not reduce BCO
to BLO, but it is still useful since it suggests that we do not need to estimate the entire function ft
based on just one value ft(wt), a problem that sounds extremely challenging, but instead only need
to estimate one gradient ∇ft(wt) based on ft(wt). Such estimate is called a one-point gradient
estimate. While this is still highly non-trivial, one can at least estimate the gradient of a smoothed
version of ft based on the following lemma.

Lemma 5. Given a function f and an invertible matrix M , define the smoothed version of f as
f̂(w) = Eb∼Bd [f(w +Mb)] where b is a uniform sample of the d-dimensional unit ball Bd = {b ∈
Rd : ∥b∥2 ≤ 1}. Then the following holds

∇f̂(w) = Es∼Sd
[
df(w +Ms)M−1s

]
(3)

where s is a uniform sample of the d-dimensional unit sphere Sd = {s ∈ Rd : ∥s∥2 = 1}.

We omit the proof here but one can simply verify this fact when d = 1 so that the unit ball is simply
the segment [−1, 1] and the unit sphere is simply two points −1 and 1. Indeed, in this case, with F
being the antiderivative of f , we have

∇Eb∼Bd [f(w +Mb)] =
1

2

d

dw

∫ 1

−1

f(w +Mb)db =
1

2M

d

dw
(F (w +M)− F (w −M))

=
1

2M
(f(w +M)− f(w −M)) = Es∼Sd

[
df(w +Ms)M−1s

]
.

8

This lemma directly implies a way to construct the gradient estimator ℓ̂t: draw a uniform sample
s from the unit sphere, query the value of ft(wt +Ms) for some M by playing w̃t = wt +Ms,
and then use ℓ̂t = df(w + Ms)M−1s as an unbiased estimator of the gradient ∇f̂t(wt) where
f̂t(w) = Eb∼Bd [ft(w +Mb)] is a smoothed version of ft. Inspired by SCRiBLe, we pick M based
on the Hessian of a self-concordant regularizer together with an extra scaling parameter δ ∈ (0, 1],
leading to the following algorithm proposed by [Saha and Tewari, 2011]. Note that when δ = 1, this
exactly recovers SCRiBLe.

Algorithm 3: A Generalization of SCRiBLe for BCO
Input: parameter δ ∈ (0, 1], learning rate η > 0, and a ν-self-concordant function ψ
for t = 1, . . . , T do

compute wt = argminw∈Ω

〈
w,
∑
s<t ℓ̂s

〉
+ 1

ηψ(w)

sample st ∈ Sd uniformly at random and play w̃t = wt + δH
−1/2
t st where Ht = ∇2ψ(wt)

observe ft(w̃t) and construct gradient estimator ℓ̂t = d
δ ft(w̃t)H

1
2
t st

Note that w̃t is a valid point as it is within the Dikin ellipsoid centered at wt. Importantly, since ℓ̂t
is not exactly an unbiased estimator for ft itself, this leads to one key issue in this approach: bias-
variance trade-off of the estimator, which is controlled by the parameter δ. When δ is close to 0, f̂t
is very close to ft but ℓ̂t has a very large variance; on the other hand, when δ is large, the variance
goes down while f̂t becomes very different from ft. Due to this trade-off, this algorithm at best
achieves Õ(T 3/4) regret for Lipschitz loss functions or Õ(T 2/3) regret for smooth loss functions;
see [Luo, 2017] for the analysis. The best upper bound for this problem is Õ(d2.5

√
T) [Lattimore,

2020] (with no concrete algorithms given unfortunately), and the best polynomial-time algorithm
achieves regret Õ(d10.5

√
T) [Bubeck et al., 2017]. Somewhat surprisingly, the best existing lower

bound is still Ω(d
√
T) coming from the linear case [Dani et al., 2008]. Closing this gap with an

efficient (and practical) algorithm is still a key open problem in the bandit literature.

References
Jacob D Abernethy, Elad Hazan, and Alexander Rakhlin. Competing in the dark: An efficient

algorithm for bandit linear optimization. In 21st Annual Conference on Learning Theory, 2008.

Sébastien Bubeck, Nicolò Cesa-Bianchi, and Sham Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In 25th Annual Conference on Learning Theory, 2012.

Sébastien Bubeck, Yin Tat Lee, and Ronen Eldan. Kernel-based methods for bandit convex opti-
mization. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
2017.

Nicolò Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. Journal of Computer and System
Sciences, 78(5):1404–1422, 2012.

Varsha Dani, Sham M Kakade, and Thomas P Hayes. The price of bandit information for online
optimization. In Advances in Neural Information Processing Systems 21, 2008.

Tor Lattimore. Improved regret for zeroth-order adversarial bandit convex optimisation. Mathemat-
ical Statistics and Learning, 2(3):311–334, 2020.

Haipeng Luo. Lecture notes 18, introduction to online learning, 2017. URL https://
haipeng-luo.net/courses/CSCI699/lecture18.pdf.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

Ankan Saha and Ambuj Tewari. Improved regret guarantees for online smooth convex optimiza-
tion with bandit feedback. In The 14th International Conference on Artificial Intelligence and
Statistics, 2011.

9

https://haipeng-luo.net/courses/CSCI699/lecture18.pdf
https://haipeng-luo.net/courses/CSCI699/lecture18.pdf

	Adversarial Bandit Linear/Convex Optimization
	The Exp2 Algorithm for BLO
	Finding the Optimal Exploration Distribution

	The SCRiBLe Algorithm for BLO
	One-Point Gradient Estimate for BCO

