Homework 1

Instructor: Haipeng Luo

1. Construct an example to show that Follow the Leader (FTL) could have Q(T') regret in the worst
case. (Hint: think about a very simple setting such as the expert problem with two experts.)

2. (Doubling Trick) We have seen that Hedge has regret bound 2v/7'In N with the optimal tuning
n = /(InN)/T. What if T is unknown? One quick-and-dirty way to address this issue is the
so-called “doubling trick”. The idea is to make a guess on 7', and once the actual horizon exceeds
the guess, double the guess and restart the algorithm with a learning rate tuned based on the new
guess. The algorithm is outlined below (with 0 being the all-zero vector):

Algorithm 1: Doubling Trick with Hedge

Initialize: Lo = 0 and nn = +/(In N) /Ty where Ty = 2
fort=1,2,...,do

if ¢ > Tj then

double the guess: Ty < 2Ty
L reset the algorithm: L,_; = 0andn = /(In N)/Tj

compute p; € A(N) such that p; (i) x exp(—nL_1(%))

play p; and observe loss vector ¢; € [0, 1]V

update Lt = Ltfl + ét

(a) Prove that Algorithm |[I| ensures that for all T, we have Rr(i*) = O(VTInN). (Hint:
consider how many times the algorithm resets and how large the regret can be between two
resets.)

(b) In Lecture 3 we showed how to use time-varying learning rate to achieve “small-loss”
bounds. Use the doubling trick to outline an algorithm that achieves the same bound

O(y/ L7 (i*) In N') without the knowledge of Ly (i*).
(c) In Lecture 6 we showed an algorithm that ensures Ry (i) < % + nDr (i) for Dp(i) =
Zthl(ft(i) — 4;—1(i))%. Can we again use the doubling trick to achieve Rrp(i*) =

O(y/Dr(i*) In N) without the knowledge of Dr(i*)?

(d) In general if we have an algorithm (with parameter 1) that ensures Ry (i*) < % + nBr for

some quantity B, under what conditions can we use the doubling trick to achieve the bound
Ry (%) = O(v/Br In N) without the knowledge of Bp?

3. (Regret Matching) Regret Matching is a suboptimal yet extremely simple algorithm for the
expert problem. Specially, at round ¢ Regret Matching predicts

pe(i) o< [Re—1(4)]4, where [z]; = max{z,0}.
Prove the regret bound for this algorithm through the following steps.
(a) Prove that [Ry(i)]2 < [Ry—1(4)]% 4 2[Re—1(3)]+74(2) + r2(3).
(b) Define potential &; = Zf\il[Rf(z)]i Prove that &, < ®;,_; + N.

(c) Conclude that regret matching ensures Rp(i*) < vT'N.

4. (Hedge is an FTPL) Consider the following FTPL strategy for the expert problem: at time ¢,

plays
iy = argmin (Ly—1(é) — Lo (7)),

where Lo(i) fori = 1,..., N are N independent random variables with Gumbel distribution, that
is, with CDF Pr[Ly(¢) < z] < exp(— exp(—nx)) for some parameter 7).

. . . . exp(—nLi—1(1
(a) Prove that for any j, Pr[i; = j] = Pr [] = argmax; W]

(b) Prove that the random variable v(i) = exp(—nLq(¢)) follows the standard exponential distri-
bution, that is Pr[v(i) < 2] =1—e"7".

(c) For any positive numbers a(1),...,a(N), prove that Pr [j = argmax; 38} = %
i=1 2
Conclude that FTPL with Gumbel noise is equivalent to sampling an expert using Hedge’s
prediction.

5. (Perceptron) Consider the following algorithm (called Perceptron) for the online binary classifi-
cation problem:

Algorithm 2: Perceptron

Initialize: v, = 0 € R¢
fort=1,2,...,T do
see example z; € R?
predict §; = SGN({wy, x+)) where SGN(y) is 1 if y > 0 and —1 otherwise
receive true label y, € {—1,1}
if /y\t 7é Yt then Wi41 = Wy + YTy
else Wiyl = Wy

(a) Construct a loss function f;(w) so that Perceptron is equivalent to OGD with Q = R¢ and
n =1, thatis, wy11 = wy — V fi(wy). (For simplicity ignore the case when (wy, 2¢) = 0.)

(b) Since the regret bound of OGD requires boundedness of 2, it does not apply here. Instead,
one can prove a mistake bound for Perceptron. For notation convenience, first ignore the
rounds where the algorithm makes the correct prediction (that is, J; = ;). In other words,
assume that the algorithm makes a mistake at every round so that 7" is exactly the number of
mistakes. This is without loss of generality since the algorithm makes no changes unless it
makes a mistake. Next, prove the following statements (all norms are Ly norm).

(1) ||wt+1|\2 < ||wt||2 + 1 if examples are normalized so that ||z;| < 1.
(ii) Assume there exists a perfect linear classifier w* with ||w*|| < 1 and margin v > 0,
that is, ys (w*, z¢) > v for all z;. Prove ||wri1]] > T.

(iii) Combine the above two statements to show that the number of mistakes 7" is bounded
by 1/42.

6. (Online Mirror Descent) Besides FTRL and FTPL, Online Mirror Descent (OMD) is yet another
general framework to derive online learning algorithm for OCO. For a convex function ¢ : Q@ — R,
the Bregman divergence (with respect to 1) between two points w and w is defined as

Dy(w,u) = p(w) = ¢(u) = (Vi(u),w — u).
The update of OMD is then
1
— argrrglzin (w, V f(we)) + 5D¢(w,wt)
we

for some parameter 7. In other words, OMD tries to find a point that minimizes the loss at time
t (recall all OCO problems can be reduced to a linear problem with loss function (w, V f;(w;)) at
time t) while being close to the previous point w;.

(a) Let wj, be such that Vi)(wi,) = Vi)(w;) — nV fi(wy) (assume it exists). Prove

wy41 = argmin Dy, (w, wi,). (1)
weR

(b) Verify that for any u € (), the instantaneous regret can be written as

<wt - U, Vft(wt>> = % (Dw(uth) - Dw(uvwzltJrl) + Dw(wt’w;rl))

(c) Use the generalized Pythagorean theorem, which states that Dy (u, wi41) < Dy (u,w})
for any v € Q if w41 is a projection of w;, ; as in Eq. (I), to conclude the following regret
bound of OMD:

T

Dy (u,w 1

M.}.,pr(whwal). 2)
N =

T
> filwy) = fi(w) <

(d) Show that Hedge is an instance of OMD and recover its regret bound using Eq. 2).

(e) Use ¢(w) = 3 Hw||§ to derive a different version of OGD. Prove its regret bound using
Eq. @).

