
Homework 1
Instructor: Haipeng Luo

1. Construct an example to show that Follow the Leader (FTL) could have Ω(T ) regret in the worst
case. (Hint: think about a very simple setting such as the expert problem with two experts.)

2. (Doubling Trick) We have seen that Hedge has regret bound 2
√
T lnN with the optimal tuning

η =
√

(lnN)/T . What if T is unknown? One quick-and-dirty way to address this issue is the
so-called “doubling trick”. The idea is to make a guess on T , and once the actual horizon exceeds
the guess, double the guess and restart the algorithm with a learning rate tuned based on the new
guess. The algorithm is outlined below (with 0 being the all-zero vector):

Algorithm 1: Doubling Trick with Hedge

Initialize: L0 = 0 and η =
√

(lnN)/T0 where T0 = 2
for t = 1, 2, . . . , do

if t > T0 then
double the guess: T0 ← 2T0

reset the algorithm: Lt−1 = 0 and η =
√

(lnN)/T0

compute pt ∈ ∆(N) such that pt(i) ∝ exp(−ηLt−1(i))
play pt and observe loss vector `t ∈ [0, 1]N

update Lt = Lt−1 + `t

(a) Prove that Algorithm 1 ensures that for all T , we have RT (i?) = O(
√
T lnN). (Hint:

consider how many times the algorithm resets and how large the regret can be between two
resets.)

(b) In Lecture 3 we showed how to use time-varying learning rate to achieve “small-loss”
bounds. Use the doubling trick to outline an algorithm that achieves the same bound
O(
√
LT (i?) lnN) without the knowledge of LT (i?).

(c) In Lecture 6 we showed an algorithm that ensures RT (i) ≤ lnN
η + ηDT (i) for DT (i) =∑T

t=1(`t(i) − `t−1(i))2. Can we again use the doubling trick to achieve RT (i?) =

O(
√
DT (i?) lnN) without the knowledge of DT (i?)?

(d) In general if we have an algorithm (with parameter η) that ensures RT (i?) ≤ lnN
η + ηBT for

some quantity BT , under what conditions can we use the doubling trick to achieve the bound
RT (i?) = O(

√
BT lnN) without the knowledge of BT ?

3. (Regret Matching) Regret Matching is a suboptimal yet extremely simple algorithm for the
expert problem. Specially, at round t Regret Matching predicts

pt(i) ∝ [Rt−1(i)]+, where [x]+ = max{x, 0}.

Prove the regret bound for this algorithm through the following steps.

(a) Prove that [Rt(i)]
2
+ ≤ [Rt−1(i)]2+ + 2[Rt−1(i)]+rt(i) + r2

t (i).

(b) Define potential Φt =
∑N
i=1[Rt(i)]

2
+. Prove that Φt ≤ Φt−1 +N .



(c) Conclude that regret matching ensures RT (i?) ≤
√
TN .

4. (Hedge is an FTPL) Consider the following FTPL strategy for the expert problem: at time t,
plays

it = argmin
i

(Lt−1(i)− L0(i)) ,

where L0(i) for i = 1, . . . , N are N independent random variables with Gumbel distribution, that
is, with CDF Pr[L0(i) ≤ x] ≤ exp(− exp(−ηx)) for some parameter η.

(a) Prove that for any j, Pr[it = j] = Pr
[
j = argmaxi

exp(−ηLt−1(i))
exp(−ηL0(i))

]
.

(b) Prove that the random variable v(i) = exp(−ηL0(i)) follows the standard exponential distri-
bution, that is Pr[v(i) ≤ x] = 1− e−x.

(c) For any positive numbers a(1), . . . , a(N), prove that Pr
[
j = argmaxi

a(i)
v(i)

]
= a(j)∑N

i=1 a(i)
.

Conclude that FTPL with Gumbel noise is equivalent to sampling an expert using Hedge’s
prediction.

5. (Perceptron) Consider the following algorithm (called Perceptron) for the online binary classifi-
cation problem:

Algorithm 2: Perceptron

Initialize: w1 = 0 ∈ Rd
for t = 1, 2, . . . , T do

see example xt ∈ Rd
predict ŷt = SGN(〈wt, xt〉) where SGN(y) is 1 if y ≥ 0 and −1 otherwise
receive true label yt ∈ {−1, 1}
if ŷt 6= yt then wt+1 = wt + ytxt
else wt+1 = wt

(a) Construct a loss function ft(w) so that Perceptron is equivalent to OGD with Ω = Rd and
η = 1, that is, wt+1 = wt −∇ft(wt). (For simplicity ignore the case when 〈wt, xt〉 = 0.)

(b) Since the regret bound of OGD requires boundedness of Ω, it does not apply here. Instead,
one can prove a mistake bound for Perceptron. For notation convenience, first ignore the
rounds where the algorithm makes the correct prediction (that is, ŷt = yt). In other words,
assume that the algorithm makes a mistake at every round so that T is exactly the number of
mistakes. This is without loss of generality since the algorithm makes no changes unless it
makes a mistake. Next, prove the following statements (all norms are L2 norm).

(i) ‖wt+1‖2 ≤ ‖wt‖2 + 1 if examples are normalized so that ‖xt‖ ≤ 1.
(ii) Assume there exists a perfect linear classifier w? with ‖w?‖ ≤ 1 and margin γ > 0,

that is, yt 〈w?, xt〉 ≥ γ for all xt. Prove ‖wT+1‖ ≥ Tγ.
(iii) Combine the above two statements to show that the number of mistakes T is bounded

by 1/γ2.

6. (Online Mirror Descent) Besides FTRL and FTPL, Online Mirror Descent (OMD) is yet another
general framework to derive online learning algorithm for OCO. For a convex function ψ : Ω→ R,
the Bregman divergence (with respect to ψ) between two points w and u is defined as

Dψ(w, u) = ψ(w)− ψ(u)− 〈∇ψ(u), w − u〉 .
The update of OMD is then

wt+1 = argmin
w∈Ω

〈w,∇ft(wt)〉+
1

η
Dψ(w,wt)

for some parameter η. In other words, OMD tries to find a point that minimizes the loss at time
t (recall all OCO problems can be reduced to a linear problem with loss function 〈w,∇ft(wt)〉 at
time t) while being close to the previous point wt.

2



(a) Let w′t+1 be such that ∇ψ(w′t+1) = ∇ψ(wt)− η∇ft(wt) (assume it exists). Prove

wt+1 = argmin
w∈Ω

Dψ(w,w′t+1). (1)

(b) Verify that for any u ∈ Ω, the instantaneous regret can be written as

〈wt − u,∇ft(wt)〉 = 1
η

(
Dψ(u,wt)−Dψ(u,w′t+1) +Dψ(wt, w

′
t+1)

)
(c) Use the generalized Pythagorean theorem, which states that Dψ(u,wt+1) ≤ Dψ(u,w′t+1)

for any u ∈ Ω if wt+1 is a projection of w′t+1 as in Eq. (1), to conclude the following regret
bound of OMD:

T∑
t=1

ft(wt)− ft(u) ≤ Dψ(u,w1)

η
+

1

η

T∑
t=1

Dψ(wt, w
′
t+1). (2)

(d) Show that Hedge is an instance of OMD and recover its regret bound using Eq. (2).

(e) Use ψ(w) = 1
2 ‖w‖

2
2 to derive a different version of OGD. Prove its regret bound using

Eq. (2).

3


