
Lecture 3
Instructor: Haipeng Luo

1 Instances of FTRL

In the last lecture we study FTRL, a general online learning algorithm, and prove the following
regret bound

RT ≤
D

η
+ η

T∑
t=1

‖∇ft(wt)‖2? ,

where D = maxw∈Ω ψ(w)−minw∈Ω ψ(w). Here we present two concrete instances of FTRL.

1.1 Recovering Hedge

Recall that in the expert problem Ω = ∆(N) and ft(p) = 〈p, `t〉. If we pick the (negative) entropy
function as the regularizer, that is, ψ(p) =

∑N
i=1 p(i) ln p(i), one can verify that the solution of

pt = argmin
p∈∆(N)

〈
p,

t−1∑
τ=1

`t

〉
+

1

η

N∑
i=1

p(i) ln p(i)

is exactly the Hedge algorithm, that is, pt(i) ∝ exp(−η
∑t−1
τ=1 `t(i)). In other words, Hedge is just

one special case of FTRL.

To apply the FTRL regret bound, we use the fact that the entropy function is strongly convex with
respect to the L1 norm. To see this note that in this case the definition of strong convexity

ψ(p)− ψ(q) ≤ 〈∇ψ(p), p− q〉 − 1
2 ‖p− q‖

2
1

is equivalent to
1

2
‖p− q‖21 ≤

N∑
i=1

q(i) ln
q(i)

p(i)

def
= KL(q, p).

The latter turns out to be exactly the Pinsker’s inequality, which states that the Kullback-Leibler
divergence of two distributions is lower bounded by half of their L1 distance square.

Also notice that the dual norm of the L1 norm is the L∞ norm and by boundedness of losses we have
‖∇ft(pt)‖∞ = ‖`t‖∞ ≤ 1. Moreover, the (negative) entropy function has maximal value 0 (when
the distribution concentrates on one coordinate) and minimum value − lnN (when the distribution
is uniform), and thus D = lnN . Therefore, applying the FTRL regret bound we again arrive at

RT ≤
lnN

η
+ Tη,

the same bound we proved last time using a different potential-based argument.

1.2 Online Gradient Descent

In the next example we consider an arbitrary OCO problem and pick ψ(w) = 1
2 ‖w‖

2
2. The FTRL

algorithm becomes

wt = argmin
w∈Ω

t−1∑
τ=1

fτ (w) +
1

2η
‖w‖22 .



One can (approximately) solve this convex optimization problem using standard methods. However,
it turns out that it is without loss of generality to assume that ft is a linear function. To see this, note
that by convexity the regret can be bounded as

RT = max
w∈Ω

T∑
t=1

(ft(wt)− ft(w)) ≤ max
w∈Ω

T∑
t=1

〈∇ft(wt), wt − w〉 .

Therefore, we can imagine that the loss function is actually a linear function f ′t(w) = 〈ft(wt), w〉,
and a regret bound for this linear problem is clearly also a regret bound for the original problem.
With this reduction, we rewrite the above FTRL as

wt = argmin
w∈Ω

〈
w,

t−1∑
τ=1

∇fτ (wτ )

〉
+

1

2η
‖w‖22 . = argmin

w∈Ω

∥∥∥∥∥w + η

t−1∑
τ=1

∇fτ (wτ )

∥∥∥∥∥
2

2

,

which means wt is the L2 projection of ut = −η
∑t−1
τ=1∇fτ (wτ ) onto Ω. This algorithm is called

Online Gradient Descent (OGD) [Zinkevich, 2003]. To see the connection to the regular gradient
descent, note that OGD can be equivalently written as

ut+1 = ut − η∇ft(wt); wt+1 = argmin
w∈Ω

‖w − ut+1‖ ,

while regular gradient descent would instead do

ut+1 = wt − η∇ft(wt); wt+1 = argmin
w∈Ω

‖w − ut+1‖ .

In fact, there is little real difference between these two algorithms and one can prove the same
guarantee for both of them. Below we apply the general FTRL guarantee to prove a regret bound.

Indeed, one can easily verify that ψ(w) = 1
2 ‖w‖

2
2 is strongly convex with respect to the L2 norm.

Note that the dual norm of the L2 norm is itself. So if we let G be an upper bound on all the
gradients, that is, ‖∇ft(wt)‖2 ≤ G, then the regret of OGD is bounded by

RT ≤
maxw∈Ω ‖w‖22

2η
+ ηTG2 = O

(
max
w∈Ω
‖w‖2G

√
T

)
,

where the last step is by picking the optimal η.

Examples Consider the online regression problem where Ω = {w ∈ Rd : ‖w‖2 ≤ 1} is a set of
linear predictors with bounded norm, and ft(w) = 1

2 (〈w, xt〉−yt)2 is the square loss for an example
xt ∈ {x ∈ Rd : ‖x‖2 ≤ 1} and its label yt ∈ [−1, 1]. Then because ∇ft(w) = (〈w, xt〉 − yt)xt,
we have G = 2 and maxw∈Ω ‖w‖2 = 1, and therefore OGD has regret O(

√
T ), independent of the

dimension of the problem d.

Next consider using OGD for the expert problem. Note that for the simplex, maxp∈∆(N) ‖p‖2 ≤
maxp∈∆(N) ‖p‖1 = 1, but ‖`t‖2 ≤

√
N . Thus OGD’s regret isO(

√
TN) in this case, which has an

exponentially worse dependence on N compared to Hedge.

2 Follow the Perturbed Leader and Combinatorial Problems

As we have seen, FTRL uses regularization to stabilize the algorithm. Here, we introduce another
very different approach, perturbation. To motivate this approach, we consider the following online
combinatorial problems.

Let S = {v1, . . . , vM} be a set of combinatorial actions such that vj ∈ {0, 1}N and ‖vj‖1 ≤ m for
some integer m ≤ N and all j ∈ [M ]. The decision space for the learner is the convex hull of S,
that is, Ω =

{∑M
j=1 p(j)vj : p ∈ ∆(M)

}
. Thus, each point in Ω specifies a distribution over these

combinatorial actions or in other words a randomized strategy. We consider linear loss functions
so that ft(w) = 〈w, `t〉 for some `t ∈ [0, 1]N . Finally, for simplicity we restrict our attention to
oblivious environments so that `1, . . . , `T are decided before the game starts.

2



The expert problem is clearly a special case where S consists of all the standard basis vectors in RN
and m = 1. Another example is when S = {v ∈ {0, 1}N : ‖v‖1 = m} so that Ω = {w ∈ [0, 1]N :
‖w‖1 = m} (recall the multiple-product recommendation example in Lecture 1).

Yet another important example is the online shortest path problem. In this problem, a direct acyclic
graph with N edges, a source vertex, and a destination vertex is given. Each round the player first
randomly picks a path, then the loss (e.g. delay) for each edge is revealed and the player suffers the
total loss of all the edges on the picked path. This can be formulated as a special case of the above
combinatorial problem by setting S to be the set of all paths starting from the source and ending at
the destination (that is, a path is represented by a vector in {0, 1}N so that each coordinate indicates
whether the corresponding edge is on the path or not). Note that m is the length of the longest path
in S.

One can again use the FTRL approach to tackle this problem, but it is not often clear how to solve
the optimization problem in FTRL. Instead, we consider a different approach called Follow the
Perturbed Leader (FTPL) [Kalai and Vempala, 2005], which only requires a linear optimization
step over Ω. Specifically, let `0 be a uniformly random draw from [0, 1/η]N for some η > 0. Then
at round t FTPL plays

wt = argmin
w∈Ω

〈
w,

t−1∑
τ=0

`τ

〉
.

In other words, wt is the leader according the cumulative losses plus some perturbation `0. Note
that this leader can always be some point in S due to linearity. Moreover, for many problems this
linear optimization admits efficient algorithm. For example, for the expert problem this is trivially
solved by picking the best coordinate. For the online shortest path problem, this can be solved by a
shortest path algorithm such as Dijkstra’s algorithm.

It remains to prove the regret bound of FTPL. To this end, we first show that perturbation provides
stability in expectation.
Lemma 1 (Stability of FTPL). FTPL with parameter η ensures that

E[ft(wt)− ft(wt+1)] ≤ mNη

where the expectation is with respect to the random draw of `0.

Proof. To make the dependence explicit, define ht(`0) =
〈

argminw∈Ω

∑t−1
τ=0 `τ , `t

〉
. We then

have

E[ft(wt)− ft(wt+1)] = E[ht(`0)− ht(`0 + `t)]

= ηN
∫
`0∈[0,1/η]N

ht(`0)− ht(`0 + `t)d`0

= ηN

(∫
`0∈[0,1/η]N

ht(`0)d`0 −
∫
`0∈`t+[0,1/η]N

ht(`0)d`0

)
(change of variable)

≤ ηN
∫
`0∈[0,1/η]N\`t+[0,1/η]N

ht(`0)d`0

≤ mηN
∫
`0∈[0,1/η]N\`t+[0,1/η]N

d`0 (ht(`0) ≤ m)

= mPr (∃i : `0(i) ≤ `t(i))

≤ m
N∑
i=1

Pr (`0(i) ≤ 1) (union bound and `t(i) ≤ 1)

= mNη.

With the stability lemma, we can prove the following bound using similar argument as in FTRL.
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Theorem 1. FTPL with parameter η ensures that

E[RT ] ≤ m

2η
+mNTη

where the expectation is with respect to the random draw of `0. With η optimally set to
√

1/(2NT )

we thus have E[RT ] = O(m
√
TN).

Proof. Note that by the BTL lemma, with w? = argminw∈Ω

∑T
t=1 ft(w), we again have

RT =

T∑
t=1

ft(wt)−
T∑
t=1

ft(w
?)

≤
T∑
t=1

ft(wt)−
T∑
t=0

ft(wt+1) + f0(w?)

= f0(w?)− f0(w1) +

T∑
t=1

(ft(wt)− ft(wt+1)).

Applying the stability lemma and realizing E[f0(w?)− f0(w1)] ≤ E[〈`0, w?〉] = 〈E[`0], w?〉 ≤ m
2η

finish the proof.

Note that the bound is suboptimal in general. For example, in the expert problem it has polynomial
dependence on N instead of logarithmic dependence. However, with a more sophisticated noise
distribution (rather than uniform), the regret bounds can often be improved to be optimal. In fact, it
is well-known that in the expert problem, FTPL with Gumbel noise is equivalent to Hedge!

A final remark is that to deal with non-oblivious environments, it turns out that one only needs to
draw a fresh sample of `0 at the beginning of each round. The intuition is that this will prevent a
non-oblivious environment, whose strategy can depend on the player’s actions, from figuring out `0
gradually. A formal proof can be found in [Hutter and Poland, 2005].
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