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Administration

HW 4 is available and is due on 11/04.

Today's plan: first finish clustering, then move on to more unsupervised
learning problems
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Outline

© Density estimation

© Naive Bayes
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Outline

@ Density estimation
@ Parametric methods
@ Nonparametric methods
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Density estimation

Density estimation

Observe what we have done indirectly for clustering with GMMs is:
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Density estimation

Density estimation
Observe what we have done indirectly for clustering with GMMs is:

Given a training set 1, ..., Ty, estimate a densnty function p that
could have generated this dataset (via @, b D).
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Density estimation

Observe what we have done indirectly for clustering with GMMs is:

Given a training set 1, ..., Ty, estimate a densnty function p that
could have generated this dataset (via @, b D).

This is exactly the problem of density estimation, another important
unsupervised learning problem.

Useful for many downstream applications

@ we have seen clustering already, will see more today
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Density estimation

Observe what we have done indirectly for clustering with GMMs is:

Given a training set 1, ..., Ty, estimate a densnty function p that
could have generated this dataset (via @, b D).

This is exactly the problem of density estimation, another important
unsupervised learning problem.

Useful for many downstream applications
@ we have seen clustering already, will see more today

@ these applications also provide a way to measure quality of the density
estimator
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Density estimation Parametric methods

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by 6:

p(z) =p(z ;0)
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Density estimation Parametric methods

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by 6:
p(z) = p(x ; 0)

Examples:

o GMM: p(zx [0) = 1| wpN(x | pr, Ti) where 0 = {wy, py, i}
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Density estimation Parametric methods

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by 6:
p(z) = p(x ; 0)
Examples:

o GMM: p(zx [0) = 1| wpN(x | pr, Ti) where 0 = {wy, py, i}

@ Multinomial for 1D examples with K possible values
plz=k;6) =0

where @ is a distribution over K elements.
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Density estimation Parametric methods

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by 6:
p(z) = p(x ; 0)

Examples:
o GMM: p(zx [0) = 1| wpN(x | pr, Ti) where 0 = {wy, py, i}

@ Multinomial for 1D examples with K possible values
p(z=k;0) =0
where 0 is a distribution over K elements.

Size of 0 is independent of the training set size, so it's parametric.
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Density estimation Parametric methods

Parametric methods: estimation
Again, we apply MLE to learn the parameters 6:

N
argznax = Zlnp(:vn :0)

n=1
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Density estimation Parametric methods

Parametric methods: estimation

Again, we apply MLE to learn the parameters 6:

N
argznax = Zlnp(:vn :0)

n=1

For some cases this is intractable and we can use EM to approximately
solve MLE (e.g. GMMs).
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Density estimation Parametric methods

Parametric methods: estimation

Again, we apply MLE to learn the parameters 6:

N
argznax = Zlnp(:vn :0)

n=1

For some cases this is intractable and we can use EM to approximately
solve MLE (e.g. GMMs).

For some other cases this admits a simple closed-form solution (e.g.
multinomial).
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Density estimation Parametric methods

MLE for multinomial

N N
argmax = Z Inp(x =z,;0) = Z Iné,,
0 n=1 n=1
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Density estimation Parametric methods

MLE for multinomial

N N
argmax = Z Inp(x =z,;0) = Z Iné,,
o n=1 n=1
K
= Z Z In 6y,
k=1 n:xn=Fk
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Density estimation Parametric methods

MLE for multinomial

N N
argmax = Z Inp(x =z,;0) = Z Iné,,
0 n=1 n=1
K K
k=1nxn=k k=1

where z = |{n : z,, = k}| is the number of examples with value k.
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Density estimation Parametric methods

MLE for multinomial

N N
argmax = Z Inp(x =z,;0) = Z Iné,,
0 n=1 n=1
K K
k=1nxn=k k=1

where z = |{n : z,, = k}| is the number of examples with value k.

The solution is simply
Qk = ﬁ X Zk,
N

i.e. the fraction of examples with value k.
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Density estimation Nonparametric methods

Nonparametric methods

Can we estimate without assuming a fixed generative model?
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Density estimation Nonparametric methods

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

@ here "kernel” means something different from what we have seen for
“kernel function” (in fact it refers to several different things in ML)
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Density estimation Nonparametric methods

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

@ here "kernel” means something different from what we have seen for
“kernel function” (in fact it refers to several different things in ML)

@ the approach is nonparametric: it keeps the entire training set
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Density estimation Nonparametric methods

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

@ here "kernel” means something different from what we have seen for
“kernel function” (in fact it refers to several different things in ML)

@ the approach is nonparametric: it keeps the entire training set

e we focus on the 1D (continuous) case

. S TR



Density estimation Nonparametric methods

ngh level idea picture from Wikipedia

Construct something similar to a histogram:

Density function
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Density estimation Nonparametric methods

ngh level idea picture from Wikipedia

Construct something similar to a histogram:

e for each data point, create a “bump” (via a Kernel)
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Density estimation Nonparametric methods

ngh level idea picture from Wikipedia

Construct something similar to a histogram:
e for each data point, create a “bump” (via a Kernel)

@ sum up all the bumps
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Density estimation Nonparametric methods

Kernel

KDE with a kernel K: R — R:
1 N
p(z) = NZK(x_xn)

n=1

0.15
1

Density function
0.10

0.05

0.00
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Density estimation Nonparametric methods

Kernel

KDE with a kernel K: R — R:

LN
pa) = DKz~ )
n=1
u2
eg K(u)= \/%6_7, the standard Gaussian density

0.15
1

0.10

Density function

0.05

0.00
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Density estimation Nonparametric methods

Kernel

KDE with a kernel K: R — R:

N

eg K(u)= \/%e_u?, the standard Gaussian density

0.15
1

Kernel needs to satisfy:

0.10

e symmetry: K(u) = K(—u)

Density function

0.05

0.00
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Density estimation Nonparametric methods

Kernel

KDE with a kernel K: R — R:

N

eg K(u)= \/%e_u?, the standard Gaussian density

0.15
1

Kernel needs to satisfy:

0.10

e symmetry: K(u) = K(—u)

Density function

o [ K(u)du =1, makes
sure p is a density function.

0.05

0.00
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Density estimation Nonparametric methods

Different kernels K (u)
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Bandwidth
If K(u) is a kernel, then for any h > 0
s 1 u .
Kp(u) = EK (E) (stretching the kernel)

can be used as a kernel too (verify the two properties yourself)
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Nonparametric methods
Bandwidth

If K(u) is a kernel, then for any h > 0

1
Kn(u) £ 5 K (%) (stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth A

1 N 1 N T — T
p(x):NZ:lKh(x—xn):NhZ_:lK< - )
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Nonparametric methods
Bandwidth

If K(u) is a kernel, then for any h > 0

1
Kn(u) £ 5 K (%) (stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth A

1Y 1 & T—T
- 4n
o) = S i) = 5 S (1572)
n=1 n=1
@ 1, controls the center of each bump
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Nonparametric methods
Bandwidth

If K(u) is a kernel, then for any h > 0

1
Kn(u) £ 5 K (%) (stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth A

1 N 1 N T — T
p(ﬂc):NZ:lKh(x—xn):NhZ_:lK< - >

@ 1, controls the center of each bump

@ h controls the width /variance of the bumps
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Density estimation Nonparametric methods

Effect of bandwidth

picture from Wikipedia

Larger h means larger variance and also smoother density

Gray curve is ground-truth
@ Red: h=0.05
e Black: h =0.337
o Green: h=2

Density function
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Density estimation Nonparametric methods

Bandwidth selection

Selecting h is a deep topic

@ there are theoretically-motivated approaches
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Density estimation Nonparametric methods

Bandwidth selection

Selecting h is a deep topic

@ there are theoretically-motivated approaches

@ one can also do cross-validation based on downstream applications
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Outline

© Naive Bayes
@ Setup and assumption
@ Estimation and prediction
@ Connection to logistic regression
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Naive Bayes

Naive Bayes

@ a simple yet surprisingly powerful classification algorithm
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Naive Bayes

Naive Bayes
@ a simple yet surprisingly powerful classification algorithm

o density estimation is one important part of the algorithm
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Bayes optimal classifier

Recall: suppose the data (x,,y,) is drawn from a joint distribution p, the
Bayes optimal classifier is
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Bayes optimal classifier

Recall: suppose the data (x,,y,) is drawn from a joint distribution p, the
Bayes optimal classifier is

f*(x) = argmax p(c | )
celC]

i.e. predict the class with the largest conditional probability.
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Bayes optimal classifier

Recall: suppose the data (x,,y,) is drawn from a joint distribution p, the
Bayes optimal classifier is

f*(x) = argmax p(c | )
celC]

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is exactly a density
estimation problem!
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Estimation

How to estimate a joint distribution? Observe we always have

p(z,y) = p(y)p(z | y)
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Estimation

How to estimate a joint distribution? Observe we always have

p(z,y) = p(y)p(z | y)

We know how to estimate p(y) by now.
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Estimation

How to estimate a joint distribution? Observe we always have

p(z,y) = p(y)p(z | y)
We know how to estimate p(y) by now.

To estimate p(x | y = ¢) for some ¢ € [C], we are doing density estimation
using data {n : y, = c}.
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Setup and assumption
Estimation

How to estimate a joint distribution? Observe we always have
p(z,y) = p(y)p(z | y)
We know how to estimate p(y) by now.
To estimate p(x | y = ¢) for some ¢ € [C], we are doing density estimation

using data {n : y, = c}.

This is not a 1D problem in general.
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A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent,
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A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

D

p@|y=c)=]]pily=c)

d=1
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A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

D

ple|y=c)=]]plaly=rc)

d=1

Now for each d and ¢ we have a simple 1D density estimation problem!
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A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

D

ple|y=c)=]]plaly=rc)

d=1

Now for each d and ¢ we have a simple 1D density estimation problem!

Is this a reasonable assumption?
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A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

D

ple|y=c)=]]plaly=rc)

d=1

Now for each d and ¢ we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

e use z = (Height, Vocabulary) to predict y = Age
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A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

D

ple|y=c)=]]plaly=rc)

d=1

Now for each d and ¢ we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.
e use z = (Height, Vocabulary) to predict y = Age

@ Height and Vocabulary are dependent

. Qs o B

20 /29



A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

D

ple|y=c)=]]plaly=rc)

d=1
Now for each d and ¢ we have a simple 1D density estimation problem!
Is this a reasonable assumption? Sometimes yes, e.g.
e use z = (Height, Vocabulary) to predict y = Age
@ Height and Vocabulary are dependent

@ but condition on Age, they are independent!

. Qs A H
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A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent, which means

D

ple|y=c)=]]plaly=rc)

d=1
Now for each d and ¢ we have a simple 1D density estimation problem!
Is this a reasonable assumption? Sometimes yes, e.g.
e use z = (Height, Vocabulary) to predict y = Age
@ Height and Vocabulary are dependent
@ but condition on Age, they are independent!
More often this assumption is unrealistic and “naive”, but still Naive Bayes

can work very well even if the assumption is wrong,
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Example: discrete features

Height: <3', 3'-4', 4'-5', 5’-6’, >6’
Vocabulary: <5K, 5K-10K, 10K-15K, 15K-20K, >20K
Age: <5, 5-10, 10-15, 15-20, 20-25, >25

October 24, 2018 21/29



Example: discrete features

Height: <3', 3'-4', 4'-5', 5’-6’, >6’
Vocabulary: <5K, 5K-10K, 10K-15K, 15K-20K, >20K
Age: <5, 5-10, 10-15, 15-20, 20-25, >25

MLE estimation: e.g.

#examples with age 10-15
Age = 10-15) =
p(Age ) #examples

21/29

. Qs A H



Example: discrete features

Height: <3', 3'-4', 4'-5', 5’-6’, >6’
Vocabulary: <5K, 5K-10K, 10K-15K, 15K-20K, >20K
Age: <5, 5-10, 10-15, 15-20, 20-25, >25

MLE estimation: e.g.

#examples with age 10-15
Age = 10-15) =
p(Age ) #examples

p(Height = 5'-6" | Age = 10-15)
_ #texamples with height 5'-6" and age 10-15
N #examples with age 10-15

. Qs A H
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More formally

For a label ¢ € [C],
l{n iy =cH

ply=rc) i
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More formally

For a label ¢ € [C],
l{n iy =cH

ply=rc) i

For each possible value k of a discrete feature d,

{n : zpg =k, yn = c}|
p($d=k|y20):{ {n:yn = c}| :

. S T



Continuous features

If the feature is continuous, we can do

@ parametric estimation,

@ or nonparametric estimation,
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Continuous features

If the feature is continuous, we can do

@ parametric estimation, e.g. via a Gaussian

p(flfd = ’ Yy = C) = 71 exp —7(:1: _ MCd)Q
V27O 202,

@ or nonparametric estimation,
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Continuous features

If the feature is continuous, we can do

@ parametric estimation, e.g. via a Gaussian

p(xd = ’ Yy = C) = 71 exp —7(:1: _ 'LLCd)Q
V27O 202,

where fi.q and afd are the empirical mean and variance of feature d
among all examples with label ¢ (verified in W4).

@ or nonparametric estimation,
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Continuous features

If the feature is continuous, we can do

@ parametric estimation, e.g. via a Gaussian

p(flfd = ’ Yy = C) = 71 exp —7(:1: _ MCd)Q
V27O 202,

where fi.q and agd are the empirical mean and variance of feature d
among all examples with label ¢ (verified in W4).

@ or nonparametric estimation, e.g. via a Kernel K and bandwidth h:

—C}| > Kn(z — zpa)

niYn=cC

. TR
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How to predict?

After learning the model

D
p(x,y) =) [ p(za | y)

d=1
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= ) e
How to predict?

After learning the model

D
() [[p(zalv)

d=1

the prediction for a new example x is

argmax p(y = c | x)
celC]
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= ) e
How to predict?

After learning the model

D
() [[p(zalv)

d=1

the prediction for a new example x is

argmax p(y = c | x) = argmax p(z,y = c)
ce[q] ce[q]
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= ) e
How to predict?

After learning the model

D
) [[paalv)
d=1
the prediction for a new example x is

argmax p(y = ¢ | z) = argmax p(x,y = c¢)

celC) celC]
D
= argmax (p(y = o) [[pxaly = C)>
c€[C] d=1
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= ) e
How to predict?

After learning the model

D
() [[p(zalv)

d=1

the prediction for a new example x is

argmax p(y = ¢ | z) = argmax p(x,y = c¢)

celC) celC]
D
:argmax< H xd|y—c>
c€[C] d=1

D
= argmax <1np(y =c)+ Zlnp(:rd |y = c)>

ce[C] d=1

. TR



Examples

For discrete features, plugging in previous MLE estimations gives

argmax p(y = c | x)

c€[C]
D
= argmax <1np(y =c)+ Zlnp(:nd |y = c))
ce[C] d=1

D
= argmax <ln|{n D Yn = c}‘ + Zln |{Tl cTnd = TdyYn = c}|>
d=1

ce[q] Hn:yn =c}

. TR



Examples

For continuous features with a Gaussian model,

argmax p(y = c | x)
ce[C]

D
= argmax (lnp(y =c)+ Z Inp(zg |y = c))
c€[C]

d=1
D
1 (xd - Mcd)2
=argmax |In|{n:y, =c}| + ln< exp <—
ce[q] < " ; V2T0oq 20§d
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Examples

For continuous features with a Gaussian model,

argmax p(y = c | x)
ce[C]

D
= argmax <lnp( =c)+ Zlnp(md |y = c))
ce[C]

d=1

= argmax < {n : yn—c}|+ZIn< 1 exp <_<md_'u’0d)2>>>
ce[q] V27O g 202,
D 2
= argmax < {n:yn:c}\—Z(lnacd—l—W))
ce[C] Ocd

d=1
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Examples

For continuous features with a Gaussian model,

argmax p(y = c | x)
ce[C]

D
= argmax (lnp(y =c)+ Z Inp(zg |y = c))
c€[C]

d=1

D
1 (Ta — fiea)?
=argmax (In|{n:y, =c}| + In < exp <—
ce[C] < |{ }| ; V2T0oq 20—2(1

D N2
= argmax <1n!{n:yn:c}\— E (lngcd+w>)
ce[C]

2
d=1 2024

which is quadratic in the feature .
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What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if
we fix the variance for each feature to be o (i.e. not a parameter of
the model any more), then the prediction becomes

argmax p(y =c | x)

celC]
¢ (za — pea)®
= argmax <ln]{n SYn =} — Z <1n0+ M))
celC] d—1
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What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if
we fix the variance for each feature to be o (i.e. not a parameter of
the model any more), then the prediction becomes

argmax p(y =c | x)

ce[C]
D
= argmax (111 H{n:yn, =c} — Z <lna + W))
c€[C] = 20
D 2 D
= argmax (ln {n =l =D 54+ ’;ijd>
ce[C] = —
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What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if
we fix the variance for each feature to be o (i.e. not a parameter of
the model any more), then the prediction becomes

argmax p(y =c | x)
celC]

D o 2
= argmax (111]{71 Yn = C}| — Z <lna+ W))
d=

ce[C]

D D
K d
= argmax (l H{n:yn=c} — E 20% + § : /202 :Ud)

ce[C]

= argmax (wco + Z wcdxd>

ce(C]

where we denote weo = In|{n : y, = c}| — Zd 1 202 and weg = Bt
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Connection to logisic regression
What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if
we fix the variance for each feature to be o (i.e. not a parameter of
the model any more), then the prediction becomes

argmax p(y =c | x)

celC]
& — Hea)?
=argmax (In[{n:y,=c <lna + C)
o ( 1 H-3 ..
D 2 D
= argmax (l H{n:yn=c} — Z ,u,c Z )

= argmax | wey + Z WedZq | = argmax wTw (linear classifier!)
ce[C] cel[C]

where we denote weo = In [{n : y, = ¢}| — 30_, 2ot and weg = Lot
] October 24, 2018 27/29



Connection to logistic regression

Moreover by similar calculation one can verify

ply = c| ) o W™

. Qs o B
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Connection to logistic regression

Moreover by similar calculation one can verify
me
ply =c|z)oce

This is exactly the softmax function, the same model we used for a
probabilistic interpretation of logistic regression!
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Moreover by similar calculation one can verify
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This is exactly the softmax function, the same model we used for a
probabilistic interpretation of logistic regression!

So what is different then?
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Connection to logistic regression

Moreover by similar calculation one can verify
me
ply =c|z)oce

This is exactly the softmax function, the same model we used for a
probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:
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Connection to logistic regression

Moreover by similar calculation one can verify
me
ply =c|z)oce

This is exactly the softmax function, the same model we used for a
probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

@ both via MLE, one on p(y = ¢ | x), the other on p(z,y)

. TR



Connection to logistic regression

Moreover by similar calculation one can verify
me
ply =c|z)oce

This is exactly the softmax function, the same model we used for a
probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

@ both via MLE, one on p(y = ¢ | x), the other on p(z,y)

@ solutions are different: logistic regression has no closed-form, naive
Bayes admits a simple closed-form

. TR



Generative model v.s discriminative model

Discriminative model

Generative model

Example

logistic regression

naive Bayes
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Generative model v.s discriminative model

Discriminative model

Generative model

Example

logistic regression

naive Bayes

Model

conditional p(y | x)

joint p(z,y)
(might have same p(y | x))
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Generative model v.s discriminative model

Discriminative model

Generative model

Example logistic regression naive Bayes
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Generative model v.s discriminative model

Discriminative model

Generative model

Example logistic regression naive Bayes
. joint p(z,y)
Model I .
ode conditional p(y | x) (might have same p(y | ))
Learning MLE MLE
Accuracy | usually better for large N | usually better for small N
Remark more flexible, can generate

data after learning
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