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Administration

HW 4 is available and is due on 11/04.

Today’s plan: first finish clustering, then move on to more unsupervised
learning problems
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Density estimation

Density estimation

Observe what we have done indirectly for clustering with GMMs is:

Given a training set x1, . . . ,xN , estimate a density function p that

could have generated this dataset (via xn
i.i.d.∼ p).

This is exactly the problem of density estimation, another important
unsupervised learning problem.

Useful for many downstream applications

we have seen clustering already, will see more today

these applications also provide a way to measure quality of the density
estimator
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Density estimation Parametric methods

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by θ:

p(x) = p(x ;θ)

Examples:

GMM: p(x |θ) =
∑K

k=1 ωkN(x | µk,Σk) where θ = {ωk,µk,Σk}

Multinomial for 1D examples with K possible values

p(x = k ;θ) = θk

where θ is a distribution over K elements.

Size of θ is independent of the training set size, so it’s parametric.
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Density estimation Parametric methods

Parametric methods: estimation

Again, we apply MLE to learn the parameters θ:

argmax
θ

=

N∑
n=1

ln p(xn ;θ)

For some cases this is intractable and we can use EM to approximately
solve MLE (e.g. GMMs).

For some other cases this admits a simple closed-form solution (e.g.
multinomial).
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Density estimation Parametric methods

MLE for multinomial

argmax
θ

=

N∑
n=1

ln p(x = xn ;θ) =

N∑
n=1

ln θxn

=

K∑
k=1

∑
n:xn=k

ln θk =

K∑
k=1

zk ln θk

where zk = |{n : xn = k}| is the number of examples with value k.

The solution is simply

θk =
zk
N
∝ zk,

i.e. the fraction of examples with value k.
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Density estimation Nonparametric methods

Nonparametric methods

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

here “kernel” means something different from what we have seen for
“kernel function” (in fact it refers to several different things in ML)

the approach is nonparametric: it keeps the entire training set

we focus on the 1D (continuous) case
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Density estimation Nonparametric methods

High level idea picture from Wikipedia

Construct something similar to a histogram:

for each data point, create a “bump” (via a Kernel)

sum up all the bumps
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Density estimation Nonparametric methods

Kernel

KDE with a kernel K: R→ R:

p(x) =
1

N

N∑
n=1

K (x− xn)

e.g. K(u) = 1√
2π
e−

u2

2 , the standard Gaussian density

Kernel needs to satisfy:

symmetry: K(u) = K(−u)∫∞
−∞K(u)du = 1, makes

sure p is a density function.
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Density estimation Nonparametric methods

Different kernels K(u)

1√
2π
e−

u2

2
1

2
I[|u| ≤ 1]

3

4
max{1− x2, 0}
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Density estimation Nonparametric methods

Bandwidth

If K(u) is a kernel, then for any h > 0

Kh(u) ,
1

h
K
(u
h

)
(stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth h

p(x) =
1

N

N∑
n=1

Kh (x− xn) =
1

Nh

N∑
n=1

K

(
x− xn
h

)

xn controls the center of each bump

h controls the width/variance of the bumps
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Density estimation Nonparametric methods

Effect of bandwidth picture from Wikipedia

Larger h means larger variance and also smoother density

Gray curve is ground-truth

Red: h = 0.05

Black: h = 0.337

Green: h = 2
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Density estimation Nonparametric methods

Bandwidth selection

Selecting h is a deep topic

there are theoretically-motivated approaches

one can also do cross-validation based on downstream applications
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Naive Bayes

Outline

1 Density estimation

2 Naive Bayes
Setup and assumption
Estimation and prediction
Connection to logistic regression
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Naive Bayes Setup and assumption

Naive Bayes

Naive Bayes

a simple yet surprisingly powerful classification algorithm

density estimation is one important part of the algorithm
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Naive Bayes Setup and assumption

Bayes optimal classifier

Recall: suppose the data (xn, yn) is drawn from a joint distribution p, the
Bayes optimal classifier is

f∗(x) = argmax
c∈[C]

p(c | x)

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is exactly a density
estimation problem!
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Naive Bayes Setup and assumption

Estimation

How to estimate a joint distribution? Observe we always have

p(x, y) = p(y)p(x | y)

We know how to estimate p(y) by now.

To estimate p(x | y = c) for some c ∈ [C], we are doing density estimation
using data {n : yn = c}.

This is not a 1D problem in general.
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Naive Bayes Setup and assumption

A “naive” assumption

Naive Bayes assumption:
conditioning on a label, features are independent,

which means

p(x | y = c) =

D∏
d=1

p(xd | y = c)

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

use x = (Height, Vocabulary) to predict y = Age

Height and Vocabulary are dependent

but condition on Age, they are independent!

More often this assumption is unrealistic and “naive”, but still Naive Bayes
can work very well even if the assumption is wrong.
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Naive Bayes Estimation and prediction

Example: discrete features

Height: ≤3’, 3’-4’, 4’-5’, 5’-6’, ≥6’
Vocabulary: ≤5K, 5K-10K, 10K-15K, 15K-20K, ≥20K
Age: ≤5, 5-10, 10-15, 15-20, 20-25, ≥25

MLE estimation: e.g.

p(Age = 10-15) =
#examples with age 10-15

#examples

p(Height = 5’-6’ | Age = 10-15)

=
#examples with height 5’-6’ and age 10-15

#examples with age 10-15
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Naive Bayes Estimation and prediction

More formally

For a label c ∈ [C],

p(y = c) =
|{n : yn = c}|

N

For each possible value k of a discrete feature d,

p(xd = k | y = c) =
|{n : xnd = k, yn = c}|
|{n : yn = c}|
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Naive Bayes Estimation and prediction

Continuous features

If the feature is continuous, we can do

parametric estimation,

e.g. via a Gaussian

p(xd = x | y = c) =
1√

2πσcd
exp

(
−(x− µcd)2

2σ2cd

)

where µcd and σ2cd are the empirical mean and variance of feature d
among all examples with label c (verified in W4).

or nonparametric estimation,

e.g. via a Kernel K and bandwidth h:

p(xd = x | y = c) =
1

|{n : yn = c}|
∑

n:yn=c

Kh(x− xnd)

October 24, 2018 23 / 29



Naive Bayes Estimation and prediction

Continuous features

If the feature is continuous, we can do

parametric estimation, e.g. via a Gaussian

p(xd = x | y = c) =
1√

2πσcd
exp

(
−(x− µcd)2

2σ2cd

)

where µcd and σ2cd are the empirical mean and variance of feature d
among all examples with label c (verified in W4).

or nonparametric estimation,

e.g. via a Kernel K and bandwidth h:

p(xd = x | y = c) =
1

|{n : yn = c}|
∑

n:yn=c

Kh(x− xnd)

October 24, 2018 23 / 29



Naive Bayes Estimation and prediction

Continuous features

If the feature is continuous, we can do

parametric estimation, e.g. via a Gaussian

p(xd = x | y = c) =
1√

2πσcd
exp

(
−(x− µcd)2

2σ2cd

)

where µcd and σ2cd are the empirical mean and variance of feature d
among all examples with label c (verified in W4).

or nonparametric estimation,

e.g. via a Kernel K and bandwidth h:

p(xd = x | y = c) =
1

|{n : yn = c}|
∑

n:yn=c

Kh(x− xnd)

October 24, 2018 23 / 29



Naive Bayes Estimation and prediction

Continuous features

If the feature is continuous, we can do

parametric estimation, e.g. via a Gaussian

p(xd = x | y = c) =
1√

2πσcd
exp

(
−(x− µcd)2

2σ2cd

)

where µcd and σ2cd are the empirical mean and variance of feature d
among all examples with label c (verified in W4).

or nonparametric estimation, e.g. via a Kernel K and bandwidth h:

p(xd = x | y = c) =
1

|{n : yn = c}|
∑

n:yn=c

Kh(x− xnd)

October 24, 2018 23 / 29



Naive Bayes Estimation and prediction

How to predict?

After learning the model

p(x, y) = p(y)

D∏
d=1

p(xd | y)

the prediction for a new example x is

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]

p(x, y = c)

= argmax
c∈[C]

(
p(y = c)

D∏
d=1

p(xd | y = c)

)

= argmax
c∈[C]

(
ln p(y = c) +

D∑
d=1

ln p(xd | y = c)

)
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Naive Bayes Estimation and prediction

Examples

For discrete features, plugging in previous MLE estimations gives

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]

(
ln p(y = c) +

D∑
d=1

ln p(xd | y = c)

)

= argmax
c∈[C]

(
ln |{n : yn = c}|+

D∑
d=1

ln
|{n : xnd = xd, yn = c}|

|{n : yn = c}|

)
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Naive Bayes Estimation and prediction

Examples

For continuous features with a Gaussian model,

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]

(
ln p(y = c) +

D∑
d=1

ln p(xd | y = c)

)

= argmax
c∈[C]

(
ln |{n : yn = c}|+

D∑
d=1

ln

(
1√

2πσcd
exp

(
−(xd − µcd)2

2σ2cd

)))

= argmax
c∈[C]

(
ln |{n : yn = c}| −

D∑
d=1

(
lnσcd +

(xd − µcd)2

2σ2cd

))

which is quadratic in the feature x.
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Naive Bayes Connection to logistic regression

What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if
we fix the variance for each feature to be σ (i.e. not a parameter of
the model any more), then the prediction becomes

argmax
c∈[C]

p(y = c | x)

= argmax
c∈[C]

(
ln |{n : yn = c}| −

D∑
d=1

(
lnσ +

(xd − µcd)2

2σ2

))

= argmax
c∈[C]

(
ln |{n : yn = c}| −

D∑
d=1

µ2cd
2σ2

+

D∑
d=1

µcd
σ2

xd

)

= argmax
c∈[C]

(
wc0 +

D∑
d=1

wcdxd

)
= argmax

c∈[C]
wT
c x (linear classifier!)

where we denote wc0 = ln |{n : yn = c}| −
∑D

d=1
µ2cd
2σ2 and wcd =

µcd
σ2 .
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Naive Bayes Connection to logistic regression

Connection to logistic regression

Moreover by similar calculation one can verify

p(y = c | x) ∝ ewT
c x

This is exactly the softmax function, the same model we used for a
probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

both via MLE, one on p(y = c | x), the other on p(x, y)

solutions are different: logistic regression has no closed-form, naive
Bayes admits a simple closed-form
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Naive Bayes Connection to logistic regression

Generative model v.s discriminative model

Discriminative model Generative model

Example logistic regression naive Bayes

Model conditional p(y | x) joint p(x, y)
(might have same p(y | x))

Learning MLE MLE

Accuracy usually better for large N usually better for small N

Remark
more flexible, can generate

data after learning
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