CSCI567 Machine Learning (Fall 2018)

Prof. Haipeng Luo

U of Southern California

Oct 24, 2018

A D N A B N A B N A B N

3

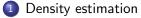
1/29

October 24, 2018

HW 4 is available and is due on 11/04.

Today's plan: first finish clustering, then move on to more unsupervised learning problems

A D N A B N A B N A B N



Outline

Density estimation

- Parametric methods
- Nonparametric methods

2 Naive Bayes

э

A D N A B N A B N A B N

Observe what we have done indirectly for clustering with GMMs is:

3

A D N A B N A B N A B N

Observe what we have done indirectly for clustering with GMMs is:

Given a training set x_1, \ldots, x_N , estimate a density function p that could have generated this dataset (via $x_n \stackrel{i.i.d.}{\sim} p$).

< □ > < 同 > < 回 > < 回 > < 回 >

Observe what we have done indirectly for clustering with GMMs is:

Given a training set x_1, \ldots, x_N , estimate a density function p that could have generated this dataset (via $x_n \stackrel{i.i.d.}{\sim} p$).

This is exactly the problem of *density estimation*, another important unsupervised learning problem.

< □ > < 同 > < 回 > < 回 > < 回 >

Observe what we have done indirectly for clustering with GMMs is:

Given a training set x_1, \ldots, x_N , estimate a density function p that could have generated this dataset (via $x_n \stackrel{i.i.d.}{\sim} p$).

This is exactly the problem of *density estimation*, another important unsupervised learning problem.

Useful for many downstream applications

• we have seen clustering already, will see more today

イロト イポト イヨト イヨト

Observe what we have done indirectly for clustering with GMMs is:

Given a training set x_1, \ldots, x_N , estimate a density function p that could have generated this dataset (via $x_n \stackrel{i.i.d.}{\sim} p$).

This is exactly the problem of *density estimation*, another important unsupervised learning problem.

Useful for many downstream applications

- we have seen clustering already, will see more today
- these applications also *provide a way to measure quality of the density estimator*

イロト 不得 トイヨト イヨト 二日

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by θ :

$$p(\boldsymbol{x}) = p(\boldsymbol{x}; \boldsymbol{\theta})$$

イロト イヨト イヨト イヨト

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by θ :

$$p(\boldsymbol{x}) = p(\boldsymbol{x}; \boldsymbol{\theta})$$

Examples:

• GMM:
$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 where $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}$

< □ > < 同 > < 回 > < 回 > < 回 >

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by θ :

$$p(\boldsymbol{x}) = p(\boldsymbol{x} ; \boldsymbol{\theta})$$

Examples:

• GMM:
$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 where $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}$

• Multinomial for 1D examples with K possible values

$$p(x=k;\boldsymbol{\theta})=\theta_k$$

where $\boldsymbol{\theta}$ is a distribution over K elements.

< □ > < 同 > < 三 > < 三 >

Parametric methods

Parametric methods: generative models

Parametric estimation assumes a generative model parametrized by θ :

$$p(\boldsymbol{x}) = p(\boldsymbol{x} ; \boldsymbol{\theta})$$

Examples:

• GMM:
$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \sum_{k=1}^{K} \omega_k N(\boldsymbol{x} \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 where $\boldsymbol{\theta} = \{\omega_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}$

• Multinomial for 1D examples with K possible values

$$p(x=k;\boldsymbol{\theta})=\theta_k$$

where $\boldsymbol{\theta}$ is a distribution over K elements.

Size of θ is independent of the training set size, so it's parametric.

Parametric methods: estimation

Again, we apply **MLE** to learn the parameters θ :

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} = \sum_{n=1}^{N} \ln p(x_n ; \boldsymbol{\theta})$$

3

イロト イヨト イヨト イヨト

Parametric methods: estimation

Again, we apply **MLE** to learn the parameters θ :

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} = \sum_{n=1}^{N} \ln p(x_n ; \boldsymbol{\theta})$$

For some cases this is intractable and we can use EM to approximately solve MLE (e.g. GMMs).

< □ > < 同 > < 回 > < 回 > < 回 >

Parametric methods

Parametric methods: estimation

Again, we apply **MLE** to learn the parameters θ :

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} = \sum_{n=1}^{N} \ln p(x_n ; \boldsymbol{\theta})$$

For some cases this is intractable and we can use EM to approximately solve MLE (e.g. GMMs).

For some other cases this admits a simple closed-form solution (e.g. multinomial).

イロト イポト イヨト イヨト

$$\underset{\boldsymbol{\theta}}{\operatorname{argmax}} = \sum_{n=1}^{N} \ln p(x = x_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \theta_{x_n}$$

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

$$\operatorname{argmax}_{\boldsymbol{\theta}} = \sum_{n=1}^{N} \ln p(x = x_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \theta_{x_n}$$
$$= \sum_{k=1}^{K} \sum_{n:x_n=k} \ln \theta_k$$

October 24, 2018 8 / 29

3

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

$$\operatorname{argmax}_{\boldsymbol{\theta}} = \sum_{n=1}^{N} \ln p(x = x_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \theta_{x_n}$$
$$= \sum_{k=1}^{K} \sum_{n:x_n = k} \ln \theta_k = \sum_{k=1}^{K} z_k \ln \theta_k$$

where $z_k = |\{n : x_n = k\}|$ is the number of examples with value k.

イロト 不得 トイヨト イヨト 二日

$$\operatorname{argmax}_{\boldsymbol{\theta}} = \sum_{n=1}^{N} \ln p(x = x_n ; \boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \theta_{x_n}$$
$$= \sum_{k=1}^{K} \sum_{n:x_n = k} \ln \theta_k = \sum_{k=1}^{K} z_k \ln \theta_k$$

where $z_k = |\{n : x_n = k\}|$ is the number of examples with value k.

The solution is simply

$$\theta_k = \frac{z_k}{N} \propto z_k,$$

i.e. the fraction of examples with value k.

イロト イポト イヨト イヨト

Can we estimate without assuming a fixed generative model?

3

A D N A B N A B N A B N

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

A D N A B N A B N A B N

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

• here "kernel" means something different from what we have seen for "kernel function" (in fact it refers to several different things in ML)

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

- here "kernel" means something different from what we have seen for "kernel function" (in fact it refers to several different things in ML)
- the approach is nonparametric: it keeps the entire training set

Can we estimate without assuming a fixed generative model?

Yes, kernel density estimation (KDE) is a common approach

- here "kernel" means something different from what we have seen for "kernel function" (in fact it refers to several different things in ML)
- the approach is nonparametric: it keeps the entire training set
- we focus on the 1D (continuous) case

High level idea

picture from Wikipedia

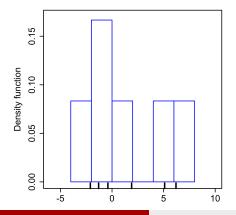
э

10/29

October 24, 2018

< 47 ▶

Construct something similar to a histogram:

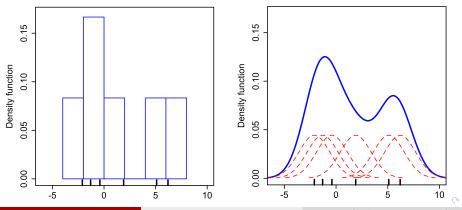


High level idea

picture from Wikipedia

Construct something similar to a histogram:

• for each data point, create a "bump" (via a Kernel)



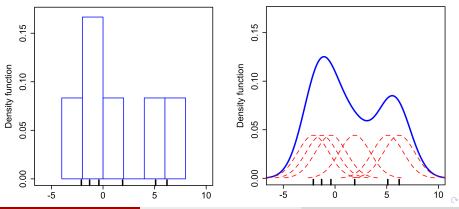
October 24, 2018 10 / 29

High level idea

picture from Wikipedia

Construct something similar to a histogram:

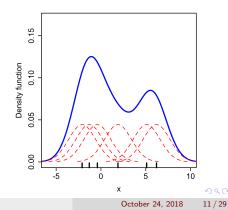
- for each data point, create a "bump" (via a Kernel)
- sum up all the bumps



October 24, 2018 10 / 29

KDE with a kernel $K: \mathbb{R} \to \mathbb{R}$:

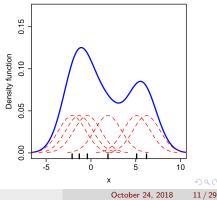
$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K(x - x_n)$$



KDE with a kernel $K: \mathbb{R} \to \mathbb{R}$:

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K(x - x_n)$$

e.g. $K(u)=\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$, the standard Gaussian density



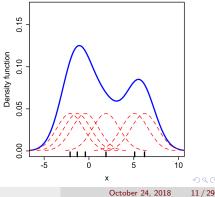
KDE with a kernel $K: \mathbb{R} \to \mathbb{R}$:

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K(x - x_n)$$

e.g. $K(u)=\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$, the standard Gaussian density

Kernel needs to satisfy:

• symmetry:
$$K(u) = K(-u)$$



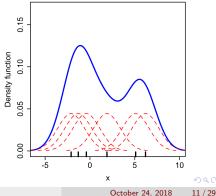
KDE with a kernel $K: \mathbb{R} \to \mathbb{R}$:

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K(x - x_n)$$

e.g. $K(u)=\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}$, the standard Gaussian density

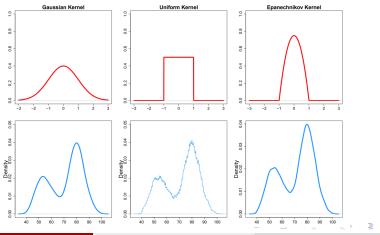
Kernel needs to satisfy:

- symmetry: K(u) = K(-u)
- $\int_{-\infty}^{\infty} K(u) du = 1$, makes sure *p* is a density function.



Different kernels K(u)

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}} \qquad \frac{1}{2}\mathbb{I}[|u| \le 1] \qquad \frac{3}{4}\max\{1-x^2,0\}$$



October 24, 2018 12 / 29

Bandwidth

If K(u) is a kernel, then for any h > 0

$$K_h(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)$$

(stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

3

A D N A B N A B N A B N

Bandwidth

If K(u) is a kernel, then for any h > 0

$$K_h(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)$$

(stretching the kernel)

< □ > < 同 > < 回 > < 回 > < 回 >

October 24, 2018

13/29

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth h

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K_h (x - x_n) = \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right)$$

Bandwidth

If K(u) is a kernel, then for any h > 0

$$K_h(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)$$

(stretching the kernel)

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth \boldsymbol{h}

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K_h (x - x_n) = \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right)$$

• x_n controls the center of each bump

< □ > < 同 > < 回 > < 回 > < 回 >

Bandwidth

If K(u) is a kernel, then for any h > 0

$$K_h(u) \triangleq \frac{1}{h} K\left(\frac{u}{h}\right)$$

(stretching the kernel)

< □ > < 同 > < 三 > < 三 >

October 24, 2018

13/29

can be used as a kernel too (verify the two properties yourself)

So general KDE is determined by both the kernel K and the bandwidth h

$$p(x) = \frac{1}{N} \sum_{n=1}^{N} K_h (x - x_n) = \frac{1}{Nh} \sum_{n=1}^{N} K\left(\frac{x - x_n}{h}\right)$$

- x_n controls the center of each bump
- h controls the width/variance of the bumps

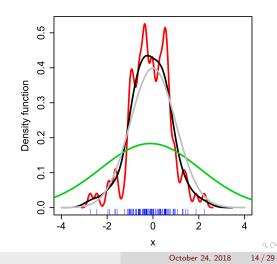
Effect of bandwidth

picture from Wikipedia

Larger h means larger variance and also smoother density

Gray curve is ground-truth

- Red: h = 0.05
- Black: h = 0.337
- Green: h = 2



Bandwidth selection

Selecting h is a deep topic

• there are theoretically-motivated approaches

3

A D N A B N A B N A B N

Bandwidth selection

Selecting h is a deep topic

- there are theoretically-motivated approaches
- one can also do cross-validation based on downstream applications

< □ > < □ > < □ > < □ > < □ > < □ >

• • • • • • • • • • • •

October 24, 2018

16 / 29

Outline

2 Naive Bayes

- Setup and assumption
- Estimation and prediction
- Connection to logistic regression

Naive Bayes

Naive Bayes

• a simple yet surprisingly powerful classification algorithm

э

イロト イポト イヨト イヨト

Naive Bayes

Naive Bayes

- a simple yet surprisingly powerful classification algorithm
- density estimation is one important part of the algorithm

3

A D N A B N A B N A B N

Bayes optimal classifier

Recall: suppose the data (x_n, y_n) is drawn from a joint distribution p, the **Bayes optimal classifier** is

- 31

イロト イポト イヨト イヨト

Bayes optimal classifier

Recall: suppose the data (x_n, y_n) is drawn from a joint distribution p, the **Bayes optimal classifier** is

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} p(c \mid \boldsymbol{x})$$

i.e. predict the class with the largest conditional probability.

イロト イボト イヨト イヨト

Bayes optimal classifier

Recall: suppose the data (x_n, y_n) is drawn from a joint distribution p, the **Bayes optimal classifier** is

$$f^*(\boldsymbol{x}) = \operatorname*{argmax}_{c \in [\mathsf{C}]} p(c \mid \boldsymbol{x})$$

i.e. predict the class with the largest conditional probability.

p is of course unknown, but we can estimate it, which is *exactly a density estimation problem*!

イロト 不得下 イヨト イヨト 二日

October 24, 2018

18 / 29

How to estimate a joint distribution? Observe we always have

 $p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$

- 31

イロト イポト イヨト イヨト

How to estimate a joint distribution? Observe we always have

 $p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$

・ロト ・四ト ・ヨト ・ヨト

- 3

19 / 29

October 24, 2018

We know how to estimate p(y) by now.

How to estimate a joint distribution? Observe we always have

 $p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$

We know how to estimate p(y) by now.

To estimate p(x | y = c) for some $c \in [C]$, we are doing density estimation using data $\{n : y_n = c\}$.

イロト 不得下 イヨト イヨト 二日

October 24, 2018

19/29

How to estimate a joint distribution? Observe we always have

 $p(\boldsymbol{x}, y) = p(y)p(\boldsymbol{x} \mid y)$

We know how to estimate p(y) by now.

To estimate $p(\boldsymbol{x} \mid y = c)$ for some $c \in [C]$, we are doing density estimation using data $\{n: y_n = c\}$.

> ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの October 24, 2018

19/29

This is *not a 1D problem* in general.

Setup and assumption

A "naive" assumption

Naive Bayes assumption: conditioning on a label, features are independent,

- 34

イロト イポト イヨト イヨト

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

3

A D N A B N A B N A B N

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

A D N A B N A B N A B N

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption?

< □ > < 同 > < 回 > < 回 > < 回 >

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

• use
$$x = (\text{Height}, \text{Vocabulary})$$
 to predict $y = \text{Age}$

< □ > < □ > < □ > < □ > < □ > < □ >

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

- use x = (Height, Vocabulary) to predict y = Age
- Height and Vocabulary are dependent

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

- use x = (Height, Vocabulary) to predict y = Age
- Height and Vocabulary are dependent
- but condition on Age, they are independent!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Naive Bayes assumption:

conditioning on a label, features are independent, which means

$$p(\boldsymbol{x} \mid y = c) = \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c)$$

Now for each d and c we have a simple 1D density estimation problem!

Is this a reasonable assumption? Sometimes yes, e.g.

- use x = (Height, Vocabulary) to predict y = Age
- Height and Vocabulary are dependent
- but condition on Age, they are independent!

More often this assumption is *unrealistic and "naive*", but still Naive Bayes can work very well even if the assumption is wrong,

Example: discrete features

イロト イヨト イヨト イヨト 三日

Example: discrete features

```
Height: \leq 3', 3'-4', 4'-5', 5'-6', \geq 6'
Vocabulary: \leq 5K, 5K-10K, 10K-15K, 15K-20K, \geq 20K
Age: \leq 5, 5-10, 10-15, 15-20, 20-25, \geq 25
```

MLE estimation: e.g.

$$p(Age = 10-15) = \frac{\#examples \text{ with age } 10-15}{\#examples}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: discrete features

MLE estimation: e.g.

$$p(Age = 10-15) = \frac{\#examples \text{ with age } 10-15}{\#examples}$$

 $p(\text{Height} = 5'-6' \mid \text{Age} = 10-15)$ = $\frac{\#\text{examples with height 5'-6' and age 10-15}}{\#\text{examples with age 10-15}}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More formally

For a label $c \in [C]$,

$$p(y = c) = \frac{|\{n : y_n = c\}|}{N}$$

- 2

<ロト <問ト < 目ト < 目ト

More formally

For a label $c \in [\mathsf{C}],$ $p(y=c) = \frac{|\{n: y_n = c\}|}{N}$

For each possible value k of a discrete feature d,

$$p(x_d = k \mid y = c) = \frac{|\{n : x_{nd} = k, y_n = c\}|}{|\{n : y_n = c\}|}$$

October 24, 2018 22 / 29

- 20

・ロト ・四ト ・ヨト ・ヨト

If the feature is continuous, we can do

• parametric estimation,

• or nonparametric estimation,

A D F A B F A B F A B

If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

$$p(x_d = x \mid y = c) = \frac{1}{\sqrt{2\pi\sigma_{cd}}} \exp\left(-\frac{(x - \mu_{cd})^2}{2\sigma_{cd}^2}\right)$$

A D F A B F A B F A B

October 24, 2018

23 / 29

• or nonparametric estimation,

If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

$$p(x_d = x \mid y = c) = \frac{1}{\sqrt{2\pi\sigma_{cd}}} \exp\left(-\frac{(x - \mu_{cd})^2}{2\sigma_{cd}^2}\right)$$

where μ_{cd} and σ_{cd}^2 are the empirical mean and variance of feature d among all examples with label c (verified in W4).

• or nonparametric estimation,

A D F A B F A B F A B

If the feature is continuous, we can do

• parametric estimation, e.g. via a Gaussian

$$p(x_d = x \mid y = c) = \frac{1}{\sqrt{2\pi\sigma_{cd}}} \exp\left(-\frac{(x - \mu_{cd})^2}{2\sigma_{cd}^2}\right)$$

where μ_{cd} and σ_{cd}^2 are the empirical mean and variance of feature d among all examples with label c (verified in W4).

• or nonparametric estimation, e.g. via a Kernel K and bandwidth h:

$$p(x_d = x \mid y = c) = \frac{1}{|\{n : y_n = c\}|} \sum_{n:y_n = c} K_h(x - x_{nd})$$

ヘロト 人間ト ヘヨト ヘヨト

After learning the model

$$p(x, y) = p(y) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y)$$

- 2

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y)$$

A D N A B N A B N A B N

October 24, 2018

æ

24 / 29

the **prediction** for a new example x is

$$\underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \ p(y = c \mid x)$$

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y)$$

the **prediction** for a new example x is

$$\underset{c \in [\mathsf{C}]}{\operatorname{argmax}} p(y = c \mid x) = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} p(x, y = c)$$

æ

A D N A B N A B N A B N

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y)$$

A D N A B N A B N A B N

October 24, 2018

3

24 / 29

the **prediction** for a new example x is

$$\underset{c \in [\mathsf{C}]}{\operatorname{argmax}} p(y = c \mid x) = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} p(x, y = c)$$
$$= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \left(p(y = c) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c) \right)$$

After learning the model

$$p(x,y) = p(y) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y)$$

the **prediction** for a new example x is

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} p(y = c \mid x) &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} p(x, y = c) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \left(p(y = c) \prod_{d=1}^{\mathsf{D}} p(x_d \mid y = c) \right) \\ &= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \end{aligned}$$

æ

A D N A B N A B N A B N

For discrete features, plugging in previous MLE estimations gives

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & p(y = c \mid x) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \frac{|\{n : x_{nd} = x_d, y_n = c\}|}{|\{n : y_n = c\}|} \right) \end{aligned}$$

< □ > < □ > < □ > < □ > < □ >

October 24, 2018

2

25 / 29

For continuous features with a Gaussian model,

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & p(y = c \mid x) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \left(\frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x_d - \mu_{cd})^2}{2\sigma_{cd}^2} \right) \right) \right) \end{aligned}$$

- 2

For continuous features with a Gaussian model,

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & p(y = c \mid x) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \left(\frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x_d - \mu_{cd})^2}{2\sigma_{cd}^2} \right) \right) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln \sigma_{cd} + \frac{(x_d - \mu_{cd})^2}{2\sigma_{cd}^2} \right) \right) \right) \end{aligned}$$

- 2

For continuous features with a Gaussian model,

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & p(y = c \mid x) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln p(y = c) + \sum_{d=1}^{\mathsf{D}} \ln p(x_d \mid y = c) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| + \sum_{d=1}^{\mathsf{D}} \ln \left(\frac{1}{\sqrt{2\pi}\sigma_{cd}} \exp\left(-\frac{(x_d - \mu_{cd})^2}{2\sigma_{cd}^2} \right) \right) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln \sigma_{cd} + \frac{(x_d - \mu_{cd})^2}{2\sigma_{cd}^2} \right) \right) \end{aligned}$$

which is *quadratic* in the feature x.

12

A D N A B N A B N A B N

What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$\underset{c \in [\mathsf{C}]}{\operatorname{argmax}} p(y = c \mid x)$$

$$= \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln \sigma + \frac{(x_d - \mu_{cd})^2}{2\sigma^2} \right) \right)$$

What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & p(y = c \mid x) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln \sigma + \frac{(x_d - \mu_{cd})^2}{2\sigma^2} \right) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2} + \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}}{\sigma^2} x_d \right) \end{aligned}$$

What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & p(y = c \mid x) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln \sigma + \frac{(x_d - \mu_{cd})^2}{2\sigma^2} \right) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2} + \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}}{\sigma^2} x_d \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(w_{c0} + \sum_{d=1}^{\mathsf{D}} w_{cd} x_d \right) \end{aligned}$$

where we denote $w_{c0} = \ln |\{n: y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2}$ and $w_{cd} = \frac{\mu_{cd}}{\sigma^2}$.

What naive Bayes is learning?

Observe again the case for continuous features with a Gaussian model, if we fix the variance for each feature to be σ (i.e. not a parameter of the model any more), then the prediction becomes

$$\begin{aligned} \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & p(y = c \mid x) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \left(\ln \sigma + \frac{(x_d - \mu_{cd})^2}{2\sigma^2} \right) \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(\ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2} + \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}}{\sigma^2} x_d \right) \\ = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & \left(w_{c0} + \sum_{d=1}^{\mathsf{D}} w_{cd} x_d \right) = \underset{c \in [\mathsf{C}]}{\operatorname{argmax}} & w_c^{\mathsf{T}} x \quad (\text{linear classifier!}) \end{aligned}$$
where we denote $w_{c0} = \ln |\{n : y_n = c\}| - \sum_{d=1}^{\mathsf{D}} \frac{\mu_{cd}^2}{2\sigma^2} \text{ and } w_{cd} = \frac{\mu_{cd}}{\sigma^2}. \end{aligned}$

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

3

A D N A B N A B N A B N

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then?

A D F A B F A B F A B

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

< □ > < □ > < □ > < □ > < □ > < □ >

October 24, 2018

28 / 29

• both via MLE, one on $p(y = c \mid x)$, the other on p(x, y)

Moreover by similar calculation one can verify

$$p(y = c \mid x) \propto e^{\boldsymbol{w}_c^{\mathrm{T}} \boldsymbol{x}}$$

This is exactly the **softmax** function, the same model we used for a probabilistic interpretation of logistic regression!

So what is different then? They learn the parameters in different ways:

- both via MLE, one on $p(y = c \mid x)$, the other on p(x, y)
- solutions are different: logistic regression has no closed-form, naive Bayes admits a simple closed-form

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

	Discriminative model	Generative model
Example	logistic regression	naive Bayes

- 2

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x, y)$ (might have same $p(y \mid x)$)

- 2

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x, y)$ (might have same $p(y \mid x)$)
Learning	MLE	MLE

- 2

	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x, y)$ (might have same $p(y \mid x)$)
Learning	MLE	MLE
Accuracy	usually better for large ${\cal N}$	usually better for small ${\cal N}$

_	Discriminative model	Generative model
Example	logistic regression	naive Bayes
Model	conditional $p(y \mid x)$	joint $p(x, y)$ (might have same $p(y \mid x)$)
Learning	MLE	MLE
Accuracy	usually better for large N	usually better for small N
Remark		more flexible, can generate data after learning

- 2