CSCI 567 Discussion
Week 4 - HW1 Review



Problem 1 Nearest Neighbor Classification (10 points)

For the data given below, squares, triangles, and circles are three different classes in the training set, and
A and B are two test points with an unknown class. We denote the total number of training points as N
(which equals 10) and consider K-nearest-neighbor (KNN) classifier with L1 distance.




8 ] . A * Three classes:
7 y--a m Squares A Triangles @ Circles
6 " v I it * Two test points:
5 |
AandB
4 . B
, * K-nearestneighbor (KNN) with L1 distance
2 | . | d((x1,y1),(x2,y2)) =l x1 —x2 |+| y1 —y2 |

1 2 3 4 5 6 7 8 9

1. What is the test point A classified as for K = 1? Explain briefly. (2 points)

Recall KNN with K=1:
- We only look at the single closest neighbor.
- Whatever class that neighbor belongs to - the predicted class.

(KNN: 08/29 lecture slides, page 45) %I



8 ] . (8,8) @ * Three classes:
7 --n m Squares A Triangles @ Circles
6 u A b L .
* Two test points:
E Point A’s closest neighbor
(8,6) with L1 distance 2. A and B
4 . B
" * K-nearestneighbor (KNN) with L1 distance
2 . d((x1,y1),(x2,y2)) =l x1 —x2 |[+| y1 —y2 |
1 2 3 4 5 6 7 8 9
1. What is the test point A classified as for K = 1? Explain briefly. (2 points)
Answer:
 Circle.

* Explanation: The closest point to Ais the circle at (8,6) (with L1 distance 2).



8 ] . A * Three classes:
7 e m Squares A Triangles @ Circles
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(8,6) Two test points:
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AandB

4 . B
3 (8,4) * K-nearestneighbor (KNN) with L1 distance
2 . d((x1,y1),(x2,y2)) =l x1 —x2 |[+| y1 —y2 |

1 2 3 4 5 6 7 8 9

2. What is the smallest odd value of K for KNN to predict triangle for the test point B? Explain briefly.
(4 points)

K=1:
* Neighbors: @
@ at (8,6) with dist = 2.

e The predictionof Bis @, so K= 1 does not work.



8 ] . A * Three classes:
7 --n m Squares A Triangles @ Circles
6 u A & . .
(6,6) (8,6) * Two test points:
o
AandB
4 . B
. (5,4) (8,4)  K-nearest neighbor (KNN) with L1 distance
" (6,2)
2 . d((x1,y1),(x2,y2)) =l x1 —x2 |[+| y1 —y2 |

1 2 3 4 5 6 7 8 9

2. What is the smallest odd value of K for KNN to predict triangle for the test point B? Explain briefly.
(4 points)

K=3:
* Neighbors: @, @, A
@ at (8,6) with dist = 2; @ at (5,4) with dist = 3; either A at (6,2) with dist =4 or A at (6,6) with dist = 4.

 The prediction of Bis @, so K= 3 does not work.



8 - . A e Three classes:
7 - m Squares A Triangles @ Circles
6 . A A . . o

(5,6) (6,6) (8,6) Two test pOIntS.
5

AandB

4 L B
\ (5,4) (8,4) « K-nearest neighbor (KNN) with L1 distance
" (6,2)
2 A d((x1,y1),(x2,y2)) =l x1 —x2 |[+| y1 —y2 |

1 2 3 4 5 6 7 8 9

2. What is the smallest odd value of K for KNN to predict triangle for the test point B? Explain briefly.
(4 points)

K=5:

* Neighbors: @, @, A, A, A
@ at (8,6) with dist = 2; @ at (5,4) with dist = 3; A at (6,2) with dist = 4; A at (6,6) with dist = 4;
A at (5,6) with dist = 5.

* The predictionof BisA, soK=5isthe answer. 7



3. Suppose one performs leave-one-out validation (that is, N-fold cross validation) to choose the best
hyper-parameter K. List all the points that are misclassified during the N runs when testing the
hyper-parameter value K = 1, and report the averaged error rate for this hyper-parameter. (4 points)

Leave-one-out validation (N-fold cross validation, where N = 10):

8 . ¢ A * We have N =10 training points.
7 | u
. . L) 3 * Foreachruni =1..N:
* Leave out 1 point.
2 e Classifythe point with KNN (K = 1) using the other 9 points.
4 . B * Checkifitis correct.
3
2 &

. Test . Train

From: https://en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:LOOCV.gif
8

(S-fold cross-validation: 08/29 lecture slides, page 53)



3. Suppose one performs leave-one-out validation (that is, N-fold cross validation) to choose the best
hyper-parameter K. List all the points that are misclassified during the N runs when testing the
hyper-parameter value K = 1, and report the averaged error rate for this hyper-parameter. (4 points)

oo ou Lol g

8 . . A m at (2,8) mat(2,7)

| > @at(5s) At (5,6) A 0
G n A A L ]

5 ® at (8,6) A at (6,6) = 0
’ . B ® 5t (5,4) Aat(5,6) s O
3 A at(6,2) ® at (5,4) ® 0
2 d 10

1 2 3 4 5 6 7 8 9

Answer:

The misclassified points: Aat (6,2) and all three @ (at (5,8), (8,6), and (5,4)).
The error rate: 4/10=0.4



Problem 2 Linear Regression (24 points)
2.1 (10 points) In the class, we discussed L2 regularized least square solution defined as

= axggrin | Koo =y[3 30w W
weRDP

where X € RN*PD is the data matrix with each row corresponding to the feature of an example, y € RN
is a vector of all the outcomes, || - ||, stands for the L2 norm, and A is the regularization coefficient. In this
problem, we consider a different regularization method:

w', = argmin | Xw — y||5 + w! Mw 2)

weRDP

where M € RP*P is a sysmetric positive definite matrix.
¥ P

10
(Regularized linear regression : 09/05 lecture slides, page 49)



—~

] 2 2
wy = argmin || Xw — y||5 + Al|w||5
weRP

1) Where,

X € RN*D ig the data matrix

w' = argmin | Xw —y||5+w' Mw ()

Yy € RN is a vector of all the outcomes
weRD

A is the regularization coefficient
M € RP*D is a sysmetric positive definite matrix.
1. Show that the new method is a generalization of the standard L2 regularization by picking a matrix
M such that w’, in Eq. (2) equals w, in Eq. (1). (2 points)

For example,

D
2
2 2 T
lw(3 =) w}=w'w w=[234],wT=H
i=1 4
2 2
wiw = [2 3 4] H =22 432 4 42 = |[wlf;
4

11
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’ 2 2
ws = argmin | Xw — y||5 + Al|w||3
weRP

1) Where,

X € RN*D is the data matrix
w' = argmin | Xw —y|5+w' Mw  (2)

Yy € R is a vector of all the outcomes
weRD

A is the regularization coefficient
M € RP*P is a sysmetric positive definite matrix.

1. Show that the new method is a generalization of the standard L2 regularization by picking a matrix
M such that w’, in Eq. (2) equals w, in Eq. (1). (2 points)

Answer:

To make Eqg. (2) equals to Eq. (1), we pick the matrix:
M = Al

where I is the D by D identify matrix clearly makes w! Mw equal to A||w||3.

12

D
w Mw = w' ADw = Aw'w = M|wl3 lwl3 = w?=w'w
-1



Where,
1) X € RN*D ig the data matrix

—~

’ 2 2

ws = argmin || Xw — y||5 + Al|w||3
weRP

Yy € RN is a vector of all the outcomes

w' = argmin | Xw —y||5+w' Mw ()
weRD A is the regularization coefficient

M € RP*P is a sysmetric positive definite matrix.

2. Find the closed form of w/, by writing down the gradient of F(w) = || Xw — y||5 + w! Mw and setting
it to 0. (4 points)

F(w) = || Xw — y|3 +w” Muw

[ Xw -yl = (Xw —y) ' (Xw —y)
— (Xw)" —y") (Xw —y) using (AB)' =B'A'

= (Xw)' (Xw) — (Xw)'y —y' (Xw) +y'y

(Xw)'y isascalarr  (NxDDX1TNx1 >(NxDTNx1->1XNNx1-1x1

So we have, (Xw)_y = ((X’w)_y)_ = yT(Xw)-

(09/05 lecture slides, page 27)

13
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’ 2
wy = arg min || Xw — yII% + Al|lwl||3
weRP

1) Where,

X € RN*D is the data matrix
w' = argmin | Xw —y|5+w' Mw  (2)

N .
& IR" is a vector of all the outcomes
weRD Y

A is the regularization coefficient

M € RP*P is a sysmetric positive definite matrix.

2. Find the closed form of w/, by writing down the gradient of F(w) = || Xw — y||5 + w! Mw and setting
it to 0. (4 points)

F(w) = | Xw — y[3 + w’ Muw

| Xw — [l = (Xw —y) (Xw - y)
= ((Xw)' —y') (Xw —y) using (AB)' =B'A’
= (Xw)' (Xw) — (Xw)'y —y' (Xw) +y'y
= (Xw)' (Xw) - 2y' (Xw) + y'y using (Xw) 'y = y' (Xw)

w' X' Xw — 2y Xw + y'y using (AB)' =B'A'

14
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. 2 2
wy = argmin || Xw — y||5 + Al|w||5
weRP

1) Where,

X € RN*D is the data matrix
w' = argmin | Xw —y|5+w' Mw  (2)

Yy € RN is a vector of all the outcomes
weRDP

A is the regularization coefficient
M € RP*P is a sysmetric positive definite matrix.

2. Find the closed form of w/, by writing down the gradient of F(w) = || Xw — y||5 + w! Mw and setting
it to 0. (4 points)

F(w) = | Xw -y} +w" Muw

Fw)=w'X"Xw — 2y' Xw + y'y + w' Mw.

The gradient: \va [yTy] —0
Vo w XTXw] = 2X X w Vol[-2y Xw]=-2X"y Vo [w Mw] = 2Muw
Ox' Ax da' x T T AT
—— = 2Ax =2 Y (X )
A is not a function of x and A is symmetric a is not a function of x

(09/05 lecture slideSjSpage 52)



—~

. 2 2
wy = argmin || Xw — y||5 + Al|w||5
weRP

1) Where,

X € RN*D is the data matrix
w' = argmin | Xw —y|5+w' Mw  (2)

Yy € RN is a vector of all the outcomes
weRDP

A is the regularization coefficient

M € RP*P is a sysmetric positive definite matrix.

2. Find the closed form of w/, by writing down the gradient of F(w) = || Xw — y||5 + w! Mw and setting
it to 0. (4 points)

F(w) = | Xw — y|l3 + w” Muw

Fw)=w'X"Xw — 2y' Xw + y'y + w' Mw.
The gradient:
VF(w) = 2X ' Xw — 2X 'y + 2Mw

2X1(Xw — y) + 2Mw.

16



—~

’ 2 2
wy = argmin || Xw — y||5 + Al|w||5
weRP

1) Where,

X € RN*D is the data matrix
w' = argmin | Xw —y|5+w' Mw  (2)

Yy € RN is a vector of all the outcomes
weRDP

A is the regularization coefficient

M € RP*P is a sysmetric positive definite matrix.

2. Find the closed form of w/, by writing down the gradient of F(w) = || Xw — y||5 + w! Mw and setting
it to 0. (4 points)

Set it to O: 2X ! (Xw — y) + 2Mw.
2X ' Xw—2X"y+2Mw =0
(X'X+Mw=X"y
Aw =0> let A:=X'X +M andb:=X"y
AtAw = A"
w= A"'b ,thatis, w’ = (XTX + M)_l Xy.

17



3. Recall the Newton method: w''*! « w!'Y) — H'VF(w'") where H; = V2F(w'"). Show that no
matter what the initialization w'? is, Newton method always takes one step only to find the mini-
mizer w’, of F(w) = || Xw — y||3 + w"Mw. (4 points)

wtt) ) — H, IVFE(w®)

VF(w) = 2X! (Xw — y) + 2Mw
At any point, the Hessian is always H := V2F(w) = 2(X'X + M).

-1 _ T -1 13T -1 >
H = [2 (XX + MH o2 (XX + M) Example: Newton method
jumps directly to its

So applying Newton method to any initialization of w(® gives, minimizer in one step from
any start.
wl) = w® — (XTX + M)_l(XT(me) —y)+ Mw{m)
—w® — (xTx + M) ( (XTX + M)w® — XTy)

T Lo /
Hence Newton method needs only one step, regardless of initialization.

(Newton method: 09/12 lecture slides, page 34) 18



2.2 (14 points) Assume we have a training set (x,11),..., (xn,yn) € RP x R, where each outcome v,

is generated by a probabilistic model w!x, + €, with €, being an independent Gaussian noise with zero-
mean and variance ¢ for some ¢ > 0. In other words, the probability density of any outcome y € R given

X, 1S o
1 —(y — wyxy)
P Wy, T) = .
r(y | Xy, Wy, 0) oy exp ( 52

1. Assume ¢ is fixed and given, find the maximum likelihood estimation for w.. In other words, first
write down the joint density of the outcomes vy, ..., yyN given x1, ..., xy as a function of the value of
w,; then find the value of w, that maximizes this density. You can assume X' X is invertible where X
is the data matrix as used in Problem 2.1. (6 points)

The probability of seeing label y,, ..., ¥, given x4, ..., x,, is that

N N 1 _( g — wa”)Z
P(w) =[] Pr(yn | xusw,0) =[] T exp ( Y — ) :

n=1 n=1

(The joint density for a linear model w)

Now, we need to find a w, that maximizes P(w)

19

(MLE: 09/12 lecture slides, page 49)



1. Assume ¢ is fixed and given, find the maximum likelihood estimation for w.. In other words, first

write down the joint density of the outcomes vy, ...,yN given x1,...,xy as a function of the value of
w,; then find the value of w. that maximizes this density. You can assume X TX is invertible where X

is the data matrix as used in Problem 2.1. (6 points)
N N T 2
1 _(Hu — w xu)
| | Pw) = lj[lPr(yn | Xy, w,0) = lj[l oon exp ( 52 ) :
Taking the negative = =
log, this becomes N (g — w22
F(w) = —InP(w) = Z In LT\/_ exp( Yn s n )] log, (zy) = logy, « + log, vy

n—1

:_i [111(5\}_) _ W _2’:;“*”)1 Inet — ¢

n—1

log;, =
log;, v/& =
(Yn — w! m.n_)g b
- Z! Ino —Inv2r — 53 )
1 lﬂghg = log, z — log, v

N

Z [anJrln\ﬁ} 952 Z(yn w'z,)?

n—1 n—1

Flw) = Nlnx;’Z?r—}—Nan—}—Lz n—w'x,) :Nln\z’ZH—{—Nan—{—%HXw—yH%

i [ij

20
(MLE: 09/12 lecture slides, page 50)



1. Assume ¢ is fixed and given, find the maximum likelihood estimation for w.. In other words, first
write down the joint density of the outcomes vy, ...,yN given x1,...,xy as a function of the value of
w,; then find the value of w, that maximizes this density. You can assume XX is invertible where X

is the data matrix as used in Problem 2.1. (6 points)
rp( ) ﬁp ( ‘ [T) ﬁ 1 (_(yil_waH)z)
w) = r(yy | xp,w,0) = ex :
n= / n=17V 27 P 20.2
1

N
1
E(yn — wa”)Z = NInvV2mr+ Nlno + ﬁ”xw _ y”%

n=1

Flw) = NInv2m+ Nlno +
202

Maximizing P(w) is the same as minimizing F(w), the negative log of P(w):
N
e oisfixed and given, so it becomes minimizing the last part of F(w): Y (yn — w'x,)?
n=1

(the same objective as for least square regression)
Similarly,

Vuly — Xw|; = 2X ' (Xw —y) =0
X'Xw=X"y
w, = (X'X)"1x1y.

21



2. Now consider ¢ as a parameter of the probabilistic model too, that is, the model is specified by both
w. and ¢. Find the maximum likelihood estimation for w. and ¢. (8 points)

Follow the same steps from the previous question, we can get F(w, 0):
1
F(w,0) = NInV2mr+ Nlno + FHXIU —yll5.

MLE for wx and o is the minimizer of the function F(w, o).

Take the derivative over w and set itto O to find w,:

OF (w, 1 1 - Tv\—1+T
o) Xy = S Xw-X"y  w = (XX Xy,

ow o
(Does not depend on o)

Take the derivative over o:

OF(w,0) N B | Xw — y|?
Jo o o ' o — \/HXW —yl?
N

No* — || Xw —y||* =0 o> 0.

This depends on w, so we need to find w, first.

22



2. Now consider ¢ as a parameter of the probabilistic model too, that is, the model is specified by both

w. and ¢. Find the maximum likelihood estimation for w. and ¢. (8 points)
1
F(w,o) :Nln\/2fr+Nan+ﬁHXw—yH§. o > 0.

We first fix 0 and minimize over w (the same MLE from the previous question):
w, = (X'X) 1x1y.
Foranyoc >0,

/o Ly 1
N Inv2m+N Ino + 2—2} w—y|2 = Nln\/ 21+ N Ino + 2—2|Xw—y]2
o) o E

Then we plug in w, and minimize F(w,, o) tofind o :

dF(w.,0) N 1
E ;—0—3”}(“3*—9“%:0-

o (X"X) "Xy — gl

1 1
= —| Xw, —yl|r=—|X
—l1Xw. ~yl2 = |

23



Problem 3 Linear Classifiers (16 points)

In Lecture 3 we have seen the hinge loss /(z) = max{0,1 — z}, which is non-differentiable at z = 1. To
avoid this issue, we can consider the square of hinge loss £(z)?, which is differentiable everywhere. More
specifically, given a binary dataset (x1,1), ..., (xn,yn) € RP x {—1,1}, we define the following new loss
function for a linear model w € RP:

1

Flw)= N éFn(w), where F,(w) = (max {0,1 —yanxn})z. 3)

1. For a fixed n, write down the gradient VF,(w) (show your derivation), then fill in the missing details
in the repeat-loop of the algorithm below which applies SGD to minimize F. (6 points)

2
When 1 — yanxn <0, Fi(w)= (max {0,1 —yanxn}) = (0 ThegradientofitisO.

When 1 — y,w'x, > 0, F.(w) = (1—-y,w'x,)?

Take the derivative by using the chain rule:

d

EEZ = 2z VWFH(‘IU) = 2(1 — yn‘lﬂTJ}n) . Vw(l — yn‘lﬂTa”‘sn) — 2(1 - ynw—rmn](_ynmn)

VFH(W) — _2y11(1 — yn'wan)xn,

24



Problem 3 Linear Classifiers (16 points)

In Lecture 3 we have seen the hinge loss /(z) = max{0,1 — z}, which is non-differentiable at z = 1. To
avoid this issue, we can consider the square of hinge loss /¢ (2)2, which is differentiable everywhere. More
specifically, given a binary dataset (x1,1), ..., (xn,yn) € RP x {—1,1}, we define the following new loss
function for a linear model w € RP:

1

Flw)= N éFn(w), where F,(w) = (max {O,l —yanxn})z. 3)

1. For a fixed n, write down the gradient VF,(w) (show your derivation), then fill in the missing details
in the repeat-loop of the algorithm below which applies SGD to minimize F. (6 points)

2
When 1 — yanxn <0, Fy(w)= (max {U,l —yanxn}) =0 ThegradientofitisO.

'_'E‘ if 1 ynu-'. -mﬂ, < Uﬂ

VFH(TU) = _2}9’1:(1 — yanxn)xn,

T

1 —yw'z, ifl-— yan:r:ﬂ > 0.

T

which is also 0 when v, w" x,, approaches 1

VE,(w) = =2y, max{0,1 — yr,war, by

25



Problem 3 Linear Classifiers (16 points)

In Lecture 3 we have seen the hinge loss /(z) = max{0,1 — z}, which is non-differentiable at z = 1. To
avoid this issue, we can consider the square of hinge loss £(z)?, which is differentiable everywhere. More
specifically, given a binary dataset (x1,1), ..., (xn,yn) € RP x {—1,1}, we define the following new loss
function for a linear model w € RP:

1

Flw)= N éFn(w), where F,(w) = (max {O,l —yanxn})z. (3)

1. For a fixed n, write down the gradient VF,(w) (show your derivation), then fill in the missing details
in the repeat-loop of the algorithm below which applies SGD to minimize F. (6 points)

Algorithm 1: SGD for minimizing Eq. (3)

1 Input: A training set (x1,v1),..., (xn,yn) € RP x {—1,1}, learning rate > 0
2 Initialization: w = 0

3 Repeat:

4 randomly pick an example (x,, v,,)

5 L update w <+ w + 25y, max{0,1 — y,w’ x, }x,

VF,(w) = —2y, max{0,1 — yﬂwa” bx,,. Ny

(SGD: 09/12 lecture slides, page 26)



2. Next, consider modifying F,(w) as

Dfl T T n 2; f n — 1;
Fo(w) = { M2 101—win ), o ify (4)
E(max{ﬂ,l—lrw xn})”, else.

(a) Consider a binary classification dataset of points in two dimensions as shown in Figure 1, where
the red, plus signs denote samples with label +1, and the green, minus signs denote samples
with label —1. When training a linear classifier with the modified loss in Eq. (4), which of w; or
wy in Figure 1 do you think is more likely the resulting decision boundary? Explain briefly. (2

points)
\\ WI x‘ wz
\ + + F : ) . o
- + 5+ * Theloss function now does not penalize misclassifying
- - "' + 4 negative points as heavily as it penalizes misclassifying
= N * =4 o+ positive points.
- ‘x - + - \\
‘\ .l. + ‘:'-
- . 1+ + ++ =>The model does not want to misclassify # points.
- S -\\ + -\\ +
- Y\ - Y
R T

Figure 1: A binary classification task -



2. Next, consider modifying F,(w) as

Dfl T T n 2; f n — 1;
Fo(w) = { M2 101—win ), o ify (4)
E(max{ﬂ,l—lrw xn})”, else.

(a) Consider a binary classification dataset of points in two dimensions as shown in Figure 1, where
the red, plus signs denote samples with label +1, and the green, minus signs denote samples
with label —1. When training a linear classifier with the modified loss in Eq. (4), which of w; or
wy in Figure 1 do you think is more likely the resulting decision boundary? Explain briefly. (2

points)
\\\WI ‘\ WZ . .
| + +F * The datasetis not linearly separable.
-\ om t Ny vt * Any linear classifier will make mistakes.
-‘\\ + [ | + \\\ + + +
- _+ .1 * Therefore, wyis more likely.
\ +
- - - N ¥ + + N
\\+ +‘\
— - -\\ = -\\ =
- \‘- \\
R T

Figure 1: A binary classification task 08



2. Next, consider modifying F,(w) as

0,1—wtx, V),  ify,=1,
E(max {0,1+w'x,})", else.

(b) Based on your answer from the last question, give an example where one would want to modify
the loss function in such a way. (2 points)

For example, in fraud detection (41 represents a fraud), it is far more important to make sure that

an actual fraud is not missed, and thus the loss function should give more weights to positive
labels.

We accept any reasonable example where the one label represents a critical or high-stakes outcome
and is far more important than the other label.

29



2. Next, consider modifying F,(w) as

2 g
Fn(w) B {(max {0 o xn}) ’ lfy" - 4)

0.1 (max {0,1+ w x,,})2 . else.

(c) Similarly to Question 3.1, write down the gradient of this modified loss F,,, then fill in the missing
details in the repeat-loop of the algorithm below which applies SGD to minimize F. (6 points)

Similar steps as in Question 3.1,
Wheny, = 1,

e If 1—w'z, <0,thegradientisO.
e If 1—w'z, >0,

VE,(w) =2(1— wT:Bn) V(1-— w_mn) =2(1- wT:nn)(—:nn) = —2 max{0,1 — wT:nn}:E.n_
Else,
e fl+w'z, <0,thegradientisO.
s fF14+w'2, >0,

VF,(w)=0.1-2(1+ w_ﬂ:n) V(1 + wT:rn] = 0.2 max{0,1 + wT:rn} T,,.

30



2. Next, consider modifying F,(w) as

0.3 —wfx 1), dbp=i
0.1 (max {0,14+w'x,})", else.

(c) Similarly to Question 3.1, write down the gradient of this modified loss F,, then fill in the missing
details in the repeat-loop of the algorithm below which applies SGD to minimize F. (6 points)

—2max{0,1 — wlx, }x,, ify,=1,
0.2max{0,1+w'x,}x, else.

VF,(w) = {

Algorithm 2: SGD for minimizing modified loss Eq. (4)

1 Input: A training set (x1,v1), ..., (xn,yn) € RP x {—1,1}, learning rate > 0
2 Initialization: w = 0

3 Repeat:

4 | randomly pick an example (xu, yn)

—2ymax{0,1 —whx,}xn, ify, =1,

027 max{0,1+ w'x,}x, else.

5 updatewew{

31
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