
CSCI 567 Discussion
Week 4 - HW1 Review
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• Three classes: 

 ■ Squares▲ Triangles ● Circles

• Two test points:

 A and B

• K-nearest neighbor (KNN) with L1 distance

𝑑((𝑥1​, 𝑦1​), (𝑥2​, 𝑦2​)) =∣ 𝑥1​− 𝑥2​∣+∣ 𝑦1​− 𝑦2​∣

Recall KNN with K=1:
- We only look at the single closest neighbor.
- Whatever class that neighbor belongs to → the predicted class.

(KNN: 08/29 lecture slides, page 45)
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• Three classes: 

 ■ Squares▲ Triangles ● Circles

• Two test points:

 A and B

• K-nearest neighbor (KNN) with L1 distance

𝑑((𝑥1​, 𝑦1​), (𝑥2​, 𝑦2​)) =∣ 𝑥1​− 𝑥2​∣+∣ 𝑦1​− 𝑦2​∣

Answer: 

• Circle.

 

Point A’s closest neighbor 
(8,6) with L1 distance 2.

(8,8)

• Explanation: The closest point to A is the circle at (8,6) (with L1 distance 2).
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• Three classes: 

 ■ Squares▲ Triangles ● Circles

• Two test points:

 A and B

• K-nearest neighbor (KNN) with L1 distance

𝑑((𝑥1​, 𝑦1​), (𝑥2​, 𝑦2​)) =∣ 𝑥1​− 𝑥2​∣+∣ 𝑦1​− 𝑦2​∣

(8,4)

K = 1:
• Neighbors: ● 

● at (8,6) with dist = 2.

• The prediction of B is ●, so K = 1 does not work.

(8,6)
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• Three classes: 

 ■ Squares▲ Triangles ● Circles

• Two test points:

 A and B

• K-nearest neighbor (KNN) with L1 distance

𝑑((𝑥1​, 𝑦1​), (𝑥2​, 𝑦2​)) =∣ 𝑥1​− 𝑥2​∣+∣ 𝑦1​− 𝑦2​∣

(8,4)

K = 3:
• Neighbors: ●, ●, ▲

● at (8,6) with dist = 2; ● at (5,4) with dist = 3; either▲at (6,2) with dist = 4 or ▲at (6,6) with dist = 4.
 

• The prediction of B is ●, so K = 3 does not work.

(8,6)

(5,4)

(6,6)

(6,2)
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• Three classes: 

 ■ Squares▲ Triangles ● Circles

• Two test points:

 A and B

• K-nearest neighbor (KNN) with L1 distance

𝑑((𝑥1​, 𝑦1​), (𝑥2​, 𝑦2​)) =∣ 𝑥1​− 𝑥2​∣+∣ 𝑦1​− 𝑦2​∣

(8,4)

K = 5:
• Neighbors: ●, ●, ▲, ▲, ▲

● at (8,6) with dist = 2; ● at (5,4) with dist = 3; ▲at (6,2) with dist = 4;▲at (6,6) with dist = 4; 
▲at (5,6) with dist = 5. 

• The prediction of B is▲, so K = 5 is the answer.

(8,6)

(5,4)

(6,6)

(6,2)

(5,6)
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(S-fold cross-validation: 08/29 lecture slides, page 53)

Leave-one-out validation (N-fold cross validation, where N = 10):
• We have N = 10 training points. 

• For each run 𝑖 = 1…𝑁:
• Leave out 1 point.
• Classify the point with KNN (K = 1) using the other 9 points.
• Check if it is correct.

From: https://en.wikipedia.org/wiki/Cross-validation_(statistics)#/media/File:LOOCV.gif
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Run Leave Out Closest Neighbor (K = 1) Classification

1 ■ at (2,8) ■ at (2,7) ■ 

2 ● at (5,8) ▲at (5,6) ▲

… … … …

… ● at (8,6) ▲at (6,6) ▲

… ● at (5,4) ▲at (5,6) ▲

… ▲at (6,2) ● at (5,4) ●

10 … … …

Answer: 

The misclassified points: ▲at (6,2) and all three ● (at (5,8), (8,6), and (5,4)).
The error rate: 4/10 = 0.4
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(Regularized linear regression : 09/05 lecture slides, page 49)
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Where,

For example, 

𝒘 = 2​3​4 ,𝒘𝑇 =
2
3
4

𝒘𝑇𝒘 = 2​3​4
2
3
4
​= 22 + 32 + 42 =
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Answer: 

To make Eq. (2) equals to Eq. (1), we pick the matrix: 

Where,
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Where,

(09/05 lecture slides, page 27)

using

is a scalar: 𝑁 × 𝐷​𝐷 × 1 𝑇​𝑁 × 1​ → 𝑁 × 1 𝑇​𝑁 × 1​ → 1 × 𝑁​𝑁 × 1 → 1 × 1

So we have, 
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Where,

using

using

using
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Where,

The gradient: 

A is not a function of x and A is symmetric a is not a function of x

(09/05 lecture slides, page 52)
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Where,

The gradient: 
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Where,

Set it to 0:

Let and

, that is, 
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(Newton method: 09/12 lecture slides, page 34)

At any point, the Hessian is always

So applying Newton method to any initialization of 𝑤(0)​gives,

Hence Newton method needs only one step, regardless of initialization.

Example: Newton method 
jumps directly to its 
minimizer in one step from 
any start.
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(MLE: 09/12 lecture slides, page 49)

The probability of seeing label 𝑦1, … , 𝑦𝑛​given 𝑥1, … , 𝑥𝑛  is that

(The joint density for a linear model w)

Now, we need to find a 𝒘∗ that maximizes 
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(MLE: 09/12 lecture slides, page 50)

Taking the negative 
log, this becomes 
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Maximizing P(w) is the same as minimizing F(w), the negative log of P(w):

• σ is fixed and given, so it becomes minimizing the last part of F(w): 

      (the same objective as for least square regression)
Similarly, 
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Follow the same steps from the previous question, we can get F(w, σ): 

Take the derivative over 𝒘 and set it to 0 to find 𝒘∗:

Take the derivative over σ: 

This depends on 𝒘, so we need to find 𝒘∗ first.

MLE for w∗ and σ is the minimizer of the function F(w, σ).

(Does not depend on σ)
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We first fix σ and minimize over 𝒘 (the same MLE from the previous question):
 

Then we plug in 𝒘∗​and minimize F(𝒘∗, σ) to find σ :

For any σ > 0,  

≥
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= 0 The gradient of it is 0.

Take the derivative by using the chain rule: 
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= 0 The gradient of it is 0.
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(SGD: 09/12 lecture slides, page 26)
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• The loss function now does not penalize misclassifying 
negative points as heavily as it penalizes misclassifying 
positive points. 

=> The model does not want to misclassify       points.
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• The dataset is not linearly separable. 
• Any linear classifier will make mistakes.

• Therefore, 𝒘𝟏is more likely.
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We accept any reasonable example where the one label represents a critical or high-stakes outcome 
and is far more important than the other label.
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Similar steps as in Question 3.1, 

When 𝑦𝑛 = 1, 
• If         , the gradient is 0.
• If         , 

Else,
• If                                , the gradient is 0.
• If        , 
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